Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Global Forest Change Data
2.2.2. Analysis of Landscape Metrics for Dynamics of Forest-Loss Patches
2.2.3. Emerging Hotspot Analysis (EHA)
3. Results
3.1. Spatial and Temporal Patterns of Forest Loss during 2001–2019
3.2. Temporal Trend of Landscape Metrics of Forest Loss
3.3. Evolution of Forest-Loss Hotspots
4. Discussion
4.1. Deforestation Characteristics in SWC
4.2. Emerging Hotspots in Southwest China
4.3. Socioeconomic Correlates of Forest Change
4.4. Potential Reasons for Deforestation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Pintilii, R.-D.; Andronache, I.; Diaconu, D.; Dobrea, R.; Zeleňáková, M.; Fensholt, R.; Peptenatu, D.; Drăghici, C.-C.; Ciobotaru, A.-M. Using fractal analysis in modeling the dynamics of forest areas and economic impact assessment: Maramureș County, Romania, as a case study. Forests 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Van der Sluis, T.; Pedroli, B.; Kristensen, S.B.P.; Lavinia Cosor, G.; Pavlis, E. Changing land use intensity in Europe-Recent processes in selected case studies. Land Use Policy 2016, 57, 777–785. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Mildrexler, D.J.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Zhao, F.; Li, S.; Wang, K. Potential and Actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos. 2016, 121, 14372–14386. [Google Scholar] [CrossRef]
- Shen, W.; He, J.; Huang, C.; Li, M. Quantifying the actual impacts of forest cover change on surface temperature in Guangdong, China. Remote Sens. 2020, 12, 2354. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Finer, M.; Babbitt, B.; Novoa, S.; Ferrarese, F.; Pappalardo, S.E.; Marchi, M.D.; Saucedo, M.; Kumar, A. Future of oil and gas development in the western Amazon. Environ. Res. Lett. 2015, 10, 024003. [Google Scholar] [CrossRef]
- Aragao, L.E.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. Camb. Philos. Soc. 2014, 89, 913–931. [Google Scholar] [CrossRef]
- Tagesson, T.; Schurgers, G.; Horion, S.; Ciais, P.; Tian, F.; Brandt, M.; Ahlstrom, A.; Wigneron, J.P.; Ardo, J.; Olin, S.; et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 2020, 4, 202–209. [Google Scholar] [CrossRef]
- Ochoa-Quintero, J.M.; Gardner, T.A.; Rosa, I.; Ferraz, S.F.; Sutherland, W.J. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv. Biol. 2015, 29, 440–451. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; Ferraz, S.F.d.B.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Tracewski, Ł.; Butchart, S.H.M.; Donald, P.F.; Evans, M.; Fishpool, L.D.C.; Buchanan, G.M.; Rowcliffe, M.; Fatoyinbo, L. Patterns of twenty-first century forest loss across a global network of important sites for biodiversity. Remote Sens. Ecol. Conserv. 2016, 2, 37–44. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Spracklen, D.V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change 2019, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zeng, Z.; Wu, J.; Peng, L.; Lakshmi, V.; Yang, H.; Liu, J. Large uncertainty on forest area change in the early 21st century among widely used global land cover datasets. Remote Sens. 2020, 12, 3502. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 2013, 3, 875–883. [Google Scholar] [CrossRef]
- De Bem, P.; De Carvalho Junior, O.; Fontes Guimarães, R.; Trancoso Gomes, R. Change detection of deforestation in the Brazilian Amazon using Landsat data and convolutional neural networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef] [Green Version]
- Sarzynski, T.; Giam, X.; Carrasco, L.; Lee, J.S.H. Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine. Remote Sens. 2020, 12, 1220. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblois, A.; Damette, O.; Wolfersberger, J. What has driven deforestation in developing countries since the 2000s? Evidence from new Remote-Sensing data. World Dev. 2017, 92, 82–102. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T.; et al. High-Resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achour, H.; Toujani, A.; Rzigui, T.; Faïz, S. Forest cover in Tunisia before and after the 2011 Tunisian revolution: A spatial analysis approach. J. Geovisualization Spat. Anal. 2018, 2, 10. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, R.; Yao, J.; Hu, X.; Lin, J. The effects of urbanization on China’s forest loss from 2000 to 2012: Evidence from a panel analysis. J. Clean. Prod. 2019, 214, 270–278. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, R.; Xia, Z.; Ye, C.; Anker, Y. Large-scale deforestation of mountainous areas during the 21st Century in Zhejiang Province. Land Degrad. Dev. 2020, 31, 1761–1774. [Google Scholar] [CrossRef]
- Zeng, Z.; Gower, D.B.; Wood, E.F. Accelerating forest loss in Southeast Asian Massif in the 21st century: A case study in Nan Province, Thailand. Glob. Change Biol. 2018, 24, 4682–4695. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.C. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef] [Green Version]
- Reddy, C.S.; Bird, N.G.; Sreelakshmi, S.; Manikandan, T.M.; Asra, M.; Krishna, P.H.; Jha, C.S.; Rao, P.V.N.; Diwakar, P.G. Identification and characterization of spatio-temporal hotspots of forest fires in South Asia. Environ. Monit. Assess. 2020, 191, 791. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, M.-Y.; Kim, H. Spatio-Temporal trend of aging regions and their neighborhood environment: Findings from Daegu Metropolitan City, Korea. Sustainability 2020, 12, 1218. [Google Scholar] [CrossRef] [Green Version]
- Betty, E.L.; Bollard, B.; Murphy, S.; Ogle, M.; Hendriks, H.; Orams, M.B.; Stockin, K.A. Using emerging hot spot analysis of stranding records to inform conservation management of a data-poor cetacean species. Biodivers. Conserv. 2019, 29, 643–665. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Wang, X.; Lü, Z. Accuracy assessment of the global forest watch tree cover 2000 in China. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102033. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Muller, M.S.; Rodig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- McGarigal, K. Landscape Pattern MetricsBased in part on the article “Landscape pattern metrics” by Kevin McGarigal, which appeared in theEncyclopedia of Environmetrics. In Encyclopedia of Environmetrics; Wiley Online Library: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Rosa, I.M.; Souza, C., Jr.; Ewers, R.M. Changes in size of deforested patches in the Brazilian Amazon. Conserv. Biol. 2012, 26, 932–937. [Google Scholar] [CrossRef]
- Montibeller, B.; Kmoch, A.; Virro, H.; Mander, U.; Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 2020, 10, 5803. [Google Scholar] [CrossRef] [Green Version]
- Kalamandeen, M.; Gloor, E.; Mitchard, E.; Quincey, D.; Ziv, G.; Spracklen, D.; Spracklen, B.; Adami, M.; Aragao, L.; Galbraith, D. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 2018, 8, 1600. [Google Scholar] [CrossRef] [Green Version]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, S.; He, L.; Shan, Y. Spatiotemporal changes in forest loss and its linkage to burned areas in China. J. For. Res. 2019, 31, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K. The dynamics of deforestation in the wet and dry Tropics: A comparison with policy implications. Forests 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.; Decker Sparks, J.L.; Brown, C.; Boyd, D.S. Understanding the co-occurrence of tree loss and modern slavery to improve efficacy of conservation actions and policies. Conserv. Sci. Pract. 2020, 2, e183. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What causes deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Fagua, J.C.; Baggio, J.A.; Ramsey, R.D. Drivers of forest cover changes in the Chocó-Darien Global Ecoregion of South America. Ecosphere 2019, 10, e02648. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; García Márquez, J.R.; Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 2018, 77, 379–391. [Google Scholar] [CrossRef]
- Adrianto, H.A.; Spracklen, D.V.; Arnold, S.R. Relationship Between Fire and Forest Cover Loss in Riau Province, Indonesia Between 2001 and 2012. Forests 2019, 10, 889. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Feng, Y.; Xia, M.; Lu, H.; Guan, R.; Harada, K.; Zhang, C. Framework for accounting reference levels for REDD+ in tropical forests: Case study from Xishuangbanna, China. Remote Sens. 2021, 13, 416. [Google Scholar] [CrossRef]
- Wang, S.; Lai, P.; Hao, B.; Ma, M.; Han, X. Remote Sensing Monitoring and Spatio-temporal Pattern of Deforestation in Southwest China from 2001 to 2019. Remote Sens. Technol. Appl. 2021, 36, 552–563. [Google Scholar]
- Wang, H.; Lv, Z.; Gu, L.; Wen, C. Observations of China’s forest change (2000–2013) based on Global Forest Watch dataset. Biodivers. Sci. 2015, 23, 575–582. [Google Scholar] [CrossRef]
- Xu, Y.; Hang, H.; Dai, Q.; Guo, Z.; Zheng, Z.; Pan, Y. Spatial-temporal Variation in Net Primary Productivity in Terrestrial Vegetation Ecosystems and Its Driving Forces in Southwest China. Environ. Sci. 2023, 44, 2704–2714. [Google Scholar]
- Sarathchandra, C.; Abebe, Y.; Worthy, F.; Wijerathne, I.; Ma, H.; Bi, Y.; Guo, J.; Chen, H.; Yan, Q.; Geng, Y. Impact of land use and land cover changes on carbon storage in rubber dominated tropical Xishuangbanna, South West China. Ecosyst. Health Sustain. 2021, 7, 14. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Yue, M.; Tong, X.; Liao, C.; Zhang, Y.; Jiang, Y. Factors impacting on vegetation dynamics and spatial non- stationary relationships in karst regions of southwest China. Acta Ecol. Sin. 2017, 37, 4008–4018. [Google Scholar]
- Yu, X.J. Forest Landscape Pattern Change and Driving Force Analysis in Sichuan Province; Sichuan Agricultural University: Yaan, China, 2017. (In Chinese) [Google Scholar]
- Zhang, Y.; Guo, Y.; Hu, H. Analysis of forest fire data characteristics in Southwest China from 2001 to 2017. J. Northwest For. Coll. 2021, 36, 179–186. [Google Scholar]
- Andreacci, F.; Marenzi, R.C. Accounting for twenty-first-century annual forest loss in the Atlantic Forest of Brazil using high-resolution global maps. Int. J. Remote Sens. 2020, 41, 4408–4420. [Google Scholar] [CrossRef]
Hotspot Category | Definition |
---|---|
New | Locations where are significant hotspots statistically at the final time step, and they have never been significant hotspots at other time steps. |
Sporadic | Locations appear as on-and-off-again or off-and-on-again hotspots. Less than 90% of the time steps should be significant hotspots, and there are no significant coldspots at any time steps. |
Consecutive | A location where there is only one single (uninterrupted) run of significant hotspots in the last consecutive time steps. Besides, there should be no significant hotspots prior to the appearance of the final hotspot run, and less than 90% of the time steps are significant hotspots. |
Persistent | A location where there has been a significant hotspot persistently, or in more than 90% of the time steps, and there is no discernible increase or decrease in the intensity of clustering over the analyzing period. |
Oscillating | A location where there is a significant hotspot at the final time step, and there also exists a significant coldspot at a prior time step. Of course, significant hotspots occur in less than 90% of the time steps. |
Province | New Hotspot | Sporadic Hotspot | Consecutive Hotspot | Persistent Hotspot | Oscillating Hotspot |
---|---|---|---|---|---|
Chongqing | 37 | 62 | 48 | ||
25.17% | 42.18% | 32.65% | |||
Sichuan | 20 | 81 | 113 | ||
9.35% | 37.85% | 52.80% | |||
Yunnan | 4 | 199 | 77 | 2 | |
1.42% | 70.57% | 27.30% | 0.71% | ||
Guizhou | 89 | 58 | |||
60.54% | 39.46% | ||||
Guangxi | 23 | 507 | 155 | 10 | |
3.31% | 72.95% | 22.30% | 1.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, S.; Han, X. Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years. Forests 2023, 14, 1378. https://doi.org/10.3390/f14071378
Zhang Y, Wang S, Han X. Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years. Forests. 2023; 14(7):1378. https://doi.org/10.3390/f14071378
Chicago/Turabian StyleZhang, Yanlin, Shujing Wang, and Xujun Han. 2023. "Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years" Forests 14, no. 7: 1378. https://doi.org/10.3390/f14071378
APA StyleZhang, Y., Wang, S., & Han, X. (2023). Spatial–Temporal Dynamics of Forest Extent Change in Southwest China in the Recent 20 Years. Forests, 14(7), 1378. https://doi.org/10.3390/f14071378