Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x elongata (S.Y.Hu) Wood
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Density
3.2. Sorption Behavior
3.3. Brinell Hardness
3.4. Modulus of Rupture (MOR) and Modulus of Elasticity (MOE)
3.5. Compressive Strength
3.6. Tensile Strength
3.7. Screw Withdrawal Resistance (SWR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koman, S.; Feher, S. Physical and mechanical properties of Paulownia clone in vitro 112. Eur. J. Wood Prod. 2020, 78, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Pasiecznik, N. Paulownia tomentosa (paulownia). CABI Compend. 2022. [Google Scholar] [CrossRef]
- Huber, C.; Moog, D.; Stingl, R.; Pramreiter, M.; Stadlmann, A.; Baumann, G.; Praxmarer, G.; Gutmann, R.; Eisler, H.; Müller, U. Paulownia (Paulownia elongata S.Y.Hu)—Importance for forestry and a general screening of technological and material properties. Wood Mater. Sci. Eng. 2023, 18, 1–13. [Google Scholar] [CrossRef]
- Fos, M.; Oliver-Villanueva, J.-V.; Vazquez, M. Radial variation in anatomical wood characteristics and physical properties of Paulownia elongata x Paulownia fortunei hybrid Cotevisa 2 from fast-growing plantations. Eur. J. Wood Prod. 2023, 81. [Google Scholar] [CrossRef]
- Barbu, M.C.; Buresova, K.; Tudor, E.M.; Petutschnigg, A. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests 2022, 13, 1543. [Google Scholar] [CrossRef]
- Esteves, B.; Cruz-Lopes, L.; Viana, H.; Ferreira, J.; Domingos, I.; Nunes, L.J.R. The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests 2022, 13, 700. [Google Scholar] [CrossRef]
- Jakubowski, M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022, 13, 668. [Google Scholar] [CrossRef]
- Stochmal, A.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Cieślak, A. Paulownia Clon In Vitro 112®: The Tree of the Future: 21st World Congress on Nutrition and Food Science; Journal of Nutrition & Food Sciences: Sydney, Australia, 2018. [Google Scholar]
- Kadlec, J.; Novosadová, K.; Pokorný, R. Impact of Different Pruning Practices on Height Growth of Paulownia Clon in Vitro 112®. Forests 2022, 13, 317. [Google Scholar] [CrossRef]
- Criscuoli, I.; Brunetti, M.; Goli, G. Characterization of Paulownia elongata x fortunei (BIO 125 clone) Roundwood from Plantations in Northern Italy. Forests 2022, 13, 1841. [Google Scholar] [CrossRef]
- Dżugan, M.; Miłek, M.; Grabek-Lejko, D.; Hęclik, J.; Jacek, B.; Litwińczuk, W. Antioxidant Activity, Polyphenolic Profiles and Antibacterial Properties of Leaf Extract of Various Paulownia spp. Clones. Agronomy 2021, 11, 2001. [Google Scholar] [CrossRef]
- Magar, L.B.; Khadka, S.; Joshi, J.R.R.; Pokharel, U.; Rana, N.; Thapa, P.; Sharma, K.R.S.R.; Khadka, U.; Marasini, B.P.; Parajuli, N. Total Biomass Carbon Sequestration Ability Under the Changing Climatic Condition by Paulownia tomentosa Steud. Int. J. Appl. Sci. Biotechnol. 2018, 6, 220–226. [Google Scholar] [CrossRef]
- Wang, Q.; Shogren, J.F. Characteristics of the crop-paulownia system in China. Agric. Ecosyst. Environ. 1992, 39, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cui, L.; Zhao, Y.; Qiao, J.; Wang, B.; Yang, C.; Zhou, H.; Chang, D. Comprehensive selection of the wood properties of Paulownia clones grown in the hilly region of southern China. BioResources 2020, 15, 1098–1111. [Google Scholar] [CrossRef]
- Abbasi, M.; Pishvaee, M.S.; Bairamzadeh, S. Land suitability assessment for Paulownia cultivation using combined GIS and Z-number DEA: A case study. Comput. Electron. Agric. 2020, 176, 105666. [Google Scholar] [CrossRef]
- López, F.; Pérez, A.; Zamudio, M.A.; de Alva, H.E.; García, J.C. Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 2012, 45, 77–86. [Google Scholar] [CrossRef]
- Kiaei, M. Technological properties of iranian cultivated paulownia wood (Paulownia fortunei). Cellul. Chem. Technol. 2013, 47, 735–743. [Google Scholar]
- Dogu, D.; Tuncer, F.D.; Bakir, D.; Candan, Z. Characterizing microscopic changes of paulownia wood under thermal compression. BioResources 2017, 12, 5279–5295. [Google Scholar] [CrossRef] [Green Version]
- Lachowicz, H.; Giedrowicz, A. Charakterystyka jakości technicznej drewna paulowni COTE−2. Sylwan 2020, 164, 414–423. [Google Scholar] [CrossRef]
- Moreno, J.L.; Bastida, F.; Ondoño, S.; García, C.; Andrés-Abellán, M.; López-Serrano, F.R. Agro-forestry management of Paulownia plantations and their impact on soil biological quality: The effects of fertilization and irrigation treatments. Appl. Soil Ecol. 2017, 117, 46–56. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Yorgun, S.; Yıldız, D.; Şimşek, Y.E. Activated carbon from paulownia wood: Yields of chemical activation stages. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2035–2042. [Google Scholar] [CrossRef]
- Icka, P.; Damo, R.; Icka, E. Paulownia Tomentosa, a Fast Growing Timber. Ann. Valahia Univ. Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef] [Green Version]
- BioTree. Paulownia Environment. Available online: https://paulowniatrees.eu/learn-more/paulownia-environment/ (accessed on 20 February 2023).
- Akyildiz, M.H.; Kol, H.S. Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar] [PubMed]
- Ab Latib, H.; Choon Liat, L.; Ratnasingam, J.; Law, E.L.; Abdul Azim, A.A.; Mariapan, M.; Natkuncaran, J. Suitability of paulownia wood from Malaysia for furniture application. BioResources 2020, 15, 4727–4737. [Google Scholar] [CrossRef]
- Yadav, N.K.; Vaidya, B.N.; Henderson, K.; Lee, J.F.; Stewart, W.M.; Dhekney, S.A.; Joshee, N. A Review of Paulownia Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree. AJPS 2013, 4, 2070–2082. [Google Scholar] [CrossRef] [Green Version]
- Ayrilmis, N.; Kaymakci, A. Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Ind. Crops Prod. 2013, 43, 457–464. [Google Scholar] [CrossRef]
- El-Showk, N.; El-Showk, S. The Paulownia Tree: An Alternative for Sustainable Forestry. 2003, pp. 1–10. Available online: http://www.cropdevelopment.org/docs/PaulowniaBrochure_print.pdf (accessed on 25 January 2023).
- Crul, A. Paulownia Plantages Management in Central Europe. Coppicing and Pruning. Expert interview. 2023. Available online: https://treevest.de/wir-ueber-uns/ (accessed on 25 January 2023).
- Rodríguez-Seoane, P.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Potential of Paulownia sp. for biorefinery. Ind. Crops Prod. 2020, 155, 112739. [Google Scholar] [CrossRef]
- Chongpinitchai, A.R.; Williams, R.A. The response of the invasive princess tree (Paulownia tomentosa) to wildland fire and other disturbances in an Appalachian hardwood forest. Glob. Ecol. Conserv. 2021, 29, e01734. [Google Scholar] [CrossRef]
- Snow, W.A. Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA. For. Trees Livelihoods 2015, 24, 85–96. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Zengeya, T.A.; Richardson, D.M. A review of the impacts of biological invasions in South Africa. Biol. Invasions 2022, 24, 27–50. [Google Scholar] [CrossRef]
- Remaley, T. Non-Native Plants—Rock Creek Park. Available online: https://www.nps.gov/rocr/learn/nature/non-native-plants.htm (accessed on 7 February 2023).
- European Comission. List of Invasive Alien Species of Union Concern. Available online: https://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm (accessed on 25 January 2023).
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Niemz, P.; Sonderegger, W.U. Holzphysik: Eigenschaften, Prüfung und Kennwerte; 2., aktualisierte Auflage; Hanser: München, Germany, 2021; ISBN 978-3-446-46749-1. [Google Scholar]
- ISO 3131:1996-06-01; Wood-Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Brussels, Belgium, 1996.
- Ayarkawa, J. The influence of site and axial position in the tree on the density and strength properties of the wood of Pterygota Marcoarpa K. Schum. Ghana J. For. 1998, 6, 34–41. [Google Scholar]
- Grosser, D. Die Hölzer Mitteleuropas: Ein Mikrophotographischer Lehratlas; Reprint der 1. Aufl. von 1977; Kessel: Remagen, Germany, 2007; ISBN 3935638221. [Google Scholar]
- Bardarov, N.; Popovska, T. Examination of the properties of local origin Paulownia wood (Paulownia sp. Siebold & Zucc.). Manag. Sustain. Dev. 2017, 63, 75–78. [Google Scholar]
- DIN 52184:1979-05; Testing of Wood; Determination of Swelling and Shrinkage. Deutsches Institut für Normung: Berlin, Germany, 1979.
- Komán, S.; Vityi, A. Physical and mechanical properties of Paulownia tomentosa wood planted in Hungaria. Wood Res. 2017, 62, 335–340. [Google Scholar]
- Sedlar, T.; Šefc, B.; Drvodelić, D.; Jambreković, V.; Kučinić, M.; Ištok, I. Physical Properties of Juvenile Wood of Two Paulownia Hybrids. Drv. Ind. 2020, 71, 179–184. [Google Scholar] [CrossRef]
- Donaldson, L. Microfibril angle: Measurement, variation and relationships—A review. IAWA J. 2008, 29, 345–386. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; del Alamo-Sanza, M.; Menéndez-Miguélez, M.; Nevares, I. Method to estimate the medullar rays angle in pieces of wood based on tree-ring structure: Application to planks of Quercus petraea. Wood Sci. Technol. 2018, 52, 519–539. [Google Scholar] [CrossRef] [Green Version]
- EN 1534:2011-01; Wood Flooring-Determination of Resistance to Indentation-Test Method. European Committee for Standardization: Brussels, Belgium, 2011.
- Mania, P.; Hartlieb, K.; Mruk, G.; Roszyk, E. Selected Properties of Densified Hornbeam and Paulownia Wood Plasticised in Ammonia Solution. Materials 2022, 15, 4984. [Google Scholar] [CrossRef]
- DIN 52186:1978-06; Testing of Wood; Bending Test. Deutsches Institut für Normung: Berlin, Germany, 1978.
- DIN 52185:1976-09; Testing of Wood; Compression Test Parallel to Grain. Deutsches Institut für Normung: Berlin, Germany, 1976.
- Sell, J.; für das Holz Lignum, S.A. Eigenschaften und Kenngrössen von Holzarten; 4., überarb. und erw. Aufl.; Sell, J., Ed.; Baufachverl: Dietikon, Switzerland, 1997; ISBN 3855652236. [Google Scholar]
- DIN 52188:1979-05; Testing of Wood; Determination of Ultimate Tensile Stress Parallel to Grain. Deutsches Institut für Normung: Berlin, Germany, 1979.
- EN 320:2011; Particleboards and Fibreboards-Determination of Resistance to Axial Withdrawal of Screws. European Committee for Standardization: Brussels, Belgium, 2011.
- Akyildiz, M.H. Screw-nail withdrawal and bonding strength of paulownia (Paulownia tomentosa Steud.) wood. J. Wood Sci. 2014, 60, 201–206. [Google Scholar] [CrossRef]
Log (Extraction Position) | Diameter (cm) |
---|---|
1 (0–1 m) (cut parallel to the grain) | 32 |
2 (4.5–6 m) (cut parallel to the grain) | 27.5 |
3 (0–1 m) (perpendicular to the grain) | 26 |
4 (4.5–6 m) (perpendicular to the grain) | 21 |
Test | Norm | Number of Samples | Sample Dimension [mm] |
---|---|---|---|
Swelling and shrinkage Bulk density (kg/m3) | DIN 52184:1979-05 ISO 3131:1996 | 12 12 | 20 × 20 × 10 |
Brinell hardness (N/mm2) | EN 1534:2011-01 | 10 | 50 × 50 × 10 |
3-point modulus of elasticity (MOE) (N/mm2) 3-point modulus of rupture (MOR) (N/mm2) | DIN 52186:1978-06 DIN 52186:1978-06 | 12 | 20 × 20 × 360 |
Compressive strength (N/mm2) | DIN 52185:1976-09 | 12 | 20 × 20 × 50 |
Tensile shear strength (N/mm2) | DIN 52188:1979-05 | 16 | 20 × 6 at predetermined breaking point |
Screw withdrawal resistance (N/mm) | EN 320:2011-07 | 12 | 50 × 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, M.C.; Tudor, E.M.; Buresova, K.; Petutschnigg, A. Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x elongata (S.Y.Hu) Wood. Forests 2023, 14, 589. https://doi.org/10.3390/f14030589
Barbu MC, Tudor EM, Buresova K, Petutschnigg A. Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x elongata (S.Y.Hu) Wood. Forests. 2023; 14(3):589. https://doi.org/10.3390/f14030589
Chicago/Turabian StyleBarbu, Marius Cătălin, Eugenia Mariana Tudor, Katharina Buresova, and Alexander Petutschnigg. 2023. "Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x elongata (S.Y.Hu) Wood" Forests 14, no. 3: 589. https://doi.org/10.3390/f14030589
APA StyleBarbu, M. C., Tudor, E. M., Buresova, K., & Petutschnigg, A. (2023). Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x elongata (S.Y.Hu) Wood. Forests, 14(3), 589. https://doi.org/10.3390/f14030589