Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Analyses
2.3. Statistical Analysis
3. Results
3.1. Evolution of the Soil N Contents in the Wildfire Chronosequence
3.1.1. Soil NH4+-N Content
3.1.2. Soil NO3−-N Content
3.1.3. Soil AAN Content
3.2. Evolution of Soil N Forms in the Wildfire Chronosequence
3.2.1. Form of Soil Mineral N
3.2.2. Form of Soil-Available N
4. Discussion
4.1. Effect of Wildfire on the Evolution of the Soil Available N Content
4.1.1. Effect of Wildfire on the Evolution of the Soil NH4+-N Content
4.1.2. Effect of Wildfire on the Evolution of the Soil NO3−-N Content
4.1.3. Effect of Wildfire on the Evolution of the Soil AAN Content
4.2. Effect of Wildfire on the Evolution of Soil N Forms
4.2.1. Effect of Wildfire on the Evolution of the Soil Mineral N Form
4.2.2. Effect of Wildfire on the Evolution of the Soil Available N Form
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camarero, J.; Carrer, M. Bridging long-term wood functioning and nitrogen deposition to better understand changes in tree growth and forest productivity. Tree Physiol. 2017, 37, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, A.; Högberg, P.; Näsholm, T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 2001, 129, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.; Veldkamp, E.; Homeier, J.; Martinson, G.O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycle 2011, 25, GB4009. [Google Scholar] [CrossRef]
- Yang, H. Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees 2018, 32, 383–391. [Google Scholar] [CrossRef]
- Chapin, F.S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Imsande, J.; Touraine, B. N Demand and the Regulation of Nitrate Uptake. Plant Physiol. 1994, 105, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Moilanen, L.; Kielland, K. Preferential use of organic nitrogen for growth by a nonmycorrhizal Arctic sedge. Nature 1993, 361, 150–153. [Google Scholar] [CrossRef]
- Inselsbacher, E.; Nasholm, T. The below-ground perspective of forest plants: Soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol. 2012, 195, 329–334. [Google Scholar] [CrossRef]
- Kielland, K. Role of free amino acids in the nitrogen economy of arctic cryptogams. Ecoscience 1997, 4, 75–79. [Google Scholar] [CrossRef]
- Lim, H.; Jamtgard, S.; Oren, R.; Gruffman, L.; Kunz, S.; Nasholm, T.; Inselsbacher, E. Organic nitrogen enhances nitrogen nutrition and early growth of Pinus sylvestris seedlings. Tree Physiol. 2022, 42, 513–522. [Google Scholar] [CrossRef]
- Nasholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Bret-Harte, M.S.; Mack, M.C.; Shaver, G.R.; Huebner, D.C.; Johnston, M.; Mojica, C.A.; Pizano, C.; Reiskind, J.A. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368, 20120490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homyak, P.M.; Slessarev, E.W.; Hagerty, S.; Greene, A.C.; Marchus, K.; Dowdy, K.; Iverson, S.; Schimel, J.P. Amino acids dominate diffusive nitrogen fluxes across soil depths in acidic tussock tundra. New Phytol. 2021, 231, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.N.; Schimel, J.P. The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 2005, 73, 359–380. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Yuan, K.; Zong, W.; Guo, D. Vegetation affects pool size and composition of amino acids in Tibetan alpine meadow soils. Geoderma 2018, 310, 44–52. [Google Scholar] [CrossRef]
- Miller, A.E.; Bowman, W.D. Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen. Plant Soil 2003, 250, 283–292. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Y.; Liu, Q.; Yin, H. Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biol. Biochem. 2019, 136, 107517. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Hill, P.W.; Guo, Y. Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Appl. Soil Ecol. 2020, 147, 103398. [Google Scholar] [CrossRef]
- Näsholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Högberg, M.; Högberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Fernandez-Garcia, V.; Marcos, E.; Fernandez-Guisuraga, J.M.; Taboada, A.; Suarez-Seoane, S.; Calvo, L. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. Int. J. Wildland Fire 2019, 28, 354–364. [Google Scholar] [CrossRef]
- Guo, A.; Guo, Y.; Cui, X. Effects of Different Intensities of Fire Disturbances on Soil Nutrients in a Pinus massoniana Forest in the Greater Xing’ an Mountain. J. North-East For. Univ. 2011, 39, 69–71. [Google Scholar] [CrossRef]
- Li, B.; Liu, G.; Li, W.; Liu, X. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County, Hebei Province. Ecol. Sci. 2018, 37, 35–44. [Google Scholar] [CrossRef]
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Albert-Belda, E.; Gomez-Munoz, B.; Moreno, J.M. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Sci. Total Environ. 2021, 752, 141877. [Google Scholar] [CrossRef]
- Muqaddas, B.; Chen, C.R.; Lewis, T.; Wild, C. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. For. Ecol. Manag. 2016, 382, 110–119. [Google Scholar] [CrossRef]
- Nichols, L.; Shinneman, D.J.; McIlroy, S.K.; de Graaff, M.-A. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Appl. Soil Ecol. 2021, 165, 103967. [Google Scholar] [CrossRef]
- Mugica, L.; Canals, R.M.; San Emeterio, L. Changes in soil nitrogen dynamics caused by prescribed fires in dense gorse lands in SW Pyrenees. Sci. Total Environ. 2018, 639, 175–185. [Google Scholar] [CrossRef]
- San Emeterio, L.; Mugica, L.; Ugarte, M.D.; Goicoa, T.; Canals, R.M. Sustainability of traditional pastoral fires in highlands under global change: Effects on soil function and nutrient cycling. Agric. Ecosyst. Environ. 2016, 235, 155–163. [Google Scholar] [CrossRef]
- Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 2019, 12, 113–118. [Google Scholar] [CrossRef]
- Durán, J.; Rodríguez, A.; Fernández-Palacios, J.M.; Gallardo, A. Changes in soil N and P availability in a Pinus canariensis fire chronosequence. For. Ecol. Manag. 2008, 256, 384–387. [Google Scholar] [CrossRef]
- Prieto-Fernandez, A.; Villar, M.C.; Carballas, M.; Carballas, T.T. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an atlantic forest soil. Soil Biol. Biochem. 1994, 25, 1657–1664. [Google Scholar] [CrossRef]
- Prieto-Fernandez, A.; Carballas, M.; Carballas, T. Inorganic and organic N pools in soils burned or heated: Immediate alterations and evolution after forest wildfires. Geoderma 2004, 121, 291–306. [Google Scholar] [CrossRef]
- Song, L.; He, P.; Cui, X. Effects of severe forest fire on soil habitat factors in Greater Xing an Mountains. Chin. J. Ecol. 2015, 34, 1809–1814. [Google Scholar] [CrossRef]
- Kong, J.; Yang, J. Short-and long-term effects of fire on soil properties in a Dahurian larch forest in Great Xingan Mountains. Chin. J. Ecol. 2014, 33, 1445–1450. [Google Scholar] [CrossRef]
- Koyama, A.; Kavanagh, K.L.; Stephan, K. Wildfire Effects on Soil Gross Nitrogen Transformation Rates in Coniferous Forests of Central Idaho, USA. Ecosystems 2010, 13, 1112–1126. [Google Scholar] [CrossRef]
- Zhu, G.; Hu, T.; Li, F.; Zhao, B.; Sun, L. Soil nitrogen mineralization rate and its impact factors in Larix gmelinii forest after different years fire disturbance. J. Cent. South Univ. For. Technol. 2018, 38, 88–96. [Google Scholar] [CrossRef]
- Driscoll, K.G.; Arocena, J.M.; Massicotte, H.B. Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forests of British Columbia’s central interior, Canada. For. Ecol. Manag. 1999, 121, 227–237. [Google Scholar] [CrossRef]
- Hu, T.; Hu, H.; Li, F.; Zhao, B.; Wu, S.; Zhu, G.; Sun, L. Long-term effects of post-fire restoration types on nitrogen mineralisation in a Dahurian larch (Larix gmelinii) forest in boreal China. Sci. Total Environ. 2019, 679, 237–247. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bol, R.; Bardgett, R.D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biol. Biochem. 2008, 40, 228–237. [Google Scholar] [CrossRef]
- Kielland, K.; McFarland, J.; Olson, K. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil 2006, 288, 297–307. [Google Scholar] [CrossRef]
- DeBano, L.F.; Eberlein, G.E.; Dunn, P.H. Effects of Burning on Chaparral Soils: I. Soil Nitrogen. Soil Sci. Soc. Am. J. 1979, 43, 504–509. [Google Scholar] [CrossRef]
- Richards, A.E.; Brackin, R.; Lindsay, D.A.J.; Schmidt, S. Effect of fire and tree-grass patches on soil nitrogen in Australian tropical savannas. Austral. Ecol. 2012, 37, 668–677. [Google Scholar] [CrossRef]
- Sanchez, J.P.; Lazzari, M.A. Impact of Fire on Soil Nitrogen Forms in Central Semiarid Argentina. Arid. Soil Res. Rehabil. 1999, 13, 81–90. [Google Scholar] [CrossRef]
- Schmidt, S.; Stewart, G.R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ. 1997, 20, 1231–1241. [Google Scholar] [CrossRef]
- Leduc, S.D.; Rothstein, D.E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age. Ecology 2010, 91, 708–720. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Nowak, K.M.; Miltner, A.; Knicker, H. Incorporation of N from burnt and unburnt N-15 grass residues into the peptidic fraction of fire affected and unaffected soils. J. Soils Sediments 2017, 17, 1554–1564. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, Y.; Cui, X. Nitrogen Forms on the Growth of Larix gmelinii Seedings. J. North-East For. Univ. 2017, 45, 16–19. [Google Scholar] [CrossRef]
- Yingli, Z.; Anmin, X.; Haobo, S.; Aisheng, M. Determination study and improvement of nitrate and available phosphorus in soil by Continuous Flow Analytical System. Soil Fertil. Sci. China 2008, 26, 77–80. [Google Scholar]
- Moore, S.; Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Hui, D.; Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecol. Appl. 2001, 11, 1349–1365. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Gómez, I.; Navarro-Pedreo, J.; Guerrero, C.; Moral, R. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment. Int. J. Wildland Fire 2002, 11, 107–114. [Google Scholar] [CrossRef]
- Yildiz, O.; Esen, D.; Karaoz, O.M.; Sarginci, M.; Toprak, B.; Soysal, Y. Effects of different site preparation methods on soil carbon and nutrient removal from Eastern beech regeneration sites in Turkey’s Black Sea region. Appl. Soil Ecol. 2010, 45, 49–55. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. For. Res. 2017, 28, 95–104. [Google Scholar] [CrossRef]
- Varela, M.E.; Benito, E.; Keizer, J.J. Influence of wildfire severity on soil physical degradation in two pine forest stands of NW Spain. Catena 2015, 133, 342–348. [Google Scholar] [CrossRef]
- Leiros, M.; Trasar-Cepeda, C.; Seoane, S.; Gil-Sotres, F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 1999, 31, 327–335. [Google Scholar] [CrossRef]
- Bauhus, J.; Khanna, P.K.; Raison, R.J. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Aust. J. Soil Res. 1993, 31, 621–639. [Google Scholar] [CrossRef]
- Duan, W.; Zheng, W.; Yan, W.; Liang, X.; Li, S. Seasonal dynamics of nitrogen mineralization in soils of Cinnamomum camphora and Pinus massoniana plantations. J. Cent. South Univ. For. Technol. 2011, 31, 96–100. [Google Scholar] [CrossRef]
- Durán, J.; Rodríguez, A.; Fernández-Palacios, J.M.; Gallardo, A. Changes in net N mineralization rates and soil N and P pools in a pine forest wildfire chronosequence. Biol. Fertil. Soils 2009, 45, 781–788. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Liu, B.; Yu, Z.P.; Wan, X.H.; Sang, C.P.; Zhou, F.W.; Huang, Z.Q. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China. J. Appl. Ecol. 2017, 28, 730–738. [Google Scholar] [CrossRef]
- Warren, C.R.; Taranto, M.T. Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil. Soil Biol. Biochem. 2010, 42, 353–359. [Google Scholar] [CrossRef]
- Read, D.J.; Bajwa, R. Some nutritional aspects of the biology of ericaceous mycorrhizas. Proc. R. Soc. Edinburgh. Sect. B Biol. Sci. 1985, 85, 317–331. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 2011, 92, 892–902. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res.-Biogeosci. 2012, 117, G01018. [Google Scholar] [CrossRef]
- Goncalves, J.L.M.; Carlyle, J.C. Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biol. Biochem. 1994, 26, 1557–1564. [Google Scholar] [CrossRef]
- Ladd, J.N. Properties of proteolytic enzymes extracted from soil. Soil Biol. Biochem. 1972, 4, 227–237. [Google Scholar] [CrossRef]
- Ivarson, K.C.; Sowden, F.J. Effect of frost action and storage of soil at freezing temperatures on the free amino acids, free sugars and respiratory activity of soil. Can. J. Soil Sci. 1970, 50, 191–198. [Google Scholar] [CrossRef]
Fire Time | Fire Area (ha) | Cause of Fire | Canopy Density (%) | Mortality (%) | Community Structure | Soil Type (CST) |
---|---|---|---|---|---|---|
Unburned | —— | —— | 70 | 0 | Tree Larix gmelinii, Betula platyphylla Shrub Ledum palustre, Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
2017 | 5.1 | Lightning fire | 10 | >82 | The plot is mainly scarred trunks or their remnants | Gleyic Umbri-Gelic Cambosols |
2016 | 40.0 | Lightning fire | 10 | >83 | The plot is mainly scarred trunks or their remnants | Gleyic Umbri-Gelic Cambosols |
2008 | 473.5 | Human-caused fire | 40 | >90 | Tree Populus davidiana, Betula platyphylla Shrub Ledum palustre, Betula fruticosa var. ovalifolia Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
2000 | 2400.0 | Lightning fire | 50 | >90 | Tree Larix gmelinii, Betula platyphylla Shrub Ledum palustre Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
Wildfire Chronosequence | Sampling Time a | Factors Affect Soil N Change b | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Increasing Factors | Turnover Factors | Decreasing Factors | R. Error | ||||||||||
Deposition | Deco. DC | Deco. R | Input VR | Rele. RC | Ammonification | Nitration | Combustion | Erosion | Leach L | Absorption | |||
NH4+-N | |||||||||||||
The same year of burning | June: +*,/ | √ c | √+ | √− | √ | √ | |||||||
August: +*, −* | √ | √+ | √− | √ | √ | √ | √ | ||||||
October: +*, + | √ | √+ | √− | √ | √ | √ | √ | ||||||
One year after burning | June: +*, −* | √ | √ | √+ | √− | √ | √ | √ | √ | ||||
August: +*, + | √ | √+ | √− | √ | √ | √ | √ | ||||||
October: +*,− | √ | √+ | √− | √ | √ | √ | √ | ||||||
Nine years after burning | June: +, − | √ | √ | √ | √+ | √− | √ | √ | √ | √ | |||
August: −, − | √ | √ | √+ | √− | √ | √ | √ | √ | |||||
October: +, + | √ | √ | √+ | √− | √ | √ | √ | ||||||
Seventeen years after burning | June: +, − | √ | √ | √ | √+ | √− | √ | √ | √ | √ | |||
August: −, − | √ | √ | √+ | √− | √ | √ | √ | √ | |||||
October: +, + | √ | √ | √+ | √− | √ | √ | √ | ||||||
NO3−-N | |||||||||||||
The same year of burning | June: +*,/ | √ | √+ | √ | √ | ||||||||
August: −, − | √ | √+ | √ | √ | √ | √ | |||||||
October: +, + | √ | √+ | √ | √ | √ | √ | |||||||
One year after burning | June: +, − | √ | √ | √+ | √ | √ | √ | √ | |||||
August: −, − | √ | √+ | √ | √ | √ | √ | |||||||
October: −,+ | √ | √+ | √ | √ | √ | √ | |||||||
Nine years after burning | June: +, − | √ | √ | √ | √+ | √ | √ | √ | √ | ||||
August: −, + | √ | √ | √+ | √ | √ | √ | √ | ||||||
October: −, − | √ | √ | √+ | √ | √ | √ | |||||||
Seventeen years after burning | June: −, no | √ | √ | √ | √+ | √ | √ | √ | √ | ||||
August: −, + | √ | √ | √+ | √ | √ | √ | √ | ||||||
October: −, + | √ | √ | √+ | √ | √ | √ | |||||||
AAN | |||||||||||||
The same year of burning | June: +*,/ | √ | √− | √− | √ | √ | |||||||
August: +*, −* | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
October: +*, − | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
One year after burning | June: −, −* | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||
August: +, + | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
October: −*, − | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
Nine years after burning | June: −, + | √ | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |
August: −,− | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |||
October: −*, − | √ | √ | √ | √ | √− | √− | √ | √ | √ | ||||
Seventeen years after burning | June: +, + | √ | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |
August: +, − | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |||
October: −*, + | √ | √ | √ | √ | √− | √− | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Y.; Kang, J.; Cui, X. Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests 2023, 14, 1178. https://doi.org/10.3390/f14061178
Wang J, Zhang Y, Kang J, Cui X. Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests. 2023; 14(6):1178. https://doi.org/10.3390/f14061178
Chicago/Turabian StyleWang, Jiaqi, Yun Zhang, Jia Kang, and Xiaoyang Cui. 2023. "Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China" Forests 14, no. 6: 1178. https://doi.org/10.3390/f14061178
APA StyleWang, J., Zhang, Y., Kang, J., & Cui, X. (2023). Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests, 14(6), 1178. https://doi.org/10.3390/f14061178