High Throughput Screening of Elite Loblolly Pine Families for Chemical and Bioenergy Traits with Near Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical Analysis
2.2.2. Proximate Analysis and Energy Content Determination
2.2.3. Near Infrared Spectroscopy (NIR)
2.2.4. Multivariate Data Analysis
3. Results and Discussion
3.1. Chemical Composition, Proximate Composition and Energy Content
3.2. NIR-Model Calibration and Evaluation for Chemical Composition
3.3. NIR-Model Calibration and Evaluation for Proximate Composition and Energy Content
3.4. Prediction and Screening of the Elite Loblolly Pine Families for Chemistry
3.5. Prediction and Screening of the Elite Loblolly Pine Families for Bioenergy Potential
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wear, D.N.; Greis, J.G. Southern Forest Resource Assessment; Technical Report for US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, September 2002.
- Schultz, R.P. Loblolly Pine, the Ecology and Culture of Loblolly Pine (Pinus taeda L.); US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 1997.
- Schultz, R.P. Loblolly—The pine for the 21st century. New For. 1999, 17, 71–88. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; US Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016.
- Jernigan, J.; Gallagher, T.; Mitchell, D.; Smidt, M.; Teeter, L. High Tonnage Harvesting and Skidding for Loblolly Pine Energy Plantations. For. Prod. J. 2016, 66, 185–191. [Google Scholar] [CrossRef]
- Scott, A.D.; Tiarks, A. Dual-cropping loblolly pine for biomass energy and conventional wood products. South J. Appl. For. 2008, 32, 33–37. [Google Scholar]
- Zalesny, R.S., Jr.; Cunningham, M.W.; Hall, R.B.; Mirck, J.; Rockwood, D.L.; Stanturf, J.A.; Volk, T.A. Woody Biomass from Short Rotation Energy Crops. In Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass; Zhu, J.Y., Zhang, X., Pan, X., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011. [Google Scholar]
- Baker, J.B.; Langdon, O.G. Pinus taeda L.; Loblolly Pine. In Silvics of North America; Burns, R.M., Honkala, B.H., Eds.; United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- Mckendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis. Practical Design and Theory; Elsevier: New York, NY, USA, 2010. [Google Scholar]
- Sykes, R.; Li, B.; Hodge, G.; Goldfarb, B.; Kadla, J.; Chang, H.-M. Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy. Can. J. For. Res. 2005, 35, 2423–2431. [Google Scholar] [CrossRef] [Green Version]
- Nkansah, K.; Dawson-Andoh, B.; Slahor, J. Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.). Bioresour. Technol. 2010, 101, 4570–4576. [Google Scholar] [CrossRef] [PubMed]
- So, C.L.; Eberhardt, T.L. Chemical and calorific characterization of longleaf pine using near infrared spectroscopy. J. Near Infrared Spectrosc. 2010, 18, 417–423. [Google Scholar] [CrossRef]
- Fagan, C.C.; Everard, C.D.; McDonnell, K. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresour. Technol. 2011, 102, 5200–5206. [Google Scholar] [CrossRef] [PubMed]
- Acquah, G.E.; Essien, C.; Via, B.K.; Billor, N.; Eckhardt, L.G. Estimating the basic density and mechanical properties of elite loblolly pine families with near infrared spectroscopy. For. Sci. 2018, 64, 149–158. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; Technical Report; Laboratory Analytical Procedure (LAP): Washington, DC, USA, January 2008.
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report; Laboratory Analytical Procedure (LAP): Washington, DC, USA, August 2012.
- Acquah, G.E.; Via, B.K.; Fasina, O.O.; Eckhardt, L.G. Nondestructive prediction of the properties of forest biomass for bioenergy, fuel and chemical applications using near infrared spectroscopy. J. Near Infrared Spectrosc. 2015, 23, 93–102. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN). Solid Biofuels—Method for the Determination of the Content of Volatile Matter; CEN/TS: 15148:2005: E; European Committee for Standardization (CEN): Brussels, Belgium, 10 March 2006. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; Technical Report; Laboratory Analytical Procedure (LAP): Washington, DC, USA, January 2008.
- ASTM International. Standard Test Method for Gross Calorific Value of Coal and Coke; ASTM D5865-13; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Kelley, S.S.; Rials, T.G.; Snell, R.; Groom, L.H.; Sluiter, A. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci. Technol. 2004, 38, 257–276. [Google Scholar] [CrossRef]
- Jones, P.D.; Schimleck, L.R.; Peter, G.F.; Daniels, R.F.; Clark, A., III. Non-destructive estimation of Pinus taeda L. tracheid morphological characteristics for samples from a wide range of sites in Georgia. Wood Sci. Technol. 2005, 39, 529–545. [Google Scholar] [CrossRef]
- Owen, K.; Fasina, O.; Taylor, S.; Adhikari, S. Thermal Decomposition Behavior of Loblolly Pine Stemwood, Bark, and Limbs/Foliage Using TGA and DSC Techniques. Tran. ASABE 2015, 58, 509–518. [Google Scholar]
- Gillon, D.; Hernando, C.; Valette, J.-C.; Joffre, R. Fast estimation of the calorific values of forest fuels by near-infrared reflectance spectroscopy. Can. J. For. Res. 1997, 27, 760–765. [Google Scholar] [CrossRef]
- Williams, P. Near Infrared Technology—Getting the Best Out of Light. A Short Course in the Practical Implementation of near Infrared Spectroscopy for the User; PDK Grain: Nanaimo, BC, Canada, 2004. [Google Scholar]
- Sanderson, M.A.; Agblevor, F.; Collins, M.; Johnson, D.K. Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy. Biomass Bioenergy 1996, 11, 365–370. [Google Scholar] [CrossRef]
- Via, B. Characterization and evaluation of wood strand composite load capacity with near infrared spectroscopy. Mater. Struct. 2013, 46, 1801–1810. [Google Scholar] [CrossRef]
- Hein, P.R.G.; Campos, A.C.M.; Trugilho, P.F.; Lima, J.T.; Chaix, G. Infrared spectroscopy for estimating wood basic density in Eucalyptus urophylla and Eucalyptus garndis. Cerne Lavras. 2009, 15, 133–144. [Google Scholar]
- Lestander, T.A.; Rhen, C. Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst 2005, 130, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.J., Jr. NIR spectroscopy calibration basics. Data analysis: Calibration of NIR instruments by PLS regression. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: New York, NY, USA, 1989. [Google Scholar]
- Shupe, T.F.; Hse, C.H.; Choong, E.T.; Groom, L.H. Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly. Wood Fiber Sci. 1997, 29, 91–97. [Google Scholar]
- Via, B.K.; So, C.L.; Groom, L.H.; Shupe, T.F.; Stine, M.; Wikaira, J. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle. IAWA J. 2007, 28, 189–209. [Google Scholar] [CrossRef]
- Eckhardt, L.G.; Menard, R.D.; Gray, E.D. Effects of oleoresins and monoterpenes on in vitro growth of fungi associated with pine decline in the Southern United States. For. Pathol. 2009, 39, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, R.C. The chemical composition of wood. In The Chemistry of Solid Wood; Rowell, R.M., Ed.; ACS Advances in Chemistry: Washington, DC, USA, 1984. [Google Scholar]
- Larson, P.R.; Kretschmann, D.E.; Clark, A., III; Isebrands, J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis; Technical Report; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, September 2001.
- Sithole, B.B.; Allen, L. The effects of wood extractives on system closure. Tappsa J. 2002, 105, 22–30. [Google Scholar]
- Sykes, R.; Isik, F.; Li, B.; Kadla, J.; Chang, H.-M. Genetic variation of juvenile wood properties in a loblolly pine progeny test. Tappi J. 2003, 2, 3–8. [Google Scholar]
- Kube, P.; Raymond, C. Prediction of whole-tree basic density and pulp yield using wood core samples in Euclalyptus nitens. Appita 2002, 55, 43–48. [Google Scholar]
- Haygreen, J.G.; Bowyer, J.L. Forest Products and Wood Science, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Acquah, G.E.; Via, B.K.; Fasina, O.O.; Adhikari, S.; Billor, N.; Eckhardt, L.G. Chemometric modeling of thermogravimetric data for the compositional analysis of biomass. PLoS ONE 2017, 12, e0172999. [Google Scholar] [CrossRef] [PubMed]
- Allison, G.G.; Morris, C.; Hodgson, E.; Jones, J.; Kubacki, M.; Barraclough, T.; Yates, N.; Shield, I.; Bridgwater, A.V.; Donnison, I.S. Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresour. Technol. 2009, 100, 6428–6433. [Google Scholar] [CrossRef] [PubMed]
- Acquah, G.E.; Krigstin, S.; Wetzel, S.; Cooper, P.; Cormier, D. Heterogeneity of forest harvest residue from eastern Ontario biomass harvests. For. Prod. J. 2016, 66, 164–175. [Google Scholar] [CrossRef]
- White, M.S.; Argent, R.M.; Sarles, R.L. Effects of outside storage on the energy potential of hardwood particulate fuels: Part III. Specific gravity, ash content, and pH of water solubles. For. Prod. J. 1986, 36, 69–73. [Google Scholar]
- Maranan, M.C.; Laborie, M.P.G. Analysis of energy traits of Populous spp. Clones by near-infrared spectroscopy. J. Biobased Mater. Bioenergy 2007, 1, 155–162. [Google Scholar]
- Senelwa, K.; Sims, R.E. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 1999, 17, 127–140. [Google Scholar] [CrossRef]
- Acquah, G.E.; Via, B.K.; Fasina, O.O.; Eckhardt, L.G. Rapid quantitative analysis of forest biomass using Fourier transform infrared spectroscopy (FTIR) and partial least squares (PLS) regression. J. Anal. Methods Chem. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
% Extractives | % Lignin | % Cellulose | % Glucose | % Hemicelluloses | ||
---|---|---|---|---|---|---|
Calibration set (n = 190) | Mean | 3.01 | 31.29 | 37.35 | 40.43 | 22.71 |
SD | 1.57 | 1.53 | 2.97 | 3.10 | 1.60 | |
Min | 0.37 | 26.72 | 30.42 | 33.33 | 19.01 | |
Max | 9.44 | 34.70 | 47.16 | 50.16 | 25.85 | |
Test set (n = 60) | Mean | 3.20 | 32.47 | 36.73 | 39.86 | 23.39 |
SD | 1.64 | 1.39 | 2.73 | 2.97 | 1.36 | |
Min | 0.74 | 29.79 | 29.36 | 31.48 | 20.13 | |
Max | 7.61 | 34.96 | 41.90 | 45.78 | 25.79 | |
Total set (n = 250) | Mean | 3.06 | 31.56 | 37.20 | 40.29 | 22.88 |
SD | 1.59 | 1.57 | 2.92 | 3.07 | 1.57 | |
Min | 0.37 | 26.72 | 29.36 | 31.48 | 19.01 | |
Max | 9.44 | 34.96 | 47.16 | 50.16 | 25.85 | |
Loblolly pine families (n = 180) | Mean | 2.77 | 31.74 | 37.26 | 40.39 | 23.13 |
SD | 1.27 | 1.52 | 3.13 | 3.26 | 1.50 | |
Min | 0.37 | 27.11 | 29.36 | 31.48 | 19.43 | |
Max | 7.61 | 34.96 | 47.16 | 50.16 | 25.85 | |
Commercial lumber (n = 70) | Mean | 3.80 | 31.11 | 37.04 | 40.03 | 22.21 |
SD | 2.03 | 1.64 | 2.32 | 2.51 | 1.56 | |
Min | 0.38 | 26.72 | 30.42 | 33.33 | 19.01 | |
Max | 9.44 | 34.33 | 42.76 | 46.30 | 24.73 |
% Volatile Matter | % Fixed Carbon | % Ash | HHV (MJ/kg) | ||
---|---|---|---|---|---|
Calibration set (n = 190) | Mean | 83.63 | 16.12 | 0.25 | 17.84 |
SD | 1.14 | 1.15 | 0.09 | 0.46 | |
Min | 80.86 | 12.62 | 0.14 | 17.02 | |
Max | 87.05 | 18.84 | 0.59 | 19.26 | |
Test set (n = 60) | Mean | 83.27 | 16.48 | 0.25 | 18.10 |
SD | 1.21 | 1.20 | 0.10 | 0.90 | |
Min | 81.31 | 12.72 | 0.15 | 17.01 | |
Max | 86.93 | 18.32 | 0.54 | 22.65 | |
Total set (n = 250) | Mean | 83.55 | 16.21 | 0.25 | 17.90 |
SD | 1.17 | 1.17 | 0.09 | 0.60 | |
Min | 80.86 | 12.62 | 0.14 | 17.01 | |
Max | 87.05 | 18.84 | 0.59 | 22.65 | |
Loblolly pine families (n = 180) | Mean | 83.43 | 16.32 | 0.26 | 17.88 |
SD | 1.17 | 1.18 | 0.10 | 0.66 | |
Min | 80.86 | 12.72 | 0.14 | 17.01 | |
Max | 86.93 | 18.84 | 0.59 | 22.65 | |
Commercial lumber (n = 70) | Mean | 83.85 | 15.92 | 0.22 | 17.96 |
SD | 1.10 | 1.10 | 0.07 | 0.42 | |
Min | 81.48 | 12.62 | 0.14 | 17.22 | |
Max | 87.05 | 18.32 | 0.43 | 19.26 |
Property | LVs | SEC | SECV | R2cv | RPD | SEP | R2iv |
---|---|---|---|---|---|---|---|
% Extractives | 4 | 0.66 | 0.76 | 0.77 | 2.07 | 1.29 | 0.43 |
% Lignin | 4 | 0.78 | 0.89 | 0.78 | 1.73 | 1.41 | 0.23 |
% Glucose | 5 | 1.15 | 1.25 | 0.84 | 2.48 | 2.46 | 0.47 |
% Cellulose | 5 | 1.1 | 1.2 | 0.84 | 2.47 | 2.28 | 0.46 |
% Hemicelluloses | 4 | 0.87 | 1.01 | 0.73 | 1.58 | 1.72 | 0.04 |
% Volatile matter | 5 | 0.37 | 0.4 | 0.88 | 2.23 | 0.95 | 0.09 |
% Fixed carbon | 3 | 0.55 | 0.68 | 0.65 | 1.68 | 0.65 | 0.1 |
% Ash | 3 | 0.04 | 0.06 | 0.58 | 1.54 | 0.08 | 0.2 |
HHV (MJ/kg) | 4 | 0.2 | 0.22 | 0.83 | 2.04 | 0.32 | 0.44 |
Property | Family | Site | Family × Site |
---|---|---|---|
% Extractives | 0.0077 | <0.0001 | 0.0435 |
% Lignin | 0.0186 | <0.0001 | <0.0001 |
% Cellulose | <0.0001 | 0.0001 | 0.0252 |
% Glucose | 0.001 | 0.0327 | <0.0001 |
% Hemicelluloses | 0.0773 | <0.0001 | 0.0356 |
% Volatile matter | <0001 | 0.4749 | <0001 |
% Fixed carbon | 0.0029 | 0.7237 | <0001 |
% Ash | 0.1107 | <0.0001 | 0.0009 |
HHV (MJ/kg) | 0.0002 | 0.0166 | 0.0007 |
Family | N | % Extractives | % Lignin | % Glucose | % Cellulose | % Hemicelluloses |
---|---|---|---|---|---|---|
A1 | 14 | 4.34 (1.45) | 32.07 (0.92) | 42.66 (2.05) | 40.34 (2.16) | 20.50 (0.66) |
A2 | 10 | 5.02 (1.84) | 32.36 (1.23) | 42.61 (1.37) | 39.57 (2.26) | 20.71 (1.17) |
A5 | 11 | 4.60 (1.27) | 32.00 (0.90) | 42.22 (1.60) | 37.05 (1.51) | 20.66 (0.81) |
A9 | 10 | 4.30 (1.12) | 31.61 (1.18) | 42.38 (1.89) | 39.70 (1.75) | 20.99 (0.43) |
A10 | 12 | 3.81 (1.20) | 32.01 (1.23) | 45.90 (2.79) | 39.67 (2.31) | 21.14 (0.60) |
A13 | 7 | 4.94 (1.98) | 32.22 (1.51) | 47.83 (5.24) | 38.61 (4.00) | 21.12 (0.76) |
A15 | 8 | 4.18 (1.05) | 31.40 (0.61) | 45.86 (2.99) | 39.97 (2.81) | 21.20 (1.20) |
A21 | 12 | 4.69 (1.33) | 31.63 (0.87) | 44.60 (2.69) | 38.89 (2.40) | 21.01 (0.90) |
A26 | 12 | 4.03 (1.03) | 32.61 (0.95) | 43.23 (1.59) | 39.90 (1.92) | 21.18 (0.67) |
A33 | 13 | 4.33 (1.16) | 32.04 (0.89) | 43.77 (2.28) | 38.27 (1.97) | 20.62 (0.78) |
A34 | 10 | 4.71 (1.22) | 31.68 (0.70) | 44.63 (2.48) | 38.89 (2.11) | 20.56 (0.71) |
A37 | 12 | 5.25 (0.73) | 30.51 (0.93) | 45.84 (1.71) | 39.88 (1.40) | 20.40 (0.47) |
F17 | 13 | 6.69 (0.87) | 32.48 (0.65) | 45.17 (2.38) | 39.29 (2.10) | 20.74 (0.80) |
F23 | 12 | 4.70 (1.42) | 31.75 (75) | 43.43 (2.58) | 37.32 (2.42) | 21.10 (0.91) |
Family | N | % Extractives | % Lignin | % Glucose | % Cellulose | % Hemicelluloses |
---|---|---|---|---|---|---|
A1 | 15 | 6.33 (1.76) | 28.98 (1.27) | 46.92 (3.58) | 41.97 (3.13) | 19.93 (0.25) |
A2 | 14 | 4.41 (1.94) | 29.21 (0.77) | 46.79 (1.30) | 41.86 (1.44) | 20.09 (0.38) |
A5 | 13 | 6.67 (2.12) | 29.90 (1.45) | 43.73 (3.86) | 38.94 (3.09) | 20.22 (0.26) |
A9 | 14 | 6.65 (2.04) | 29.14 (1.16) | 45.64 (3.53) | 40.65 (3.00) | 20.24 (0.48) |
A10 | 14 | 6.38 (2.63) | 29.38 (1.35) | 44.09 (3.42) | 39.23 (2.79) | 20.33 (0.43) |
A13 | 14 | 6.86 (1.62) | 29.55 (1.23) | 45.42 (3.29) | 40.49 (2.68) | 20.13 (0.19) |
A15 | 12 | 5.98 (2.35) | 29.10 (1.07) | 46.01 (3.91) | 41.02 (3.52) | 20.13 (0.41) |
A21 | 15 | 4.34 (2.50) | 29.60 (1.51) | 45.03 (3.70) | 40.29 (3.16) | 20.15 (0.33) |
A26 | 15 | 6.57 (2.24) | 28.97 (1.13) | 46.13 (4.13) | 41.48 (3.97) | 19.79 (0.54) |
A33 | 13 | 6.94 (1.57) | 30.82 (0.82) | 40.80 (2.71) | 36.69 (2.20) | 20.10 (0.12) |
A34 | 14 | 5.97 (2.24) | 29.74 (1.48) | 44.58 (4.42) | 39.98 (3.99) | 20.12 (0.48) |
A37 | 15 | 7.36 (2.20) | 30.16 (1.25) | 43.57 (3.49) | 38.96 (2.92) | 20.17 (0.24) |
F17 | 13 | 6.83 (1.76) | 29.21 (1.64) | 44.62 (4.07) | 39.83 (3.39) | 20.14 (0.40) |
F23 | 14 | 6.24 (1.74) | 28.69 (0.88) | 46.82 (2.38) | 41.82 (2.28) | 19.93 (0.36) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquah, G.E.; Via, B.K.; Gallagher, T.; Billor, N.; Fasina, O.O.; Eckhardt, L.G. High Throughput Screening of Elite Loblolly Pine Families for Chemical and Bioenergy Traits with Near Infrared Spectroscopy. Forests 2018, 9, 418. https://doi.org/10.3390/f9070418
Acquah GE, Via BK, Gallagher T, Billor N, Fasina OO, Eckhardt LG. High Throughput Screening of Elite Loblolly Pine Families for Chemical and Bioenergy Traits with Near Infrared Spectroscopy. Forests. 2018; 9(7):418. https://doi.org/10.3390/f9070418
Chicago/Turabian StyleAcquah, Gifty E., Brian K. Via, Tom Gallagher, Nedret Billor, Oladiran O. Fasina, and Lori G. Eckhardt. 2018. "High Throughput Screening of Elite Loblolly Pine Families for Chemical and Bioenergy Traits with Near Infrared Spectroscopy" Forests 9, no. 7: 418. https://doi.org/10.3390/f9070418
APA StyleAcquah, G. E., Via, B. K., Gallagher, T., Billor, N., Fasina, O. O., & Eckhardt, L. G. (2018). High Throughput Screening of Elite Loblolly Pine Families for Chemical and Bioenergy Traits with Near Infrared Spectroscopy. Forests, 9(7), 418. https://doi.org/10.3390/f9070418