Swelling Behaviour of Bamboo (Phyllostachys pubescens)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Density and Moisture Content Measurements
2.2.2. Swelling Kinetics
2.2.3. Swelling Pressure
2.2.4. Total Swelling Rate
2.2.5. Statistics
3. Results and Discussion
3.1. Bamboo Density and Moisture Content
3.2. Linear Swelling Kinetics of Bamboo
3.3. Bamboo Swelling Pressure
3.4. Bamboo Total Swelling Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canavan, S.; Richardson, D.M.; Visser, V.; Le Roux, J.J.; Vorontsova, M.S.; Wilson, J.R.U. The Global Distribution of Bamboos: Assessing Correlates of Introduction and Invasion. AoB Plants 2017, 9, plw078. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Upadhyay, A.; Ding, Y.; Emamverdian, A.; Shahzad, A. Bamboo: Origin, Habitat, Distributions and Global Prospective. In Biotechnological Advances in Bamboo: The “Green Gold” on the Earth; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Singapore, 2021; pp. 1–31. ISBN 9789811613104. [Google Scholar]
- Lombardo, E. An Overview of Bamboo Cultivation in Southern Italy. Adv. Bamboo Sci. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Depuydt, D.E.C.; Billington, L.; Fuentes, C.; Sweygers, N.; Dupont, C.; Appels, L.; Ivens, J.; van Vuure, A.W. European Bamboo Fibres for Composites Applications, Study on the Seasonal Influence. Ind. Crops Prod. 2019, 133, 304–316. [Google Scholar] [CrossRef]
- Dlamini, L.C.; Fakudze, S.; Makombe, G.G.; Muse, S.; Zhu, J. Bamboo as a Valuable Resource and Its Utilisation in Historical and Modern-Day China. BioResources 2022, 17, 1926–1938. [Google Scholar] [CrossRef]
- Manandhar, R.; Kim, J.-H.; Kim, J.-T. Environmental, Social and Economic Sustainability of Bamboo and Bamboo-Based Construction Materials in Buildings. J. Asian Archit. Build. Eng. 2019, 18, 49–59. [Google Scholar] [CrossRef]
- Silva, M.F.; Menis-Henrique, M.E.; Felisberto, M.H.; Goldbeck, R.; Clerici, M.T. Bamboo as an Eco-Friendly Material for Food and Biotechnology Industries. Curr. Opin. Food Sci. 2020, 33, 124–130. [Google Scholar] [CrossRef]
- Anokye, R.; Bakar, E.S.; Ratnansingam, J.; Awang, K. Bamboo Properties and Suitability as a Replacement for Wood. Pertanika J. Sch. Res. Rev. 2016, 2, 64–80. [Google Scholar]
- Yadav, M.; Mathur, A. Bamboo as a Sustainable Material in the Construction Industry: An Overview. Mater. Today: Proc. 2021, 43, 2872–2876. [Google Scholar] [CrossRef]
- Sharma, B.; van der Vegte, A. 21—Engineered Bamboo for Structural Applications. In Nonconventional and Vernacular Construction Materials, 2nd ed.; Harries, K.A., Sharma, B., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2020; pp. 597–623. ISBN 978-0-08-102704-2. [Google Scholar]
- Sharma, B.; Gatoo, A.; Bock, M.; Mulligan, H.; Ramage, M. Engineered Bamboo: State of the Art. Proc. Inst. Civ. Eng.-Constr. Mater. 2015, 168, 57–67. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Zhang, J.; Semple, K.E.; Chen, M.; Xia, Y.; Dai, C. Bamboo-Based Composites: A Review on Fundamentals and Processes of Bamboo Bonding. Compos. Part B Eng. 2022, 235, 109776. [Google Scholar] [CrossRef]
- Mania, P.; Majka, J.; Zborowska, M. The Effect of Thermo-Mechanical Treatment of Moso Bamboo (Phyllostachys pubescens) on Its Sorption and Physicomechanical Properties. Drv. Ind. 2019, 70, 265–272. [Google Scholar] [CrossRef]
- Chung, K.F.; Yu, W.K. Mechanical Properties of Structural Bamboo for Bamboo Scaffoldings. Eng. Struct. 2002, 24, 429–442. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Anderson, D.P.; Chang, P.R.; Hua, Y. Bamboo Fiber and Its Reinforced Composites: Structure and Properties. Cellulose 2012, 19, 1449–1480. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, R.; Du, Y.; Wang, X. State-of-the-Art Review on Research and Application of Original Bamboo-Based Composite Components in Structural Engineering. Structures 2022, 35, 1010–1029. [Google Scholar] [CrossRef]
- Mahdavi, M.; Clouston, P.L.; Arwade, S.R. Development of Laminated Bamboo Lumber: Review of Processing, Performance, and Economical Considerations. J. Mater. Civ. Eng. 2011, 23, 1036–1042. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Luan, Y.; Hu, J.-B.; Fang, C.-H.; Liu, L.-T.; Ma, Y.-F.; Liu, Y.; Fei, B.-H. Bamboo Heat Treatments and Their Effects on Bamboo Properties. Constr. Build. Mater. 2022, 331, 127320. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, F. Mechanical Characteristics of Bamboo Structure and Its Components. In The Fracture Mechanics of Plant Materials; Springer: Singapore, 2018; pp. 125–146. ISBN 978-981-10-9016-5. [Google Scholar]
- Yuan, J.; Fang, C.; Chen, Q.; Fei, B. Observing Bamboo Dimensional Change Caused by Humidity. Constr. Build. Mater. 2021, 309, 124988. [Google Scholar] [CrossRef]
- Mou, Q.; Hao, X.; Xu, K.; Li, X.; Li, X. Hygroexpansion Behaviors of Bamboo in Response to Moisture Absorption and Desorption. Constr. Build. Mater. 2022, 341, 127895. [Google Scholar] [CrossRef]
- Chen, Q.; Fang, C.; Wang, G.; Ma, X.; Chen, M.; Zhang, S.; Dai, C.; Fei, B. Hygroscopic Swelling of Moso Bamboo Cells. Cellulose 2020, 27, 611–620. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Wang, C. Study on the Swelling Characteristics of Bamboo Based on Its Graded Hierarchical Structure. Wood Fiber Sci. 2019, 51, 332–342. [Google Scholar] [CrossRef]
- Depuydt, D.E.C.; Soete, J.; Asfaw, Y.D.; Wevers, M.; Ivens, J.; van Vuure, A.W. Sorption Behaviour of Bamboo Fibre Reinforced Composites, Why Do They Retain Their Properties? Compos. Part A Appl. Sci. Manuf. 2019, 119, 48–60. [Google Scholar] [CrossRef]
- Huang, P.; Chew, Y.M.J.; Chang, W.-S.; Ansell, M.P.; Lawrence, M.; Latif, E.; Shea, A.; Ormondroyd, G.; Du, H. Heat and Moisture Transfer Behaviour in Phyllostachys edulis (Moso Bamboo) Based Panels. Constr. Build. Mater. 2018, 166, 35–49. [Google Scholar] [CrossRef]
- Azwa, Z.; Yousif, B. Physical and Mechanical Properties of Bamboo Fibre/Polyester Composites Subjected to Moisture and Hygrothermal Conditions. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1065–1079. [Google Scholar] [CrossRef]
- Pope, I.; Hidalgo, J.P.; Osorio, A.; Maluk, C.; Torero, J.L. Thermal Behaviour of Laminated Bamboo Structures under Fire Conditions. Fire Mater. 2021, 45, 321–330. [Google Scholar] [CrossRef]
- Chakkour, M.; Ould Moussa, M.; Khay, I.; Balli, M.; Ben Zineb, T. Effects of Humidity Conditions on the Physical, Morphological and Mechanical Properties of Bamboo Fibers Composites. Ind. Crops Prod. 2023, 192, 116085. [Google Scholar] [CrossRef]
- Huang, Z.; Künzel, H.; Krus, M.; Zhang, W. Three-Dimensional Tests on Hygric Properties of Laminated Bamboo and Bamboo Scrimber. J. Build. Eng. 2022, 56, 104712. [Google Scholar] [CrossRef]
- Arzola-Villegas, X.; Lakes, R.; Plaza, N.Z.; Jakes, J.E. Wood Moisture-Induced Swelling at the Cellular Scale—Ab Intra. Forests 2019, 10, 996. [Google Scholar] [CrossRef]
- Mazzanti, P.; Colmars, J.; Gril, J.; Hunt, D.; Uzielli, L. A Hygro-Mechanical Analysis of Poplar Wood along the Tangential Direction by Restrained Swelling Test. Wood Sci. Technol. 2014, 48, 673–687. [Google Scholar] [CrossRef]
- Perkitny, T.; Kingston, R.S.T. Review of the Sufficiency of Research on the Swelling Pressure of Wood. Wood Sci. Technol. 1972, 6, 215–229. [Google Scholar] [CrossRef]
- Rowell, R.M. One Way to Keep Wood from Going This Way and That. Am. Rec. 1995, 36, 12–16. [Google Scholar]
- Arnold, D. Building in Egypt: Pharaonic Stone Masonry; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Grönquist, P.; Schnider, T.; Thoma, A.; Gramazio, F.; Kohler, M.; Burgert, I.; Rüggeberg, M. Investigations on Densified Beech Wood for Application as a Swelling Dowel in Timber Joints. Holzforschung 2019, 73, 559–568. [Google Scholar] [CrossRef]
- Ispas, M. Experimental Investigations on Swelling Pressure of Natural and Heat-Treated Ash Wood. In Bulletin of the Transilvania University of Brasov. Series II: Forestry, Wood Industry, Agricultural Food Engineering; Transilvania University Press: Brasov, Romania, 2013; Volume 6, pp. 55–62. [Google Scholar]
- ISO 13061-2; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. ISO: Geneva, Switzerland, 2014.
- Molinski, W.; Raczkowski, J. Ciśnienie pęcznienia drewna zmodyfikowanego polistyrenem. Zesz. Probl. Postępów Nauk. Rol. 1980, 231, 89–101. [Google Scholar]
- Grosser, D.; Liese, W. On the Anatomy of Asian Bamboos, with Special Reference to Their Vascular Bundles. Wood Sci. Technol. 1971, 5, 290–312. [Google Scholar] [CrossRef]
- Dixon, P.G.; Gibson, L.J. The Structure and Mechanics of Moso Bamboo Material. J. R. Soc. Interface 2014, 11, 20140321. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Chang, W.-S.; Ansell, M.P.; Chew, Y.M.J.; Shea, A. Density Distribution Profile for Internodes and Nodes of Phyllostachys edulis (Moso Bamboo) by Computer Tomography Scanning. Constr. Build. Mater. 2015, 93, 197–204. [Google Scholar] [CrossRef]
- Čermák, P.; Suchomelová, P.; Hess, D. Swelling Kinetics of Thermally Modified Wood. Eur. J. Wood Prod. 2021, 79, 1337–1340. [Google Scholar] [CrossRef]
- Mantanis, G.I.; Young, R.A.; Rowell, R.M. Swelling of Wood. Wood Sci. Technol. 1994, 28, 119–134. [Google Scholar] [CrossRef]
- Patera, A.; Derome, D.; Griffa, M.; Carmeliet, J. Hysteresis in Swelling and in Sorption of Wood Tissue. J. Struct. Biol. 2013, 182, 226–234. [Google Scholar] [CrossRef]
- Kiaei, M.; Samariha, A. Wood Density and Shrinkage of Ulmus Glabra in Northwestern of Iran. J. Agric. Environ. Sci. 2011, 11, 257–260. [Google Scholar]
- Moliński, W.; Roszyk, E. Restriction of Swelling of Wood Subjected to Bending Stress and Moistening in the Compressed Zone. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2010, 9, 35–43. [Google Scholar]
- Roszyk, E.; Moliński, W.; Fabisiak, E. Attempt at Quantifying the Swelling Pressure of Wood from the Course of Its Creep under Bending Load and Local Asymmetrical Moistening. Ann. WULS–SGGW For. Wood Technol. 2007, 62, 200–204. [Google Scholar]
- Perkitny, T. Badania Nad Ciśnieniem Pęcznienia Drewna; Państwowe Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 1951. [Google Scholar]
- Rybarczyk, W.; Ganowicz, R. A Theoretical Description of the Swelling Pressure of Wood. Wood Sci. Technol. 1974, 8, 233–241. [Google Scholar] [CrossRef]
- Kollmann, F.F.; Côté, W.A., Jr. Principles of Wood Science and Technology. Vol. I. Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Larson, P.R. Rays. The Vascular Cambium: Development and Structure; Larson, P.R., Ed.; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1994; pp. 363–452. ISBN 978-3-642-78466-8. [Google Scholar]
- McIntosh, D.C. Some Aspects of the Influence of Rays on the Shrinkage of Wood. J. For. Prod. Res. Sc. 1954, 4, 39–42. [Google Scholar]
- Al-Rukaibawi, L.S.; Omairey, S.L.; Károlyi, G. A Numerical Anatomy-Based Modelling of Bamboo Microstructure. Constr. Build. Mater. 2021, 308, 125036. [Google Scholar] [CrossRef]
Bamboo | Oven-Dried | Air-Dried | ||||
---|---|---|---|---|---|---|
(kg × m−3) | ||||||
Internode 1 | 385 | 437 a | 472 | 403 | 457 a | 493 |
Internode 2 | 429 | 471 b | 545 | 444 | 494 b | 568 |
Internode 3 | 412 | 472 b | 535 | 433 | 492 b | 561 |
Bamboo | Oven-Dried | Air-Dried | ||||
---|---|---|---|---|---|---|
(kg × m−3) | (%) | (kg × m−3) | (%) | |||
Low-density | 385 a | 25.4 | 6.6 | 399 a | 25.2 | 6.3 |
Medium-density | 455 b | 28.3 | 6.2 | 471 b | 34.0 | 7.2 |
High-density | 540 c | 37.1 | 6.9 | 564 c | 38.3 | 6.8 |
Bamboo | Tangential | Radial | Longitudinal | Volume |
---|---|---|---|---|
[%] | ||||
Low-density | 5.864 a | 6.680 a | 0.667 a | 13.691 a |
Medium-density | 5.809 a | 7.505 b | 0.634 a | 14.473 a |
High-density | 5.956 a | 7.022 a | 0.803 b | 14.307 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roszyk, E.; Kropaczewski, R.; Mania, P.; Broda, M. Swelling Behaviour of Bamboo (Phyllostachys pubescens). Forests 2024, 15, 118. https://doi.org/10.3390/f15010118
Roszyk E, Kropaczewski R, Mania P, Broda M. Swelling Behaviour of Bamboo (Phyllostachys pubescens). Forests. 2024; 15(1):118. https://doi.org/10.3390/f15010118
Chicago/Turabian StyleRoszyk, Edward, Radosław Kropaczewski, Przemysław Mania, and Magdalena Broda. 2024. "Swelling Behaviour of Bamboo (Phyllostachys pubescens)" Forests 15, no. 1: 118. https://doi.org/10.3390/f15010118
APA StyleRoszyk, E., Kropaczewski, R., Mania, P., & Broda, M. (2024). Swelling Behaviour of Bamboo (Phyllostachys pubescens). Forests, 15(1), 118. https://doi.org/10.3390/f15010118