The Beneficial Elements in Forest Environment Based on Human Health and Well-Being Perspective
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Beneficial Substances
3.1.1. Clean Air
3.1.2. High-Quality Fresh Water
3.1.3. CO2/O2 Balance
3.1.4. Negative Air Ions (NAIs)
3.1.5. Phytoncides
3.2. Beneficial Factors
3.2.1. Moderate Thermal Environment
3.2.2. Biodiversity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M.; et al. City planning and population health: A global challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [PubMed]
- United Nations. World Urbanization Prospects 2018 Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Probst, B.M.; Caicoya, A.T.; Hilmers, T.; Ramisch, K.; Snäll, T.; Stoltz, J.; Grahn, P.; Suda, M. How forests may support psychological restoration: Modelling forest characteristics based on perceptions of forestry experts and the general public. People Nat. 2024, 6, 1605–1623. [Google Scholar] [CrossRef]
- Sachs, A.L.; Kolster, A.; Wrigley, J.; Papon, V.; Opacin, N.; Hill, N.; Howarth, M.; Rochau, U.; Hidalgo, L.; Casajuana, C.; et al. Connecting through nature: A systematic review of the effectiveness of nature-based social prescribing practices to combat loneliness. Landsc. Urban Plan. 2024, 248, 105071. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Kondo, M.C.; Fluehr, J.M.; Mckeon, T.; Branas, C.C. Urban green space and its impact on human health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef]
- Bray, I.; Reece, R.; Sinnett, D.; Martin, F.; Hayward, R. Exploring the role of exposure to green and blue spaces in preventing anxiety and depression among young people aged 14–24 years living in urban settings: A systematic review and conceptual framework. Environ. Res. 2022, 214, 114081. [Google Scholar] [CrossRef]
- Li, Q.; Ochiai, H.; Ochiai, T.; Takayama, N.; Kumeda, S.; Miura, T.; Aoyagi, Y.; Imai, M. Effects of forest bathing (shinrin-yoku) on serotonin in serum, depressive symptoms and subjective sleep quality in middle-aged males. Environ. Health Prev. Med. 2022, 27, 44. [Google Scholar] [CrossRef]
- Wan, S.; Rojas-Rueda, D.; Pretty, J.; Roscoe, C.; James, P.; Ji, J.S. Greenspace and mortality in the U.K. Biobank: Longitudinal cohort analysis of socio-economic, environmental, and biomarker pathways. SSM Popul. Health 2022, 19, 101194. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, B.; Yang, W.; Gao, Y. Effect of Nature Space on Enhancing Humans’Health and Well-Being: An Integrative Narrative Review. Forests 2024, 15, 100. [Google Scholar] [CrossRef]
- Liu, H.; Nong, H.; Ren, H.; Liu, K. The effect of nature exposure, nature connectedness on mental well-being and ill-being in a general Chinese population. Landsc. Urban Plan. 2022, 222, 104397. [Google Scholar] [CrossRef]
- Fleming, W.; Shwartz, A. Nature interactions and their associations with connection to nature and well-being varies between different types of green spaces. People Nat. 2023, 5, 1160–1173. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, D.; Xu, N.; Yang, J. The effectiveness of immersive virtual reality (VR) based mindfulness training on improvement mental-health in adults: A narrative systematic review. Explore 2023, 19, 310–338. [Google Scholar] [PubMed]
- Jung, W.H.; Woo, J.M.; Ryu, J.S. Effect of a forest therapy program and the forest environment on female workers, stress. Urban For. Urban Green. 2015, 2, 274–281. [Google Scholar] [CrossRef]
- Shin, W.-S.; Seong, I.-K.; Kim, J.-G. Psychological Benefits of Self-Guided Forest Healing Program Using Campus Forests. Forests 2023, 14, 336. [Google Scholar] [CrossRef]
- Chowdhury, A.; Naz, A.; Maiti, S.K. Distribution, speciation, and bioaccumulation of potentially toxic elements in the grey mangroves at Indian Sundarbans, in relation to vessel movements. Mar. Environ. Res. 2023, 189, 106042. [Google Scholar] [CrossRef]
- Fletcher, I.K.; Gibb, R.; Lowe, R.; Jones, K.E. Differing taxonomic responses of mosquito vectors to anthropogenic land-use change in Latin America and the Caribbean. PLoS Neglected Trop. Dis. 2023, 17, e0011450. [Google Scholar]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 2023, 29, 1359–1376. [Google Scholar]
- Fang, N.; Yao, L.; Wu, D.; Zheng, X.; Luo, S. Assessment of Forest Ecological Function Levels Based on Multi-Source Data and Machine Learning. Forests 2023, 14, 1630. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar]
- Bagheri, Z.; Nadoushan, M.A.; Abari, M.F. Evaluation the effect of green space on air pollution dispersion using satellite images and landscape metrics: A case study of Isfahan city. Fresenius Environ. Bull. 2017, 26, 8135–8145. [Google Scholar]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovernc, M.; Pasherc, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Almeida, L.O.; Favaro, A.; Raimundo-Costa, W.; Anhê, A.C.B.M.; Ferreira, D.C.; Blanes-Vidal, V.; Senhuk, A.P.M.S. Influence of urban forest on traffic air pollution and children respiratory health. Environ. Monit. Assess. 2020, 192, 175. [Google Scholar] [CrossRef]
- Azwardi, A.; Sukanto, S.; Igamo, A.M.; Kurniawan, A. Carbon Emissions, Economic Growth, Forest, Agricultural Land and Air Pollution in Indonesia. Int. J. Energy Econ. Policy 2021, 11, 537–542. [Google Scholar] [CrossRef]
- Cunha, D.G.F.; Sabogal-Paz, L.P.; Dodds, W.K. Land use influence on raw surface water quality and treatment costs for drinking supply in So Paulo State (Brazil). Ecol. Eng. 2016, 94, 516–524. [Google Scholar] [CrossRef]
- Shah, N.W.; Nisbet, T.R. The effects of forest clearance for peatland restoration on water quality. Sci. Total Environ. 2019, 693, 133617. [Google Scholar] [CrossRef]
- Kumarasiri, A.D.T.N.; Udayakumara, E.P.N.; Jayawardana, J.M.C.K. Impacts of soil erosion and forest quality on water quality in Samanalawewa watershed, Sri Lanka. Model. Earth Syst. Environ. 2021, 8, 529–544. [Google Scholar] [CrossRef]
- Piaggio, M.; Siikamki, J. The value of forest water purification ecosystem services in Costa Rica. Sci. Total Environ. 2021, 789, 147952. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Pei, F.; Li, X.; Du, G. Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agric. For. Meteorol. 2018, 252, 130–143. [Google Scholar] [CrossRef]
- Green, J.K.; Keenan, T.F. The limits of forest carbon sequestration. Science 2022, 376, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, H.; Hou, Z.; Wang, S.; Zhang, D.; Xu, Q.; Tokola, T. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China. Urban For. Urban Green. 2015, 14, 636–645. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, X.; Han, Y.; Sun, W.; Liu, C.; Yin, S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere 2018, 9, 463. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.; Li, M.; Luo, Y.; Liang, L.; Du, P.; Peng, W. Study on the change of negative air ion concentration and its influencing factors at different spatio-temporal scales. Glob. Ecol. Conserv. 2020, 23, e01008. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, H.T.; Wang, J.; Meng, Q.; Zhang, H.; Yao, L.; Zhang, Y.C.; Dong, A.J.; Ma, Y.; Wang, Z.Y.; et al. Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. J. Med. Plants Res. 2010, 4, 1668–1672. [Google Scholar]
- Li, Q. Forest Medicine; Nova Science Publishers: New York, NY, USA, 2013. [Google Scholar]
- Kim, S.-E.; Memon, A.; Kim, B.Y.; Jeon, H.; Lee, W.K.; Kang, S.C. Gastroprotective effect of phytoncide extract from Pinus koraiensis pinecone in Helicobacter pylori infection. Sci. Rep. 2020, 10, 9547. [Google Scholar] [CrossRef]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef]
- Alterio, E.; Cocozza, C.; Chirici, G.; Rizzi, A.; Sitzia, T. Preserving air pollution forest archives accessible through dendrochemistry. J. Environ. Manag. 2020, 264, 110462. [Google Scholar]
- Holopainen, S.; Lehikoinen, A. Role of forest ditching and agriculture on water quality: Connecting the long-term physico-chemical subsurface state of lakes with landscape and habitat structure information. Sci. Total Environ. 2022, 806, 151477. [Google Scholar] [CrossRef]
- Hohner, A.K.; Rhoades, C.C.; Wilkerson, P.; Rosario-Ortiz, F.L. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Acc. Chem. Res. 2019, 52, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.R.; Ahmad, I.; Adnan, N.; Burwell, W.B.; Pattanayak, S.K.; Tan-Soo, J.-S.; Thomas, K. Valuing Water Purification by Forests: An Analysis of Malaysian Panel Data. Environ. Resour. Econ. 2015, 64, 59–80. [Google Scholar] [CrossRef]
- Anbar, A.D.; Duan, Y.; Lyons, T.W.; Arnold, G.L.; Kendall, B.; Creaser, R.A.; Kaufman, A.J.; Gordon, G.W.; Scott, C.; Garvin, J.; et al. A whiff of oxygen before the great oxidation event? Science 2007, 317, 1903–1906. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Isozaki, Y. The Story of O2. Science 2008, 322, 540–542. [Google Scholar] [CrossRef]
- Baudouin-Cornu, P.; Thomas, D. Oxygen at life’s boundaries. Nature 2007, 445, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Brocks, J.J.; Logan, G.A.; Buick, R.; Summons, R.E. Archean molecular fossils and the early rise of eukaryotes. Science 1999, 285, 1033–1036. [Google Scholar] [CrossRef]
- Knoll, A.H.; Carroll, S.B. Early animal evolution: Emerging views from comparative biology and geology. Science 1999, 284, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G.; Katz, M.E.; Milligan, A.J.; Fennel, K.; Cramer, B.S.; Aubry, M.P.; Berner, R.A.; Novacek, M.J.; Zapol, W.M. The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals. Science 2005, 309, 2202–2204. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U.F.; Saggar, S.; Tate, K.R.; Thakur, K.P.; Giltrap, D.L. Quantifying the climate-change consequences of shifting land use between forest and agriculture. Sci. Total Environ. 2013, 465, 314–324. [Google Scholar] [CrossRef]
- Davis, S.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-F.; Lin, J.-M. Generation and Determination of Negative Air Ions. J. Anal. Test. 2017, 1, 6. [Google Scholar] [CrossRef]
- Krueger, A.P.; Reed, E.J. Biological Impact of Small Air Ions. Science 1976, 193, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Pino, O.; Ragione, F.L. There’s Something in the Air: Empirical Evidence for the Effects of Negative Air Ions (NAI) on Psychophysiological State and Performance. Am. Psychiatr. Assoc. 2013, 1, 48–53. [Google Scholar]
- Liu, S.; Li, C.; Chu, M.; Zhang, W.; Wang, W.; Wang, Y.; Guo, X.; Deng, F. Associations of forest negative air ions exposure with cardiac autonomic nervous function and the related metabolic linkages: A repeated-measure panel study. Sci. Total Environ. 2022, 850, 158019. [Google Scholar] [CrossRef]
- Bowers, B.; Flory, R.; Ametepe, J.; Staley, L.; Patrick, A.; Carrington, H. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder. Psychiatry Res. 2018, 259, 7–14. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.; et al. Effect of phytoncide from trees on human natural killer cell function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef]
- Woo, J.; Yang, H.; Yoon, M.; Gadhe, C.G.; Pae, A.N.; Cho, S.; Lee, C.J. 3-Carene, a Phytoncide from Pine Tree Has a Sleep-enhancing Effect by Targeting the GABAA-benzodiazepine Receptors. Exp. Neurobiol. 2019, 28, 593–601. [Google Scholar] [CrossRef]
- Woo, J.; Lee, C.J. Sleep-enhancing Effects of Phytoncide Via Behavioral, Electrophysiological, and Molecular Modeling Approaches. Exp. Neurobiol. 2020, 29, 120–129. [Google Scholar] [CrossRef]
- Fujimori, H.; Hisama, M.; Shibayama, H.; Iwaki, M. Protecting effect of phytoncide solution, on normal human dermal fibroblasts against reactive oxygen species. J. Oleo Sci. 2009, 58, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, M.; Pirintsos, S.A.; Lionis, C.; Castanas, E.; Sourvinos, G. Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L.) Rchb. f., Origanum dictamnus L. and Salvia fruticosa Mill.) against viruses causing infections of the upper respiratory tract. J. Herb. Med. 2019, 17, 100288. [Google Scholar] [CrossRef]
- Li, Q.; Nakadai, A.; Matsushima, H.; Miyazaki, Y.; Krensky, A.M.; Kawada, T.; Morimoto, K. Phytoncides (Wood Essential Oils) Induce Human Natural Killer Cell Activity. Immunopharmacol. Immunotoxicol. 2006, 28, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a Major Constituent of Pine Tree Oils, Enhances Non-Rapid Eye Movement Sleep in Mice through GABAA-benzodiazepine Receptors. Mol. Pharmacol. 2016, 90, 530–539. [Google Scholar] [CrossRef] [PubMed]
- USGCRP. Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Dimoudi, A.; Kantzioura, A.; Zoras, S.; Pallas, C.; Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, C.; Teng, M.; Lin, Y. Impacts of Tree Canopy Cover on Microclimate and Human Thermal Comfort in a Shallow Street Canyon in Wuhan, China. Atmosphere 2020, 11, 588. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.-X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Marselle, M.R.; Hartig, T.; Cox, D.T.; de Bell, S.; Knapp, S.; Lindley, S.; Triguero-Mas, M.; Böhning-Gaese, K.; Braubach, M.; Cook, P.A.; et al. Pathways linking biodiversity to human health: A conceptual framework. Environ. Int. 2021, 150, 106420. [Google Scholar] [CrossRef]
- Methorst, J.; Bonn, A.; Marselle, M.; Böhning-Gaese, K.; Rehdanz, K. Species richness is positively related to mental health—A study for Germany. Landsc. Urban Plan. 2021, 211, 104084. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Xu, Z.; Hui, T.; Guo, P.; Sun, Y. The association between plant diversity and perceived emotions for visitors in urban forests: A pilot study across 49 parks in China. Urban For. Urban Green. 2022, 73, 127613. [Google Scholar] [CrossRef]
- See, L.; Rasiah, R.L.; Laing, R.; Thompson, S.C. Considerations in planning physical activity for older adults in hot climates: A narrative review. Int. J. Environ. Res. Public Health 2021, 18, 1331. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, J.; He, Q.; Ye, B. The Temporal Variation of the Microclimate and Human Thermal Comfort in Urban Wetland Parks: A Case Study of Xixi National Wetland Park, China. Forests 2021, 12, 1322. [Google Scholar] [CrossRef]
- Hu, L.; Li, Q. Greenspace, bluespace, and their interactive influence on urban thermal environments. Environ. Res. Lett. 2020, 15, 034041. [Google Scholar] [CrossRef]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 489, 59–67. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Convention on Biological Diversity. 1992. Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 24 May 2024).
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- Herzog, T.R.; Chernick, K.K. Tranquility and danger in urban and natural settings. J. Environ. Psychol. 2000, 20, 29–39. [Google Scholar] [CrossRef]
- Maas, J.; Spreeuwenberg, P. Is green space in the living environment associated with people’s feelings of social safety? Environ. Plan. A 2009, 41, 1763–1777. [Google Scholar] [CrossRef]
Beneficial Substances | Ecological Services | Pathway | Citations |
---|---|---|---|
Clean air | Plants in the forest environment play an important role in ameliorating air pollution and improving human health. | (1) Affecting the diffusion of air pollutants; (2) Trapping particulate matter; (3) Absorbing and storing air pollution. | Nowak et al., 2014 [20] Manes et al., 2016 [21] Bagheri et al., 2017 [22] Nowak et al., 2018 [23] Almeida et al., 2020 [24] Azwardi et al., 2021 [25] |
High-quality freshwater | Forests are natural water purifiers, providing an important ecological service that improves human health. | (1) Filtering solid pollutants in runoff; (2) Precipitating and degrading organic pollutants; (3) Absorbing nutrient ions. | Cunha et al., 2016 [26] Shah and Nisbet, 2019 [27] Kumarasiri et al., 2021 [28] Piaggio and Siikamki, 2021 [29] |
CO2/O2 balance | Forest plants regulate the balance between O2 and CO2 by absorbing CO2 and releasing O2. | (1) Photosynthesis; (2) Respiration. | Fang et al., 2001 [30] Tang et al., 2018 [31] Wen et al., 2018 [32] Green and Keenan, 2022 [33] |
Negative air ions | NAIs are known as “air vitamins” and directly benefit human health. | (1) Photosynthesis in forests’ canopies; (2) Electrolysis of air from branches and leaves; (3) Air ionization from volatile substances released by plants; (4) Surviving for a long time in the forest environment. | Yan et al., 2015 [34] Miao et al., 2018 [35] Wang et al., 2020 [36] |
Phytoncides | Phytoncides are aromatic volatile substances emitted by the organs and tissues of plants. | The release of phytoncides is closely related to the physiological activities of plants. | Yang et al., 2010 [37] Li, 2013 [38] Kim et al., 2020 [39] |
Beneficial Factors | Ecological Services | Pathway | Citations |
---|---|---|---|
Moderate thermal environment | A forest environment dominated by trees has more moderate temperatures. | (1) Shading; (2) Cooling effects from evapotranspiration; (3) Low thermal conductivity of biological materials. | USGCRP, 2017 [67] Dimoudi et al., 2013 [68] Huang et al., 2020 [69] Yuan et al., 2020 [70] |
Biodiversity | Biodiversity is critical to the ability of ecosystems to sustain society. | All of these life forms in forests together make up the biodiversity of the Earth. | Marselle et al., 2021 [71] Methorst et al., 2021 [72] Wei et al., 2022 [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Shen, J.; Gao, Y.; Zhang, Z. The Beneficial Elements in Forest Environment Based on Human Health and Well-Being Perspective. Forests 2024, 15, 1604. https://doi.org/10.3390/f15091604
Gao D, Shen J, Gao Y, Zhang Z. The Beneficial Elements in Forest Environment Based on Human Health and Well-Being Perspective. Forests. 2024; 15(9):1604. https://doi.org/10.3390/f15091604
Chicago/Turabian StyleGao, Deqiang, Jiapeng Shen, Yunchang Gao, and Zhiyong Zhang. 2024. "The Beneficial Elements in Forest Environment Based on Human Health and Well-Being Perspective" Forests 15, no. 9: 1604. https://doi.org/10.3390/f15091604
APA StyleGao, D., Shen, J., Gao, Y., & Zhang, Z. (2024). The Beneficial Elements in Forest Environment Based on Human Health and Well-Being Perspective. Forests, 15(9), 1604. https://doi.org/10.3390/f15091604