Hydrological Variability in the El Cielo Biosphere Reserve, Mexico: A Watershed-Scale Analysis Using Tree-Ring Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Tree-Ring Chronologies
2.3. Streamflow Data and Imputation Methods
2.4. Association between Ring-Width Chronologies and Streamflow Data and Reconstruction Models
2.5. Influence of Explanatory Variables in the Strength Signal of Tree Rings and Streamflow Data
3. Results
3.1. Length and Quality of the Ring-Width Chronologies
3.2. Daily and Monthly Runoff for the Gauge Stations
3.3. Response of the Chronology to Monthly Streamflow Records
3.4. Development of the Streamflow Models for Reconstruction Purposes
3.5. The Common Variability within the El Cielo Biosphere Reserve
3.6. The Effect of Species Composition on the Strength of Correlations
4. Discussion
4.1. The Importance of Dendrochronological Networks for Hydrometric Reconstructions
4.2. The Runoff Variability beyond the Hydrometric Records in the El Cielo Biosphere Reserve
4.3. Outlook in the El Cielo Biosphere Reserve
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vose, J.M.; Martin, K.L.; Luce, C.H. Forests, Water, and Climate Change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. 2017. Available online: https://www.climatehubs.usda.gov/sites/default/files/Forests-Water-Climate%20Change_CCRC.pdf (accessed on 16 March 2024).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Kočický, D.; Maretta, M.; Sitková, Z.; Barka, I.; Konôpka, M.; Hlavatá, H. Effect of deforestation on watershed water balance: Hydrological modelling-based approach. Cent. Eur. For. J. 2015, 61, 89–100. [Google Scholar] [CrossRef]
- Marshall, E.; Randhir, T. Effect of climate change on watershed system: A regional analysis. Clim. Change 2008, 89, 263–280. [Google Scholar] [CrossRef]
- Goeking, S.A.; Tarboton, D.G. Forests and water yield: A synthesis of disturbance effects on streamflow and snowpack in western coniferous forests. J. For. 2020, 118, 172–192. [Google Scholar] [CrossRef]
- UNESCO. El Cielo Biosphere Reserve, Mexico. In Biosphere Reserves in Latin America and the Caribbean, October 2018. Available online: https://en.unesco.org/biosphere/lac/el-cielo (accessed on 16 March 2024).
- González-Medrano, F. La vegetación. In Historia Natural de la Reserva de la Biosfera El Cielo, Tamaulipas, México; Sánchez-Ramos, G., Reyes-Castillo, P., Dirzo, R., Eds.; Universidad Autónoma de Tamaulipas: Ciudad Victoria, Mexico, 2005; pp. 88–105. Available online: https://libros.uat.edu.mx/index.php/librosuat/catalog/view/25/15/236-1 (accessed on 16 March 2024).
- Caballero-Rico, F.C.; Roque-Hernández, R.V.; de la Garza Cano, R.; Arvizu-Sánchez, E. Challenges for the Integrated Management of Priority Areas for Conservation in Tamaulipas, México. Sustainability 2022, 14, 494. [Google Scholar] [CrossRef]
- Vargas-Contreras, J.A.; Hernández-Huerta, A. Distribución Altitudinal de la Mastofauna en la Reserva de la Biosfera “El Cielo”, Tamaulipas, México. Acta Zool. Mex. 2001, 82, 83–109. Available online: https://www.redalyc.org/pdf/575/57508205.pdf (accessed on 16 March 2024). [CrossRef]
- Sánchez-Ramos, G.; Reyes-Castillo, P.; Dirzo, R. Historia Natural de la Reserva de la Biósfera El Cielo, Tamaulipas, México; Universidad Autónoma de Tamaulipas: Tamaulipas, Mexico, 2005; ISBN 968-7662-67-0. Available online: https://libros.uat.edu.mx/index.php/librosuat/catalog/view/25/15/236-1 (accessed on 16 March 2024).
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Villanueva-Díaz, J.; Estrada-Ávalos, J.; Martínez-Sifuentes, A.R.; Correa-Díaz, A.; Meko, D.M.; Castruita-Esparza, L.U.; Cerano-Paredes, J. Historic Variability of the Water Inflow to the Lazaro Cardenas Dam and Water Allocation in the Irrigation District 017, Comarca Lagunera, Mexico. Forests 2022, 13, 2057. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Correa-Díaz, A.; Castruita-Esparza, L.U.; Gutiérrez-García, J.V.; Martínez-Sifuentes, A.R.; Reyes-Camarillo, F.d.R. Tree Rings as Proxies of Historical Runoff in a National Park in Northern Mexico: A Major Ecosystem Service Provider. Atmosphere 2023, 14, 1199. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística, Geografía e Informática). Conjunto Nacional de Datos Vectorial Edafológico. Escala 1:250 000 Serie II (Digital). 2000. Available online: https://www.inegi.org.mx/temas/edafologia/ (accessed on 16 March 2024).
- García, E.; Sánchez-Santillán, N. Análisis climático de la Reserva de la Biosfera El Cielo. Rev. Geofís. 1996, 45, 181–199. Available online: https://biblat.unam.mx/es/revista/revista-geofisica/articulo/analisis-climatico-de-la-reserva-de-la-biosfera-el-cielo (accessed on 16 March 2024).
- Tang, B.H.; Fang, J.; Bentley, A.; Kilroy, G.; Nakano, M.; Park, M.-S.; Rajasree, V.P.M.; Wang, Z.; Wing, A.A.; Wu, L. Recent advances in research on tropical cyclogenesis. Trop. Cyclone Res. Rev. 2020, 9, 87–105. [Google Scholar] [CrossRef]
- Sánchez-Santillán, N.; Binnqüist, G.S.; Garduño, R. Sequía intraestival en La Reserva de la Biosfera El Cielo y su entorno, Tamaulipas, México. Cuad. Geogr. Rev. Colomb. Geogr. 2018, 27, 146–163. [Google Scholar] [CrossRef]
- Rzedowski, J. La Vegetación de México; Limusa: Ciudad de México, Mexico, 1978. [Google Scholar]
- Stahle, D.W.; Cleaveland, M.K.; Therrell, M.D.; Paull, G. Stahle—Rio Sabinas—TAMU—ITRDB MEXI035. NOAA Study Page. 2002. Available online: https://www.ncei.noaa.gov/access/paleo-search/study/4935 (accessed on 16 March 2024).
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. Available online: https://repository.arizona.edu/handle/10150/261223 (accessed on 17 March 2024).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 16 March 2024).
- Bunn, A.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C.; Buras, A.; Cecile, A.; Mudelsee, M.; et al. Dendrochronology Program Library in R. 2023. Available online: https://cran.r-project.org/web/packages/dplR/dplR.pdf (accessed on 16 March 2024).
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- CONAGUA (Comisión Nacional del Agua, México). Portal de Sistemas de Información del Agua. Sistema de Información Hidrológica. Estaciones Hidrométricas. 2024. Available online: https://sih.conagua.gob.mx/hidros.html (accessed on 16 March 2024).
- Moritz, S.; Gatscha, S.; Wang, E.; Hause, R. Package Imputets Version 3.3. 2022. Available online: https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf (accessed on 16 March 2024).
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Faraway, J.J. 2016. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Martin, J.T.; Pederson, G.T. Streamflow reconstructions from tree rings and variability in drought and surface water supply for the Milk and St. Mary River basins. Quat. Sci. Rev. 2022, 288, 107574. [Google Scholar] [CrossRef]
- Littell, J.S.; Pederson, G.T.; Martin, J.T.; Gray, S.T. Networks of tree-ring based streamflow reconstructions for the Pacific Northwest, U.S.A. Water Resour. Res. 2023, 59, e2023WR035255. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Dracup, J.A.; MacDonald, G.M.; King, J.A. Comparison of tree species sensitivity to high and low extreme hydroclimatic events. Phys. Geogr. 2001, 22, 115–134. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Lukas, J.J. Multi-century tree-ring reconstructions of Colorado streamflow for water resources planning. Clim. Change 2006, 78, 293–315. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Gray, S.T.; Meko, D.M. Updated streamflow reconstructions for the Upper Colorado River Basin. Water Resour. Res. 2006, 42, W05415. [Google Scholar] [CrossRef]
- Timilsena, J.; Piechota, T.C.; Hidalgo, H.; Tootle, G. Five hundred years of hydrological drought in the upper Colorado River basin. J. Am. Water Resour. Assoc. 2007, 43, 798–812. [Google Scholar] [CrossRef]
- Garcia-Forner, N.; Vieira, J.; Nabais, C.; Carvalho, A.; Martínez-Vilalta, J.; Campelo, F. Climatic and physiological regulation of the biomodal xylem formation pattern in Pinus pinaster saplings. Tree Physiol. 2019, 39, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Osorio, J.A.; Astudillo-Sánchez, C.C.; Villanueva-Díaz, J.; Soria-Díaz, L.; Vargas-Tristán, V. Reconstrucción histórica de la precipitación en la Reserva de la Biosfera El Cielo, México, mediante anillos de crecimiento en Taxodium mucronatum (Cupressaceae). Rev. Biol. Trop. 2020, 68, 818–832. [Google Scholar] [CrossRef]
- Villanueva-Diaz, J.; Stahle, D.W.; Luckman, B.H.; Cerano-Paredes, J.; Therrell, M.D.; Cleaveland, M.K.; Cornejo-Oviedo, E. Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Clim. Change 2007, 83, 117–131. [Google Scholar] [CrossRef]
- Constante-García, V.; Villanueva, J.; Cerano, J.; Cornejo, E.H.; Valencia, S. Dendrocronología de Pinus cembroides Zucc. y reconstrucción de precipitación estacional para el sureste de Coahuila. Rev. Mex. Cien. For. 2009, 34, 17–39. Available online: https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/685 (accessed on 17 March 2024).
- IPCC. 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Miller, O.L.; Putman, A.L.; Alder, J.; Miller, M.; Jones, D.K.; Wise, D.R. Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States. J. Hydrol. X 2021, 11, 100074. [Google Scholar] [CrossRef]
- Tootle, G.; Oubeidillah, A.; Elliott, E.; Formetta, G.; Bezak, N. Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies for the Sava River Basin (Slovenia). Hydrology 2023, 10, 138. [Google Scholar] [CrossRef]
- Li, K.; Qin, X.; Plunkett, G.; Brown, D.; Xu, B.; Zhang, L.; Gu, Z.; Mu, G.; Jia, H.; Yin, Z.; et al. Hydrological fluctuations in the Tarim Basin, northwest China, over the past millennium. Geology, 2024; advance online publication. [Google Scholar] [CrossRef]
- Schofield, M.R.; Barker, R.J.; Gelman, A.; Cook, E.R.; Briffa, K.R. A Model-Based Approach to Climate Reconstruction Using Tree-Ring Data. J. Am. Stat. Assoc. 2016, 111, 93–106. [Google Scholar] [CrossRef]
- Pichardo, R.; Treviño, J.; Rolón, J.C. Tópicos Selectos de Ingeniería y Ciencias Ambientales; Universidad Autónoma de Tamaulipas: Ciudad Victoria, Mexico, 2022. [Google Scholar] [CrossRef]
- Loaiciga, H.A.; Haston, L.; Michaelsen, J. Dendrohydrology and long-term hydrologic phenomena. Rev. Geophys. 1993, 31, 151–171. [Google Scholar] [CrossRef]
- Shekhar, M.; Ranhotra, P.S.; Bhattacharyya, A.; Singh, A.; Dhyani, R.; Singh, S. Tree-ring-based hydrological records reconstructions of the Himalayan Rivers: Challenges and opportunities. In Springer Climate; Rani, S., Kumar, R., Eds.; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2022; pp. 47–72. [Google Scholar] [CrossRef]
No. | Gauge Identification | Sub-Basin | Information PERIOD | Latitude (N) | Longitude (W) |
---|---|---|---|---|---|
1 | Zapata | Rio Guayalejo | 1987–2014 | 23.2714° | 99.5417° |
2 | Servilleta | Rio Comandante | 1960–2014 | 22.8536° | 99.1211° |
3 | Ahualulco | Rio Comandante | 1945–2014 | 22.9869° | 99.1489° |
4 | La Encantada | Rio Guayalejo | 1960–2014 | 23.3855° | 99.0791° |
5 | Sabinas | Rio Sabinas | 1960–2014 | 23.0331° | 99.0942° |
6 | Frio | Rio Tamesi | 1960–2013 | 22.8431° | 99.0261° |
7 | San Gabriel | Rio Guayalejo | 1984–2014 | 23.0853° | 98.7878° |
8 | Tamesi | Rio Comandante | 1973–2014 | 22.8942° | 99.4319° |
Site | Species | Elevation m a.s.l. | Period | n (cores) | Series Intercorrelation | Average Mean Sensitivity | rbar | EPS |
---|---|---|---|---|---|---|---|---|
MIQ | Pinus nelsonii | 1950 | 1846–2019 | 87 | 0.75 | 0.50 | 0.59 | 0.99 |
MIP | Pinus cembroides | 2080 | 1882–2019 | 114 | 0.72 | 0.42 | 0.53 | 0.99 |
LEN | Abies vejarii | 2700 | 1894–2021 | 295 | 0.69 | 0.34 | 0.51 | 0.99 |
MAR | Pinus hartwegii | 3300 | 1838–2019 | 90 | 0.68 | 0.41 | 0.50 | 0.99 |
PEN | Pseudotsuga menziesii | 2700 | 1450–2013 | 108 | 0.66 | 0.31 | 0.48 | 0.99 |
RDC | Pinus montezumae | 1800 | 1772–1995 | 27 | 0.61 | 0.43 | 0.42 | 0.95 |
JAU | Pinus cembroides | 1760 | 1902–2017 | 69 | 0.59 | 0.33 | 0.37 | 0.98 |
MAT | Pinus pinceana | 1070 | 1810–2019 | 52 | 0.57 | 0.56 | 0.35 | 0.96 |
RSA | Taxodium mucronatum | 317 | 1474–2017 | 118 | 0.44 | 0.44 | 0.19 | 0.97 |
HUA | Taxodium mucronatum | 400 | 1810–2019 | 68 | 0.42 | 0.39 | 0.19 | 0.94 |
Gauge Station | Period | Model | Variables | p-Value | R2 | R2adjusted | AIC |
---|---|---|---|---|---|---|---|
Zapata | January to June | Single tree species | HUA to MIQ | [0.02, 0.96] | [0.02, 0.18] | [0.01, 0.14] | [940.2, 945.6] |
Principal component model | PC1 | 0.54 | 0.02 | 0.01 | 945.6 | ||
Pooled model | HUA to MIQ | 0.45 | 0.94 | 0.56 | 327.7 | ||
⸸Stepwise model | HUA, LEN, JAU, RSA | 0.02 | 0.93 | 0.85 | 109.2 | ||
Servilleta | February to April | Single tree species | HUA to MIQ | [0.001, 0.44] | [0.02, 0.23] | [0.01, 0.22] | [1352.5, 1362.2] |
Principal component model | PC1 | 0.007 | 0.14 | 0.13 | 1355.6 | ||
Pooled model | HUA to MIQ | 0.08 | 0.48 | 0.25 | 852.5 | ||
⸸Stepwise model | JAU, MAR, RSA | 0.002 | 0.43 | 0.36 | 831.4 | ||
Ahualulco | January to April | Single tree species | HUA to MIQ | [0.01, 0.96] | [0.02, 0.13] | [0.01, 0.12] | [2468.3, 2478.3] |
Principal component model | PC1 | 0.05 | 0.05 | 0.04 | 2474.4 | ||
Pooled model | HUA to MIQ | 0.08 | 0.30 | 0.15 | 1792.5 | ||
⸸Stepwise model | HUA, MAR, PEN, RSA | <0.001 | 0.28 | 0.22 | 1778.9 | ||
Encantada | January to May | Single tree species | HUA to MIQ | [0.001, 0.20] | [0.02, 0.23] | [0.02, 0.22] | [2435, 2450.4] |
Principal component model | PC1 | 0.002 | 0.14 | 0.12 | 2442.3 | ||
Pooled model | HUA to MIQ | <0.001 | 0.51 | 0.39 | 1731.7 | ||
⸸Stepwise model | JAU, MAR, MAT, PEN, MIQ, RSA | <0.001 | 0.51 | 0.43 | 1722.4 | ||
Sabinas | January to June | Single tree species | HUA to MIQ | [0.001, 0.96] | [0.01, 0.21] | [0.01, 0.20] | [2160.5, 2164.1] |
Principal component model | PC1 | 0.008 | 0.12 | 0.11 | 2160 | ||
Pooled model | HUA to MIQ | 0.003 | 0.60 | 0.44 | 1407.3 | ||
⸸Stepwise model | HUA, MAR, MAT, MIP, MIQ, RSA, RDC | <0.001 | 0.56 | 0.45 | 1398.2 | ||
Frio | February to June | Single tree species | HUA to MIQ | [0.001,0.66] | [0.03, 0.13] | [0.02, 0.11] | [2207.6, 2212.4] |
Principal component model | PC1 | 0.036 | 0.08 | 0.06 | 2209.7 | ||
Pooled model | HUA to MIQ | <0.01 | 0.55 | 0.39 | 1450.2 | ||
⸸Stepwise model | HUA, MAT, MIP, MIQ, RSA, RDC | <0.001 | 0.53 | 0.44 | 1439.9 | ||
Gabriel | April to May | Single tree species | HUA to MIQ | [0.001,0.96] | [0.02,0.28] | [0.01,0.27] | [1223.4, 1229.4] |
Principal component model | PC1 | 0.03 | 0.15 | 0.12 | 1225.4 | ||
Pooled model | HUA to MIQ | 0.08 | 0.47 | 0.24 | 1239.9 | ||
⸸Stepwise model | JAU, MAR, RSA | 0.003 | 0.40 | 0.33 | 1220.1 | ||
Tamesi | April to June | Single tree species | HUA to MIQ | [0.02, 0.58] | [0.01, 0.17] | [0.01, 0.14] | [1353.7, 1358.6] |
Principal component model | PC1 | 0.03 | 0.14 | 0.11 | 1354.8 | ||
Pooled model | HUA to MIQ | 0.33 | 0.47 | 0.11 | 1003.6 | ||
⸸Stepwise model | JAU, LEN, MAR, MIP | 0.05 | 0.39 | 0.25 | 978.2 |
St | Pe | Final Model | R2 | R2adjusted | AIC |
---|---|---|---|---|---|
Za 1 | J-J | 0.39 | 0.28 | 934.4 | |
Se 2 | F-A | 0.36 | 0.32 | 1341.6 | |
Ah 3 | J-A | 0.21 | 0.16 | 2465.1 | |
En 4 | J-M | 0.43 | 0.37 | 2421.2 | |
Sa 5 | J-J | 0.64 | 0.55 | 1386.9 | |
Fr 6 | F-J | 0.60 | 0.52 | 1430.1 | |
Ga 7 | A-M | 0.41 | 0.35 | 1213.9 | |
Ta 8 | A-J | 0.34 | 0.25 | 1350.3 |
Variable | F-Value | p-Value |
---|---|---|
Tree species | 8.33 | <0.001 |
Elevation | 0.75 | 0.387 |
Series intercorrelation | 8.95 | 0.002 |
Average mean sensitivity | 25.78 | <0.001 |
Stream order | 0.01 | 0.905 |
Distance to gauge station | 52.56 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva-Díaz, J.; Correa-Díaz, A.; Gutiérrez-García, J.V.; Astudillo-Sánchez, C.C.; Martínez-Sifuentes, A.R. Hydrological Variability in the El Cielo Biosphere Reserve, Mexico: A Watershed-Scale Analysis Using Tree-Ring Records. Forests 2024, 15, 826. https://doi.org/10.3390/f15050826
Villanueva-Díaz J, Correa-Díaz A, Gutiérrez-García JV, Astudillo-Sánchez CC, Martínez-Sifuentes AR. Hydrological Variability in the El Cielo Biosphere Reserve, Mexico: A Watershed-Scale Analysis Using Tree-Ring Records. Forests. 2024; 15(5):826. https://doi.org/10.3390/f15050826
Chicago/Turabian StyleVillanueva-Díaz, José, Arian Correa-Díaz, Jesús Valentín Gutiérrez-García, Claudia C. Astudillo-Sánchez, and Aldo R. Martínez-Sifuentes. 2024. "Hydrological Variability in the El Cielo Biosphere Reserve, Mexico: A Watershed-Scale Analysis Using Tree-Ring Records" Forests 15, no. 5: 826. https://doi.org/10.3390/f15050826
APA StyleVillanueva-Díaz, J., Correa-Díaz, A., Gutiérrez-García, J. V., Astudillo-Sánchez, C. C., & Martínez-Sifuentes, A. R. (2024). Hydrological Variability in the El Cielo Biosphere Reserve, Mexico: A Watershed-Scale Analysis Using Tree-Ring Records. Forests, 15(5), 826. https://doi.org/10.3390/f15050826