Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Research Resources
2.3. Methods
2.3.1. Estimating Forest Management Areas
2.3.2. Calculation of Economic Value for Each Management Objective
Timber Production
Carbon Storage
Water Source Recharge
2.3.3. Scenario-Based Forest Management Using Weights
2.3.4. Reinforcement Learning Model Construction
3. Results and Discussion
3.1. Estimating Timber Harvest Volumes Using the Reinforcement Learning Model
3.2. Estimating Harvest Areas Using the Reinforcement Learning Model
3.3. Analysis of Age Class Structure Changes According to Forest Management Plans
3.4. Comparison of Expected Management Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Ham, B.; Song, C.; Park, E.; Choi, S.E.; Lee, W.K. Development of forest activity data and forest management rate for national greenhouse gas inventory in the forest sector. J. Clim. Change Res. 2020, 11, 53–63. [Google Scholar] [CrossRef]
- Park, M.; Youn, Y.C. A study on conditions for facilitating forest carbon projects for greenhouse gas reduction: A forest management project case with extended rotation age in private forests. J. Korean Soc. For. Sci. 2021, 110, 440–452. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- National Institute of Forest Science. National Report of the Republic of Korea on Sustainable Forest Management; National Institute of Forest Science: Seoul, Republic of Korea, 2009.
- Sa, Y.; Woo, H.; Kim, J. Investigation of Korean Forest Carbon Offset Program: Current Status and Cognition of Program Participants. J. Korean Soc. For. Sci. 2022, 111, 165–176. [Google Scholar] [CrossRef]
- Korea Forest Service. The 6th Forest Basic Plan (2018–2037); Korea Forest Service: Seoul, Republic of Korea, 2017.
- Choi, S.I.; Kang, H.M. The changes in carbon stocks and emissions assessment of harvested wood products in Korea. J. Korean Soc. For. Sci. 2007, 96, 644–651. [Google Scholar]
- Korea Forest Service. Annals of Forestry Statistics; Korea Forest Service: Seoul, Republic of Korea, 2020.
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Cieszewski, C. Optimisation in forest management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Woo, J.C. Forest Management Planning by Linear Programming-Timber Harvest Scheduling of a Korean Pine Stand. J. Korean Soc. For. Sci. 1991, 80, 427–435. [Google Scholar]
- Chung, J.S.; Park, E.S. A study on developing an experimental model to solve for optimal forest-level timber harvesting schedules using linear programming. J. Korean Soc. For. Sci. 1993, 82, 292–304. [Google Scholar]
- Ko, D.W.; Sung, J.H.; Lee, Y.G.; Park, C.R. The current status and challenges of forest landscape models. J. Korean Soc. For. Sci. 2015, 104, 1–13. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kim, Y.H.; Chang, Y.S.; Kwak, D.A.; Park, G.H.; Kim, D.Y.; Han, H. Estimating optimal timber production for the economic and public functions of the national forests in South Korea. J. Korean Soc. For. Sci. 2023, 112, 561–573. [Google Scholar] [CrossRef]
- Lu, Y. Artificial Intelligence: A Survey on Evolution, Models, Applications and Future Trends. J. Manag. Anal. 2019, 6, 1–29. [Google Scholar] [CrossRef]
- Li, Y. Deep Reinforcement Learning: An Overview. arXiv 2017, arXiv:1701.07274. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Crowley, M.; Nelson, J.; Poole, D.L. Seeing the Forest Despite the Trees: Large Scale Spatial-Temporal Decision Making. arXiv 2012, arXiv:1205.2651. [Google Scholar] [CrossRef]
- Bone, C.; Dragićević, S. GIS and intelligent agents for multiobjective natural resource allocation: A reinforcement learning approach. Trans. GIS 2009, 13, 253–272. [Google Scholar] [CrossRef]
- Malo, P.; Tahvonen, O.; Suominen, A.; Back, P.; Viitasaari, L. Reinforcement learning in optimizing forest management. Can. J. For. Res. 2021, 51, 1393–1409. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bae, J.S.; Cho, M.W. Measures for activating participation of private forest owners in leading forest management zone. J. Korean Soc. For. Sci. 2017, 106, 441–449. [Google Scholar] [CrossRef]
- Park, E.S. Development and Applications of a Forest Information System for Multiple-Use Forest Management. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 1998. Available online: https://hdl.handle.net/10371/48829 (accessed on 25 September 2024).
- An, H.J.; Lee, S.M.; Cho, S.G. Pilot Research on How to Achieve Circular Economy for Forest Resources with a Focus on Forest Management; Korea Rural Economic Institute: Naju, Republic of Korea, 2019. [Google Scholar]
- Korea Forest Service. National Forest Function Classification Map; Korea Forest Service: Daejeon, Republic of Korea, 2014.
- Kim, S.J. Water Resource Acquisition and Utilization Status and Policy Directions in Major Countries; Korea Rural Economic Institute: Naju, Republic of Korea, 2012. [Google Scholar]
- Min, K.; Seok, H.; Choi, J. Policy Tasks for Improving Profitability in Forest Management; Report No. 6-0007; Korea Rural Economic Institute: Naju, Republic of Korea, 2017. [Google Scholar]
- Kang, J.; Lim, J.; Ko, C.; Park, J.; Yoon, J.; Shin, J.; Yoo, J.; Moon, G.; Lee, J.; Won, M. 2021 Stand Volume, Biomass and Yield Tables; Research Data No. 979; National Institute of Forest Science: Seoul, Republic of Korea, 2021.
- Korea Forest Service. Standards for Operating Forest Carbon Offset Projects for the Implementation of the “Act on Maintenance and Promotion of Carbon Sinks”; Annex 3; Korea Forest Service: Daejeon, Republic of Korea, 2013.
- Son, Y.M.; Lee, K.H.; Kim, R.H. Estimation of forest biomass in Korea. J. Korean Soc. For. Sci. 2007, 96, 477–482. [Google Scholar]
- Emissions Trading Market Information Platform. 2022 Emissions Trading Market Operation Report; 2022. Available online: https://www.gir.go.kr/home/main.do (accessed on 25 September 2024).
- Kim, J.; Kim, G.; Kim, L.; Yoon, H.; Lee, S.; Choi, H.; Kim, J.; Park, C. Quantification Study on the Public Functions of Forests; National Institute of Forest Science: Seoul, Republic of Korea, 2010; Report No. 10-26; ISBN 978-89-8176-740-2.
- Yoon, Y. Evaluation of the environmental conservation functions of forests. J. Korean Resour. Econ. Assoc. 1995, 5, 137–164. [Google Scholar]
- Geibel, P. Reinforcement learning for MDPs with constraints. In Machine Learning: ECML 2006: 17th European Conference on Machine Learning, Berlin, Germany, September 18–22, 2006 Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2006; pp. 646–653. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction. Robotica 1999, 17, 229–235. [Google Scholar] [CrossRef]
- Rummery, G.A.; Niranjan, M. On-line Q-Learning Using Connectionist Systems; University of Cambridge, Department of Engineering: Cambridge, UK, 1994; Volume 37, p. 14. Available online: https://www.researchgate.net/publication/2500611 (accessed on 25 September 2024).
- Kim, D.; Han, H.; Chung, J. Optimal Forest Management for Improving Economic and Public Functions in Mt. Gari Leading Forest Management Zone. J. Korean Soc. For. Sci. 2021, 110, 665–677. [Google Scholar] [CrossRef]
- Won, H.K.; Kim, Y.H.; Kwon, S.D. Estimation of optimal harvest volume for the long-term forest management planning using goal programming. J. Korean For. Soc. 2009, 98, 125–131. [Google Scholar]
- Birdsey, R.A.; Jenkins, J.C.; Johnston, M.; Huber-Sannwald, E.; Amiro, B.; de Jong, B.; Barra, J.D.E.; French, N.; Garcia-Oliva, F.; Harmon, M.; et al. North American Forests. In The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle; King, A.W., Dilling, L., Zimmerman, G.P., Fairman, D.M., Houghton, R.A., Marland, G., Rose, A.Z., Wilbanks, T.J., Eds.; National Oceanic and Atmospheric Administration, National Climatic Data Center: Asheville, NC, USA, 2007; pp. 117–126, 173–176. [Google Scholar]
- Mason, D.J.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
Category | Resources | Year Obtained | Providers |
---|---|---|---|
GIS Data | Digital Topographic Map | 2022 | National Geographic Information Institute |
Forest Soil Map | 2021 | Korea Forest Service | |
Forest Function Classification Map | 2020 | ||
Regulatory Land Use Map | 2021 | Ministry of Environment | |
Forest Parcel Map | 2023 | Pyeongchang National Forest Management Office | |
Forest Road Network Map | 2023 | ||
Admin. Data | Forest Management Plan Ledger | 2023 |
Constraints | Description |
---|---|
Legal | Public interest forests under the Mountainous Districts Management Act |
Within 30 m of a water body’s full water level | |
Forest edges under the Guidelines for Sustainable Forest Management | |
Topographical | Areas with slopes exceeding 40° |
Technical | Areas more than 300 m from forest roads and general roads |
Management Objectives | Management Scenarios | |||
---|---|---|---|---|
S1 (Weighting) | S2 (TP Priority) | S3 (CS Priority) | S4 (WSR Priority) | |
Timber Production | 0.5 | 1 | 0 | 0 |
Carbon Storage | 0.3 | 0 | 1 | 0 |
Water Source Recharge | 0.2 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.-V.; Han, S.-K.; Park, J.-W. Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study. Forests 2024, 15, 1725. https://doi.org/10.3390/f15101725
Ji H-V, Han S-K, Park J-W. Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study. Forests. 2024; 15(10):1725. https://doi.org/10.3390/f15101725
Chicago/Turabian StyleJi, Hyo-Vin, Sang-Kyun Han, and Jin-Woo Park. 2024. "Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study" Forests 15, no. 10: 1725. https://doi.org/10.3390/f15101725
APA StyleJi, H. -V., Han, S. -K., & Park, J. -W. (2024). Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study. Forests, 15(10), 1725. https://doi.org/10.3390/f15101725