Structural Variation Patterns in Xylem Vessels and Parenchyma Cells and Their Association with Tree Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Species
2.2. Material Preparation Method
2.3. Observation of the Xylem Structure
2.4. Data Analysis (Model of ANOVA)
3. Results
3.1. Structural Variation Patterns in the Xylem Vessels
3.1.1. Variation in the Vessel Structure of Tree Species with Different Degrees of Evolution
3.1.2. Variation in the Vessel Structure among the Sapwood, Transition Wood, and Heartwood of the Same Species
3.2. Structural Variation Patterns in the Parenchyma Cells
3.2.1. Variation in the Parenchyma Cell Structure of the Tree Species with Different Degrees of Evolution
3.2.2. Variation in the Parenchyma Cell Structure among the Sapwood, Transition Wood, and Heartwood of the Same Species
4. Discussion
4.1. Structural Variation in the Xylem Vessels and Its Association with Tree Evolution
4.2. Structural Variation in the Xylem Parenchyma Cells and Its Association with Tree Evolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slupianek, A.; Dolzblasz, A.; Sokolowska, K. Xylem parenchyma—Role and relevance in wood functioning in trees. Plants 2021, 10, 1247. [Google Scholar] [CrossRef] [PubMed]
- Tomasella, M.; Petrussa, E.; Petruzzellis, F.; Nardini, A.; Casolo, V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 2020, 21, 144. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, E.A.; Baas, P.; Rodgers, S. Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J. 2007, 28, 229–258. [Google Scholar] [CrossRef]
- Burgert, I.; Eckstein, D. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees-Struct. Funct. 2001, 15, 168–170. [Google Scholar] [CrossRef]
- Menard, D.; Pesquet, E. Cellular interactions during tracheary elements formation and function. Curr. Opin. Plant. Biol. 2015, 23, 109–115. [Google Scholar] [CrossRef]
- Obara, K.; Kuriyama, H.; Fukuda, H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in zinnia. Plant Physiol. 2001, 125, 615–626. [Google Scholar] [CrossRef]
- Pfautsch, S.; Renard, J.; Tjoelker, M.G.; Salih, A. Phloem as capacitor: Radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma. Plant Physiol. 2015, 167, 963–971. [Google Scholar] [CrossRef]
- Morris, H.; Gillingham, M.A.F.; Plavcova, L.; Gleason, S.M.; Olson, M.E.; Coomes, D.A.; Fichtler, E.; Klepsch, M.M.; Martinez-Cabrera, H.I.; McGlinn, D.J.; et al. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ. 2018, 41, 245–260. [Google Scholar] [CrossRef]
- Fichtler, E.; Worbes, M. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J. 2012, 33, 119–140. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.G.; Feild, T.S.; Sano, Y.; Sikkema, E.H. Hydraulic consequences of vessel evolution in angiosperms. Int. J. Plant Sci. 2007, 168, 1127–1139. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.G.; Pittermann, J. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot. 2006, 93, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Pfautsch, S.; Harbusch, M.; Wesolowski, A.; Smith, R.; Macfarlane, C.; Tjoelker, M.G.; Reich, P.B.; Adams, M.A. Climate determines vascular traits in the ecologically diverse genus eucalyptus. Ecol. Lett. 2016, 19, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Gleason, S.M.; Westoby, M.; Jansen, S.; Choat, B.; Hacke, U.G.; Pratt, R.B.; Bhaskar, R.; Brodribb, T.J.; Bucci, S.J.; Cao, K.F.; et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. 2016, 209, 123–136. [Google Scholar] [CrossRef]
- Liu, H.; Ye, Q.; Gleason, S.M.; He, P.C.; Yin, D.Y. Weak tradeoff between xylem hydraulic efficiency and safety: Climatic seasonality matters. New Phytol. 2021, 229, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.S.; Meinzer, F.C.; McCulloh, K.A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.K.; Sperry, J.S.; Hacke, U.G.; Hoang, N. Inter-vessel pitting and cavitation in woody rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005, 28, 800–812. [Google Scholar] [CrossRef]
- Lens, F.; Sperry, J.S.; Christman, M.A.; Choat, B.; Rabaey, D.; Jansen, S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus acer. New Phytol. 2011, 190, 709–723. [Google Scholar] [CrossRef]
- Rungwattana, K.; Hietz, P. Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Funct. Ecol. 2018, 32, 260–272. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood 3. Overview; functional anatomy of the parenchyma network. Bot. Rev. 2018, 84, 242–294. [Google Scholar] [CrossRef]
- Hearn, D.J. Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). Am. J. Bot. 2009, 96, 1941–1956. [Google Scholar] [CrossRef]
- Martinez-Cabrera, H.I.; Zheng, J.M.; Estrada-Ruiz, E. Wood functional disparity lags behind taxonomic diversification in angiosperms. Rev. Palaeobot. Palynol. 2017, 246, 251–257. [Google Scholar] [CrossRef]
- Zhou, C.B.; Xia, H.U.; Song, Y.Y.; Gong, W.; Ting-Xing, H.U. Radial variation and its storage function of ray tissue. J. Northwest For. Univ. 2016, 31, 179–183. [Google Scholar]
- Tsuchiya, R.; Furukawa, I. Relationship between the radial variation of ray characteristics and the stages of radial stem increment in zelkova serrata. J. Wood Sci. 2010, 56, 495–501. [Google Scholar] [CrossRef]
- Leal, S.; Sousa, V.B.; Pereira, H. Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber_L.). Wood Sci. Technol. 2006, 40, 585–597. [Google Scholar] [CrossRef]
- Naji, H.R.; Sahri, M.H.; Nobuchi, T.; Bakar, E.S. Radial variation of wood cell features under different stocking densities management of two new clones of rubberwood (Hevea brasiliensis). J. Wood Sci. 2013, 59, 460–468. [Google Scholar] [CrossRef]
- Chen, S.Y.; Yen, P.L.; Chang, T.C.; Chang, S.T.; Huang, S.K.; Yeh, T.F. Distribution of living ray parenchyma cells and major bioactive compounds during the heartwood formation of taiwania cryptomerioides hayata. J. Wood Chem. Technol. 2018, 38, 84–95. [Google Scholar] [CrossRef]
- Scholz, A.; Klepsch, M.; Karimi, Z.; Jansen, S. How to quantify conduits in wood? Front. Plant Sci. 2013, 4, 56. [Google Scholar] [CrossRef]
- Sterck, F.J.; Zweifel, R.; Sass-Klaassen, U.; Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 2008, 28, 529–536. [Google Scholar] [CrossRef]
- Olson, M.E. From carlquist’s ecological wood anatomy to carlquist’s law: Why comparative anatomy is crucial for functional xylem biology. Am. J. Bot. 2020, 107, 1328–1341. [Google Scholar] [CrossRef]
- Frost, F.H. Specialization in secondary xylem of dicotyledons. I. Origin of vessel. Bot. Gaz. 1930, 89, 67–94. [Google Scholar] [CrossRef]
- Thomas, R.; Boura, A. Palm stem anatomy: Phylogenetic or climatic signal? Bot. J. Linn. Soc. 2015, 178, 467–488. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Link, R.; Li, R.; Deng, L.P.; Schuldt, B.; Jiang, X.M.; Zhao, R.J.; Zheng, J.M.; Li, S.; et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests 2019, 10, 662. [Google Scholar] [CrossRef]
- Brodersen, C.R.; McElrone, A.J. Maintenance of xylem network transport capacity: A review of embolism repair in vascular plants. Front. Plant Sci. 2013, 4, 108. [Google Scholar] [CrossRef] [PubMed]
- Jokanovic, D.; Vilotic, D.; Mitrovic, S.; Miljkovic, D.; Rebic, M.; Stankovic, D.; Nikolic, V. Correlations between the anatomical traits of Gymnocladus canadensis lam. In heartwood and sapwood of early- and latewood zones of growth rings. Arch. Biol. Sci. 2015, 67, 1399–1404. [Google Scholar] [CrossRef]
- Kitin, P.; Funada, R. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA J. 2016, 37, 315–331. [Google Scholar] [CrossRef]
- Echeverria, A.; Petrone-Mendoza, E.; Segovia-Rivas, A.; Figueroa-Abundiz, V.A.; Olson, M.E. The vessel wall thickness-vessel diameter relationship across woody angiosperms. Am. J. Bot. 2022, 109, 856–873. [Google Scholar] [CrossRef]
- Jacobsen, A.L.; Ewers, F.W.; Pratt, R.B.; Paddock, W.A.; Davis, S.D. Do xylem fibers affect vessel cavitation resistance? Plant Physiol. 2005, 139, 546–556. [Google Scholar] [CrossRef]
- Plavcova, L.; Hoch, G.; Morris, H.; Ghiasi, S.; Jansen, S. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am. J. Bot. 2016, 103, 603–612. [Google Scholar] [CrossRef]
- Zheng, J.M.; Martinez-Cabrera, H.I. Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Ann. Bot. Lond. 2013, 112, 927–935. [Google Scholar] [CrossRef]
- Spicer, R. Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting long-distance transport. J. Exp. Bot. 2014, 65, 1829–1848. [Google Scholar] [CrossRef]
- Nakaba, S.; Sano, Y.; Funada, R. Disappearance of microtubules, nuclei and starch during cell death of ray parenchyma in abies sachalinensis. IAWA J. 2013, 34, 135–146. [Google Scholar] [CrossRef]
- Nagasaki, T.; Yasuda, S.; Imai, T. Immunohistochemical localization of agatharesinol, a heartwood norlignan, in cryptomeria japonica. Phytochemistry 2002, 60, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Kokutse, A.D.; Stokes, A.; Bailleres, H.; Kokou, K.; Baudasse, C. Decay resistance of togolese teak (Tectona grandis L.f) heartwood and relationship with colour. Trees 2006, 20, 219–223. [Google Scholar] [CrossRef]
- Kawai, K.; Minagi, K.; Nakamura, T.; Saiki, S.T.; Yazaki, K.; Ishida, A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. Tree Physiol. 2022, 42, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; Jiang, X.M.; Ma, L.Y.; Liu, S.J.; He, T.; Jiao, L.C.; Yin, Y.F.; Yao, L.H.; Guo, J. Anatomical adaptions of pits in two types of ray parenchyma cells in populus tomentosa during the xylem differentiation. J. Plant Physiol. 2022, 278, 153830. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Yamashita, K.; Fujiwara, T. Cellular level observation of water loss and the refilling of tracheids in the xylem of cryptomeria japonica during heartwood formation. Trees 2009, 23, 1163–1172. [Google Scholar] [CrossRef]
- Kuroda, K.; Yamane, K.; Itoh, Y. In planta analysis of the radial movement of minerals from inside to outside in the trunks of standing Japanese cedar (Cryptomeria japonica D. Don) trees at the cellular level. Forests 2021, 12, 251. [Google Scholar] [CrossRef]
Species | Family | APG III Serial Number | DBH/cm | Tree Height/m | Age/Year |
---|---|---|---|---|---|
Michelia macclurei Dandy | Magnoliaceae | 17 | 24.27 ± 1.64 | 18.67 ± 2.05 | 51 |
Cinnamomum camphora (L.) presl | Lauraceae | 28 | 25.73 ± 2.46 | 19.00 ± 2.83 | 50 |
Erythrophleum fordii Oliv. | Fabaceae | 144 | 22.33 ± 1.34 | 15.00 ± 0.82 | 51 |
Melaleuca leucadendron L. | Myrtaceae Juss. | 222 | 21.37 ± 2.22 | 26.67 ± 0.94 | 51 |
Parashorea chinensis Wang Hsie. | Dipterocarpaceae | 256 | 24. 13 ± 1.80 | 32.67 ± 0.94 | 51 |
Tectona grandis L.F. | Verbenaceae J. St.-Hil. | 382 | 28.73 ± 0.26 | 20.33 ± 1.31 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Fu, Y.; Liu, Z.; Wei, P. Structural Variation Patterns in Xylem Vessels and Parenchyma Cells and Their Association with Tree Evolution. Forests 2023, 14, 950. https://doi.org/10.3390/f14050950
He L, Fu Y, Liu Z, Wei P. Structural Variation Patterns in Xylem Vessels and Parenchyma Cells and Their Association with Tree Evolution. Forests. 2023; 14(5):950. https://doi.org/10.3390/f14050950
Chicago/Turabian StyleHe, Linghui, Yunlin Fu, Zhigao Liu, and Penglian Wei. 2023. "Structural Variation Patterns in Xylem Vessels and Parenchyma Cells and Their Association with Tree Evolution" Forests 14, no. 5: 950. https://doi.org/10.3390/f14050950
APA StyleHe, L., Fu, Y., Liu, Z., & Wei, P. (2023). Structural Variation Patterns in Xylem Vessels and Parenchyma Cells and Their Association with Tree Evolution. Forests, 14(5), 950. https://doi.org/10.3390/f14050950