Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on NIR Spectroscopy with a Multi-Learner Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Spectral Data Acquisition
2.1.2. Moisture Content Determination
2.2. Preprocessing and Feature Selection
2.2.1. Spectral Preprocessing
2.2.2. Feature Selection
2.3. Model Selection and Optimization
3. Results and Discussion
3.1. Sample Moisture Content Data
3.2. Raw Spectra and Spectral Preprocessing Results
3.3. Composition and Optimization of Stacking Integrated Model
3.3.1. Selection of Base Learners
3.3.2. Comparison of Different Model Combinations in Stacking
3.4. Feature Selection and Stacking Prediction Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, R.; Meng, J. Using Advanced Machine-Learning Algorithms to Estimate the Site Index of Masson Pine Plantations. Forests 2022, 13, 1976. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.-j.; Yu, S.-l.; Zhang, T.-w. Influence of climate warming and resin collection on the growth of Masson pine (Pinus massoniana) in a subtropical forest, southern China. Trees-Struct. Funct. 2016, 30, 1017. [Google Scholar] [CrossRef]
- Dungey, H.S.; Dash, J.P.; Pont, D.; Clinton, P.W.; Watt, M.S.; Telferl, E.J. Phenotyping Whole Forests Will Help to Track Genetic Performance. Trends Plant Sci. 2018, 23, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Scharwies, J.D.; Dinneny, J.R. Water transport, perception, and response in plants. J. Plant Res. 2019, 132, 311–324. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wang, W.; Wang, F.; Liu, Q.; Yan, L. Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves. Sensors 2023, 23, 571. [Google Scholar] [CrossRef]
- Aboulwafa, M.M.; Youssef, F.S.; Gad, H.A.; Sarker, S.D.; Nahar, L.; Al-Azizi, M.M.; Ashour, M.L. Authentication and discrimination of green tea samples using UV-vis, FTIR and HPLC techniques coupled with chemometrics analysis. J. Pharm. Biomed. Anal. 2019, 164, 653–658. [Google Scholar] [CrossRef]
- Rebufa, C.; Pany, I.; Bombarda, I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents. Food Chem. 2018, 261, 311–321. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef]
- Shi, G.; Cao, J.; Li, C.; Liang, Y. Compression strength prediction of Xylosma racemosum using a transfer learning system based on near-infrared spectral data. J. For. Res. 2020, 31, 1061–1069. [Google Scholar] [CrossRef]
- Falcioni, R.; Moriwaki, T.; Antunes, W.C.; Nanni, M.R. Rapid Quantification Method for Yield, Calorimetric Energy and Chlorophyll a Fluorescence Parameters in Nicotiana tabacum L. Using Vis-NIR-SWIR Hyperspectroscopy. Plants 2022, 11, 2406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jiang, H.; Zhang, H.; Zhao, Z.; Yang, Y.; Guo, S.; Wang, W. Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy. Agriculture 2022, 12, 489. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Ma, C.; Qiu, G.; Ren, J.; Zeng, F.; Lu, E. An Effective Prediction Approach for Moisture Content of Tea Leaves Based on Discrete Wavelet Transforms and Bootstrap Soft Shrinkage Algorithm. Appl. Sci. 2020, 10, 4839. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Li, Y.; Meng, Y.; Zhang, Z. Modeling and Prediction of Soil Organic Matter Content Based on Visible-Near-Infrared Spectroscopy. Forests 2021, 12, 1809. [Google Scholar] [CrossRef]
- Neto, A.J.S.; Lopes, D.d.C.; Silva, T.G.F.d.; Ferreira, S.O.; Grossi, J.A.S. Estimation of leaf water content in sunflower under drought conditions by means of spectral reflectance %J Engineering in Agriculture, Environment and Food. Eng. Agric. Environ. Food 2016, 10, 104–108. [Google Scholar] [CrossRef]
- Rabanera, J.D.; Guzman, J.D.; Yaptenco, K.F. Rapid and Non-destructive measurement of moisture content of peanut (Arachis hypogaea L.) kernel using a near-infrared hyperspectral imaging technique. J. Food Meas. Charact. 2021, 15, 3069–3078. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, J. L-1-PLS Based on Incremental Extreme Learning Machine. In Proceedings of the 9th IEEE Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 947–952. [Google Scholar] [CrossRef]
- Hu, H.; He, Z.; Ling, Y.; Li, J.; Sun, L.; Li, B.; Liu, J.; Chen, W. A SOM-RBFnn-Based Calibration Algorithm of Modeled Significant Wave Height for Nearshore Areas. J. Mar. Sci. Eng. 2022, 10, 706. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y. Tender Leaf Identification for Early-Spring Green Tea Based on Semi-Supervised Learning and Image Processing. Agronomy 2022, 12, 1958. [Google Scholar] [CrossRef]
- Xie, C.; Zhu, H.Y.; Fei, Y.Q. Deep coordinate attention network for single image super-resolution. IET Image Process. 2022, 16, 273–284. [Google Scholar] [CrossRef]
- Lian, X.-q.; Chen, Q.; Tang, S.-m.; Wu, J.-z.; Wu, Y.-l.; Gao, C. Quantitative Analysis Method of Key Nutrients in Lanzhou Lily Based on NIR and SOM-RBF. Spectrosc. Spectr. Anal. 2022, 42, 2025–2032. [Google Scholar] [CrossRef]
- He, W.; Li, Y.; Wang, J.; Yao, Y.; Yu, L.; Gu, D.; Ni, L. Using Field Spectroradiometer to Estimate the Leaf N/P Ratio of Mixed Forest in a Karst Area of Southern China: A Combined Model to Overcome Overfitting. Remote Sens. 2021, 13, 3368. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Geng, N.; Wang, Y.; Yin, Y.; Jin, Y. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Appl. Soft Comput. 2019, 77, 188–204. [Google Scholar] [CrossRef]
- Ni, C.; Wang, D.; Tao, Y. Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2019, 209, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cong, S.; Mao, H.; Wu, X.; Zhang, X.; Wang, P. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral. Trans. Chin. Soc. Agric. Eng. 2017, 33, 178–184. [Google Scholar]
- Yu, L.; Liang, Y.; Zhang, Y.; Cao, J. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares. J. For. Res. 2020, 31, 1053–1060. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Wu, R.; Yin, L.; Hu, W.; Zhang, Z. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors. Biosensors 2023, 13, 92. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Zhang, Y.; Wang, J.; Li, J.; Gao, Y.; Wang, X.; Wu, L. Rapid Nondestructive Detection of Chlorophyll Content in Muskmelon Leaves under Different Light Quality Treatments. Agronomy 2022, 12, 3223. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, D. Frequency modulation analysis of solar array using genetic algorithm. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2022, 10, 19. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Fan, S.; Jiang, Y.; Li, J. Determination of Moisture Content of Single Maize Seed by Using Long-Wave Near-Infrared Hyperspectral Imaging (LWNIR) Coupled with UVE-SPA Combination Variable Selection Method. IEEE Access 2020, 8, 195229–195239. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhang, J.; Tan, X.; Raza, M.A.; Ma, J.; Zhu, Y.; Yang, F.; Yang, W. Assessing canopy nitrogen and carbon content in maize by canopy spectral reflectance and uninformative variable elimination. Crop. J. 2022, 10, 1224–1238. [Google Scholar] [CrossRef]
- Tabarangao, J.T.; Slepkov, A.D. Mimicking Multimodal Contrast with Vertex Component Analysis of Hyperspectral CARS Images. J. Spectrosc. 2015, 2015, 575807. [Google Scholar] [CrossRef]
- Elrewainy, A.; Sherif, S.S. Kronecker least angle regression for unsupervised unmixing of hyperspectral imaging data. Signal Image Video Process. 2020, 14, 359–367. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Wang, S.; Fu, L. Hyperspectral technique combined with stacking and blending ensemble learning method for detection of cadmium content in oilseed rape leaves. J. Sci. Food Agric. 2022, 103, 2690–2699. [Google Scholar] [CrossRef]
- Mantanus, J.; Ziemons, E.; Lebrun, P.; Rozet, E.; Klinkenberg, R.; Streel, B.; Evrard, B.; Hubert, P. Moisture content determination of pharmaceutical pellets by near infrared spectroscopy: Method development and validation. Anal. Chim. Acta 2009, 642, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Boukar, O.; Fatokun, C.; Shono, M.; Muranaka, S. Development of calibration model to predict nitrogen content in single seeds of cowpea (Vigna unguiculata) using near infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 211–214. [Google Scholar] [CrossRef]
- Breiman, L. Stacked Regressions. Mach. Learn. 1996, 24, 49–64. [Google Scholar] [CrossRef]
- Divina, F.; Gilson, A.; Gomez-Vela, F.; Torres, M.G.; Torres, J.E. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting. Energies 2018, 11, 949. [Google Scholar] [CrossRef]
- Frost, R.L.; Erickson, K.L. Near-infrared spectroscopic study of selected hydrated hydroxylated phosphates. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2005, 61, 45–50. [Google Scholar] [CrossRef] [PubMed]
Preprocessing Methods | Number of Potential Factors | Training Set | Test Set | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
Raw data | 10 | 0.8377 | 1.0040 | 0.7318 | 1.3384 |
Nirmaf | 11 | 0.8447 | 0.9822 | 0.7513 | 1.2887 |
L2-normalize | 10 | 0.9315 | 0.6523 | 0.7216 | 1.3637 |
MSC | 10 | 0.8848 | 0.8458 | 0.8057 | 1.1391 |
SG smoothing | 10 | 0.8150 | 1.0718 | 0.8009 | 1.1531 |
SNV | 10 | 0.8848 | 0.8457 | 0.8011 | 1.1525 |
Model | Optimal Hyperparameters | Training Set | Test Set | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
AdaBoost | n_estimators = 50 | 0.9125 | 0.7369 | 0.6425 | 1.5452 |
ExtraTree | min_samples_leaf = 7 max_depth = 5 | 0.7433 | 1.2626 | 0.7362 | 1.3272 |
RF | n_estimators = 8 max_leaf_nodes = 14 | 0.9000 | 0.7881 | 0.7336 | 1.3340 |
Ridge | alpha = 1.6 solver = sag | 0.7939 | 1.1314 | 0.8054 | 1.1400 |
PLSR | n_components = 10 | 0.8848 | 0.8458 | 0.8057 | 1.1391 |
SVR | kernel = linear C = 1.25 | 0.8107 | 1.0842 | 0.7884 | 1.1888 |
Number | Base Learners | Meta-Learner | Training Set | Test Set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
1 | ExtraTree-AdaBoost-PLSR | SVR | 0.9413 | 0.6039 | 0.7417 | 1.3135 |
2 | ExtraTree-AdaBoost-PLSR | ExtraTree | 0.7750 | 1.1819 | 0.7211 | 1.3647 |
3 | ExtraTree-AdaBoost-PLSR | AdaBoost | 0.9709 | 0.4253 | 0.8305 | 1.0639 |
4 | SVR-AdaBoost-PLSR | SVR | 0.9448 | 0.5856 | 0.7188 | 1.3705 |
5 | SVR-AdaBoost-PLSR | ExtraTree | 0.7740 | 1.1846 | 0.7708 | 1.2372 |
6 | SVR-AdaBoost-PLSR | AdaBoost | 0.9718 | 0.4187 | 0.8819 | 0.8879 |
PLSR | SVR | AdaBoost | Stacking | ||||||||||||||
Feature Selection | Number of Wavenumbers | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | ||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
MSC | 2203 | 0.8848 | 0.8458 | 0.8057 | 1.1391 | 0.8107 | 1.0842 | 0.7884 | 1.1888 | 0.9125 | 0.7369 | 0.6425 | 1.5452 | 0.9718 | 0.4187 | 0.8819 | 0.8879 |
MSC-GA | 970 | 0.8927 | 0.8163 | 0.8344 | 1.0518 | 0.7592 | 1.2228 | 0.7840 | 1.2011 | 0.9214 | 0.6988 | 0.7582 | 1.2709 | 0.9682 | 0.4443 | 0.8970 | 0.8293 |
MSC-SPA | 23 | 0.8319 | 1.0216 | 0.8138 | 1.1151 | 0.5864 | 1.6025 | 0.6539 | 1.5204 | 0.9137 | 0.7322 | 0.6219 | 1.5890 | 0.9598 | 0.4999 | 0.8234 | 1.0862 |
MSC-UVE | 569 | 0.9029 | 0.7764 | 0.7933 | 1.1749 | 0.7519 | 1.2413 | 0.7872 | 1.1921 | 0.8985 | 0.7941 | 0.6436 | 1.5428 | 0.9681 | 0.4448 | 0.8837 | 0.8814 |
MSC-CARS | 46 | 0.9663 | 0.4575 | 0.9265 | 0.7008 | 0.5607 | 1.6516 | 0.5969 | 1.6408 | 0.8867 | 0.8389 | 0.7131 | 1.3843 | 0.9821 | 0.3349 | 0.9430 | 0.6168 |
MSC-LARS | 500 | 0.9402 | 0.6091 | 0.7124 | 1.3860 | 0.7171 | 1.3254 | 0.7710 | 1.2367 | 0.9039 | 0.7725 | 0.6460 | 1.5375 | 0.9783 | 0.3673 | 0.8169 | 1.1059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xia, H.; Liu, Y.; Huo, L.; Ni, C.; Gou, B. Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on NIR Spectroscopy with a Multi-Learner Model. Forests 2023, 14, 883. https://doi.org/10.3390/f14050883
Li Y, Xia H, Liu Y, Huo L, Ni C, Gou B. Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on NIR Spectroscopy with a Multi-Learner Model. Forests. 2023; 14(5):883. https://doi.org/10.3390/f14050883
Chicago/Turabian StyleLi, Yurong, Haifei Xia, Ying Liu, Lintao Huo, Chao Ni, and Binli Gou. 2023. "Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on NIR Spectroscopy with a Multi-Learner Model" Forests 14, no. 5: 883. https://doi.org/10.3390/f14050883
APA StyleLi, Y., Xia, H., Liu, Y., Huo, L., Ni, C., & Gou, B. (2023). Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on NIR Spectroscopy with a Multi-Learner Model. Forests, 14(5), 883. https://doi.org/10.3390/f14050883