Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Virus
2.2. Animals
2.3. Virus Quantification
2.4. Plasma Cytokines
2.5. Hematology
2.6. Histology, In Situ Hybridization, and Immunohistochemistry
2.7. Electron Microscopy
2.8. Whole Blood Viral RNA qPCR
2.9. Flow Cytometry
2.10. Statistical Analysis
2.11. Enzyme-Linked Immunosorbent Assays
3. Results
3.1. Simian Hemorrhagic Fever Virus (SHFV) Infection Results in Mild Clinical Disease in Patas Monkeys
3.2. SHFV Infection Results in Clinical Pathology Changes in Patas and Rhesus Monkeys
3.3. SHFV Infection Results in Clinical Pathology Changes in Patas and Rhesus Monkeys
3.4. Viral RNA (vRNA) Replication Is Sustained in SHFV-Infected Patas Monkeys
3.5. SHFV Infection of Patas and Rhesus Monkeys Elicits Strong and Overlapping Immune Responses
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Ruzek, D. Viral Hemorrhagic Fevers; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kuhn, J.H.; Clawson, A.N.; Radoshitzky, S.R.; Wahl-Jensen, V.; Bavari, S.; Jahrling, P.B. Viral hemorrhagic fevers: History and definitions. In Viral Hemorrhagic Fevers; Singh, S.K., Ruzek, D., Eds.; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2013; pp. 3–13. [Google Scholar]
- Paessler, S.; Walker, D.H. Pathogenesis of the viral hemorrhagic fevers. Annu. Rev. Pathol. 2013, 8, 411–440. [Google Scholar] [CrossRef] [PubMed]
- Faaberg, K.S.; Balasuriya, U.B.; Brinton, M.A.; Gorbalenya, A.E.; Leung, F.C.-C.; Nauwynck, H.; Snijder, E.J.; Stadejek, T.; Yang, H.; Yoo, D. Family arteriviridae. In Virus taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier/Academic Press: London, UK, 2011; pp. 796–805. [Google Scholar]
- Kuhn, J.H.; Lauck, M.; Bailey, A.L.; Shchetinin, A.M.; Vishnevskaya, T.V.; Bào, Y.; Ng, T.F.F.; LeBreton, M.; Schneider, B.S.; Gillis, A.; et al. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2016, 161, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.L.; Lauck, M.; Sibley, S.D.; Pecotte, J.; Rice, K.; Weny, G.; Tumukunde, A.; Hyeroba, D.; Greene, J.; Correll, M.; et al. Two novel simian arteriviruses in captive and wild baboons (Papio spp.). J. Virol. 2014, 88, 13231–13239. [Google Scholar] [CrossRef] [PubMed]
- Lauck, M.; Sibley, S.D.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Chapman, C.A.; Ting, N.; Switzer, W.M.; Kuhn, J.H.; Friedrich, T.C.; et al. Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. J. Virol. 2013, 87, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Gravell, M.; London, W.T.; Leon, M.; Palmer, A.E.; Hamilton, R.S. Elimination of persistent simian hemorrhagic fever (SHF) virus infection in patas monkeys. Proc. Soc. Exp. Biol. Med. 1986, 181, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lauck, M.; Alkhovsky, S.V.; Bào, Y.; Bailey, A.L.; Shevtsova, Z.V.; Shchetinin, A.M.; Vishnevskaya, T.V.; Lackemeyer, M.G.; Postnikova, E.; Mazur, S.; et al. Historical outbreaks of simian hemorrhagic fever in captive macaques were caused by distinct arteriviruses. J. Virol. 2015, 89, 8082–8087. [Google Scholar] [CrossRef] [PubMed]
- Wahl-Jensen, V.; Johnson, J.C.; Lauck, M.; Weinfurter, J.T.; Moncla, L.H.; Weiler, A.M.; Charlier, O.; Rojas, O.; Byrum, R.; Ragland, D.R.; et al. Divergent simian arteriviruses cause simian hemorrhagic fever of differing severities in macaques. MBio 2016, 7, e02009–e02015. [Google Scholar] [CrossRef] [PubMed]
- Buechler, C.; Semler, M.; Baker, D.A.; Newman, C.; Cornish, J.P.; Chavez, D.; Guerra, B.; Lanford, R.; Brasky, K.; Kuhn, J.H.; et al. Subclinical infection of macaques and baboons with a baboon simarterivirus. Viruses 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Tauraso, N.M.; Shelokov, A.; Palmer, A.E.; Allen, A.M. Simian hemorrhagic fever. Iii. Isolation and characterization of a viral agent. Am. J. Trop. Med. Hyg. 1968, 17, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Dodd, L.E.; Yellayi, S.; Gu, W.; Cann, J.A.; Jett, C.; Bernbaum, J.G.; Ragland, D.R.; St Claire, M.; Byrum, R.; et al. Simian hemorrhagic fever virus infection of rhesus macaques as a model of viral hemorrhagic fever: Clinical characterization and risk factors for severe disease. Virology 2011, 421, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Vatter, H.A.; Donaldson, E.F.; Huynh, J.; Rawlings, S.; Manoharan, M.; Legasse, A.; Planer, S.; Dickerson, M.F.; Lewis, A.D.; Colgin, L.M.A.; et al. A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques. Virology 2015, 474, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatter, H.A.; Brinton, M.A. Differential responses of disease-resistant and disease-susceptible primate macrophages and myeloid dendritic cells to simian hemorrhagic fever virus infection. J. Virol. 2014, 88, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Holbrook, M.R.; Gowen, B.B. Animal models of viral hemorrhagic fever. Antivir. Res. 2014, 112, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Swanepoel, R.; Nichol, S.T.; Towner, J.S. Ecology of filoviruses. Curr. Top. Microbiol. Immunol. 2017, 411, 23–61. [Google Scholar]
- Radoshitzky, S.R.; Kuhn, J.H.; Jahrling, P.B.; Bavari, S. Hemorrhagic fever-causing mammarenaviruses. In Medical Aspects of Biological Warfare; Bozue, J., Cote, C.K., Glass, P.J., Eds.; Borden Institute, US Army Medical Department Center and School, Health Readiness Center of Excellence: Fort Sam Houston, TX, USA, 2018; pp. 517–545. [Google Scholar]
- Radoshitzky, S.R.; Bào, Y.; Buchmeier, M.J.; Charrel, R.N.; Clawson, A.N.; Clegg, C.S.; DeRisi, J.L.; Emonet, S.; Gonzalez, J.-P.; Kuhn, J.H.; et al. Past, present, and future of arenavirus taxonomy. Arch. Virol. 2015, 160, 1851–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vela, E. Animal models, prophylaxis, and therapeutics for arenavirus infections. Viruses 2012, 4, 1802–1829. [Google Scholar] [CrossRef] [PubMed]
- Lauck, M.; Palacios, G.; Wiley, M.R.; Lǐ, Y.; Fāng, Y.; Lackemeyer, M.G.; Caì, Y.; Bailey, A.L.; Postnikova, E.; Radoshitzky, S.R.; et al. Genome sequences of simian hemorrhagic fever virus variant nih lvr42-0/m6941 isolates (Arteriviridae: Arterivirus). Genome Announc. 2014, 2, e00978-14. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.P.; Diaz, L.; Ricklefs, S.M.; Kanakabandi, K.; Sword, J.; Jahrling, P.B.; Kuhn, J.H.; Porcella, S.F.; Johnson, R.F. Sequence of Reston virus isolate AZ-1435, an bolavirus isolate obtained during the 1989–1990 Reston virus epizootic in the United States. Genome Announc. 2017, 5, S757–S760. [Google Scholar] [CrossRef]
- Yú, S.Q.; Caì, Y.; Lyons, C.; Johnson, R.F.; Postnikova, E.; Mazur, S.; Johnson, J.C.; Radoshitzky, S.R.; Bailey, A.L.; Lauck, M.; et al. Specific detection of two divergent simian arteriviruses using RNAscope in situ hybridization. PLoS ONE 2016, 11, e0151313. [Google Scholar] [CrossRef]
- Perry, D.L.; Huzella, L.M.; Bernbaum, J.G.; Holbrook, M.R.; Jahrling, P.B.; Hagen, K.R.; Schnell, M.J.; Johnson, R.F. Ebola virus localization in the macaque reproductive tract during acute Ebola virus disease. Am. J. Pathol. 2018, 188, 550–558. [Google Scholar] [CrossRef]
- Apetrei, C.; Gaufin, T.; Gautam, R.; Vinton, C.; Hirsch, V.; Lewis, M.; Brenchley, J.; Pandrea, I. Pattern of sivagm infection in patas monkeys suggests that host adaptation to simian immunodeficiency virus infection may result in resistance to infection and virus extinction. J. Infect. Dis. 2010, 202 (Suppl. 3), S371–S376. [Google Scholar] [CrossRef]
- Wauquier, N.; Becquart, P.; Padilla, C.; Baize, S.; Leroy, E.M. Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 2010, 4. [Google Scholar] [CrossRef] [PubMed]
- Baize, S.; Leroy, E.M.; Georges, A.J.; Georges-Courbot, M.C.; Capron, M.; Bedjabaga, I.; Lansoud-Soukate, J.; Mavoungou, E. Inflammatory responses in Ebola virus-infected patients. Clin. Exp. Immunol. 2002, 128, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstrepen, B.E.; Fagrouch, Z.; van Heteren, M.; Buitendijk, H.; Haaksma, T.; Beenhakker, N.; Palù, G.; Richner, J.M.; Diamond, M.S.; Bogers, W.M.; et al. Experimental infection of rhesus macaques and common marmosets with a European strain of West Nile virus. PLoS Negl. Trop. Dis. 2014, 8, e2797. [Google Scholar] [CrossRef]
- Liu, X.; Speranza, E.; Muñoz-Fontela, C.; Haldenby, S.; Rickett, N.Y.; Garcia-Dorival, I.; Fang, Y.; Hall, Y.; Zekeng, E.-G.; Lüdtke, A.; et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 2017, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Cimini, E.; Viola, D.; Cabeza-Cabrerizo, M.; Romanelli, A.; Tumino, N.; Sacchi, A.; Bordoni, V.; Casetti, R.; Turchi, F.; Martini, F.; et al. Different features of vδ2 t and NK cells in fatal and non-fatal human Ebola infections. PLoS Negl. Trop. Dis. 2017, 11, e0005645. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.L.; Tchitchek, N.; Safronetz, D.; Carter, V.S.; Williams, C.M.; Haddock, E.; Korth, M.J.; Feldmann, H.; Katze, M.G. Delayed inflammatory and cell death responses are associated with reduced pathogenicity in Lujo virus-infected cynomolgus macaques. J. Virol. 2015, 89, 2543–2552. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Mota, T.; Hagen, K.R.; Cooper, K.; Jahrling, P.B.; Tan, G.; Wirblich, C.; Johnson, R.F.; Schnell, M.J. Non-neutralizing antibodies elicited by recombinant Lassa-rabies vaccine are critical for protection against lassa fever. Nat. Commun. 2018, 9, 4223. [Google Scholar] [CrossRef]
- Davidson, E.; Bryan, C.; Fong, R.H.; Barnes, T.; Pfaff, J.M.; Mabila, M.; Rucker, J.B.; Doranz, B.J. Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMab, and MB-003 cocktail antibodies. J. Virol. 2015, 89, 10982–10992. [Google Scholar] [CrossRef]
- Utans, U.; Arceci, R.J.; Yamashita, Y.; Russell, M.E. Cloning and characterization of allograft inflammatory factor-1: A novel macrophage factor identified in rat cardiac allografts with chronic rejection. J. Clin. Investig. 1995, 95, 2954–2962. [Google Scholar] [CrossRef]
- Baeck, C.; Wei, X.; Bartneck, M.; Fech, V.; Heymann, F.; Gassler, N.; Hittatiya, K.; Eulberg, D.; Luedde, T.; Trautwein, C.; et al. Pharmacological inhibition of the chemokine c-c motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing ly-6c+ macrophage infiltration in mice. Hepatology 2014, 59, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Heymann, F.; Peusquens, J.; Ludwig-Portugall, I.; Kohlhepp, M.; Ergen, C.; Niemietz, P.; Martin, C.; van Rooijen, N.; Ochando, J.C.; Randolph, G.J.; et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015, 62, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlmark, K.R.; Weiskirchen, R.; Zimmermann, H.W.; Gassler, N.; Ginhoux, F.; Weber, C.; Merad, M.; Luedde, T.; Trautwein, C.; Tacke, F. Hepatic recruitment of the inflammatory GR1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009, 50, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.; Pellicoro, A.; Vernon, M.A.; Boulter, L.; Aucott, R.L.; Ali, A.; Hartland, S.N.; Snowdon, V.K.; Cappon, A.; Gordon-Walker, T.T.; et al. Differential ly-6c expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 2012, 109, E3186–E3195. [Google Scholar] [CrossRef] [PubMed]
- Caì, Y.; Postnikova, E.N.; Bernbaum, J.G.; Yú, S.Q.; Mazur, S.; Deiuliis, N.M.; Radoshitzky, S.R.; Lackemeyer, M.G.; McCluskey, A.; Robinson, P.J.; et al. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway. J. Virol. 2015, 89, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Lasky, C.E.; Olson, R.M.; Brown, C.R. Macrophagem polarization during murine lyme borreliosis. Infect. Immun. 2015, 83, 2627–2635. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; Flynn, J.L.; Kirschner, D.E. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 2015, 83, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Lukashevich, I.S.; Rodas, J.D.; Tikhonov, I.I.; Zapata, J.C.; Yang, Y.; Djavani, M.; Salvato, M.S. LCMV-mediated hepatitis in rhesus macaques: We but not arm strain activates hepatocytes and induces liver regeneration. Arch. Virol. 2004, 149, 2319–2336. [Google Scholar] [CrossRef]
- Lukashevich, I.S.; Tikhonov, I.; Rodas, J.D.; Zapata, J.C.; Yang, Y.; Djavani, M.; Salvato, M.S. Arenavirus-mediated liver pathology: Acute lymphocytic choriomeningitis virus infection of rhesus macaques is characterized by high-level interleukin-6 expression and hepatocyte proliferation. J. Virol. 2003, 77, 1727–1737. [Google Scholar] [CrossRef]
- Rodas, J.D.; Cairo, C.; Djavani, M.; Zapata, J.C.; Ruckwardt, T.; Bryant, J.; Pauza, C.D.; Lukashevich, I.S.; Salvato, M.S. Circulating natural killer and gammadelta T cells decrease soon after infection of rhesus macaques with lymphocytic choriomeningitis virus. Mem. Inst. Oswaldo Cruz 2009, 104, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Djavani, M.M.; Crasta, O.R.; Zapata, J.C.; Fei, Z.; Folkerts, O.; Sobral, B.; Swindells, M.; Bryant, J.; Davis, H.; Pauza, C.D.; et al. Early blood profiles of virus infection in a monkey model for Lassa fever. J. Virol. 2007, 81, 7960–7973. [Google Scholar] [CrossRef] [PubMed]
Leukocyte Subset | Phenotype |
---|---|
T Cells | NOT Granulocytes, CD3+ |
CD4+ T Cells | CD3+, CD4+ |
CD4+ Naive | CD3+, CD4+, CD28+, CD95− |
CD4+ Central Memory | CD3+, CD4+, CD28+, CD95+ |
CD4+ Effector Memory | CD3+, CD4+, CD28−, CD95+ |
CD8+ Cells | CD3+, CD8+ |
CD8+ Naive | CD3+, CD8+, CD28+, CD95− |
CD8 Central Memory | CD3+, CD8+, CD28+, CD95+ |
CD8 Effector Memory | CD3+, CD8+, CD28−, CD95+ |
B Cells | CD20+ |
CD14+ Monocytes | HLA-DR+, CD14+, CD163− |
CD14+CD163+ Macrophages | HLA-DR+, CD14+, CD163+ |
CD14+CD163+ Macrophages | HLA-DR+, CD14−, CD163+ |
Myeloid Dendritic Cells (mDCs) | HLA-DR+, CD14−, CD163−, CD11c+, CD123− |
Plasmacytoid Dendritic Cells (pDCs) | HLA-DR+, CD14−, CD163−, CD11c−, CD123+ |
Natural Killer Cells (NK) | HLA-DR−, CD3−, CD20−, SSClow, CD8+ |
Analyte | Group | Mean Day of Peak (Range) | Mean Peak Concentration (Range) (pg/mL) | Mean Fold Change from Pre-Exposure Mean (Range) (pg/mL) | No. NHPs with Peak Concentration at Endpoint |
---|---|---|---|---|---|
GM-CSF | Rhesus-Mock | −1 (−9–4) | 12.88 (11.47–14.18) | 0.73 (0.1–1.4) | 0/3 |
Patas-Mock | 3 (−9–10) | 7.26 (4.21–11.62) | 0.83 (0.1–2.39) | 0/3 | |
Rhesus-SHFV | 3.67 (-6–15) | 17.69 (5.71–34.58) | 0.97 (0.05–2.15) | 0/3 | |
Patas-SHFV | 14.34 (12–19) | 53.96 (7.08–144.34) | 12.37 (0.01–94.85) | 0/3 | |
IFNγ | Rhesus-Mock | −0.34 (−9–6) | 7.2 (5.51–8.99) | 0.45 (0.05–0.89) | 0/3 |
Patas-Mock | 10.34 (6–15) | 5.04 (3.87–6.3) | 0.82 (0.12–2.8) | 0/3 | |
Rhesus-SHFV | 5.34 (2–8) | 121.72 (97.01–145.68) | 8.45 (1.15–29.66) | 0/3 | |
Patas-SHFV | 5.34 (2–12) | 89 (70.41–122.97) | 17.34 (0.45–80.81) | 0/3 | |
IL-2 | Rhesus-Mock | 6 (4–8) | 11.03 (9.1–12.21) | 0.52 (0.25–1.47) | 0/3 |
Patas-Mock | 3.67 (−6–15) | 15.16 (7.79–21.71) | 2.78 (0.77–10.43) | 0/3 | |
Rhesus-SHFV | 3.67 (−6–15) | 25.48 (24.5–27.41) | 1.96 (0.22–7.49) | 0/3 | |
Patas-SHFV | 15.34 (12–19) | 51.96 (9.27–127.81) | 14.64 (0.45–83.99) | 0/3 | |
IL-10 | Rhesus-Mock | −4.34 (−9–2) | 49.02 (41.91–57.38) | 2.35 (0.93–4.12) | 0/3 |
Patas-Mock | 11 (4–19) | 57.66 (35.36–86.99) | 10.42 (0.19–49.3) | 1/3 | |
Rhesus-SHFV | 8.34 (6–11) | 394.88 (149.65–522.9) | 14.36 (2.01–57.89) | 1/3 | |
Patas-SHFV | 9.34 (6–12) | 515.1 (118.66–1240.73) | 125.39 (1.1–815.32) | 0/3 | |
IL-17 | Rhesus-Mock | 5.34 (2–10) | 7.64 (7.09–7.91) | 0.55 (0.2–0.86) | 1/3 |
Patas-Mock | 15.34 (12–19) | 6.37 (3.44–11.18) | 1.25 (0.02–2.56) | 1/3 | |
Rhesus-SHFV | 4 (2–8) | 13.47 (3.69–22.07) | 0.71 (0.21–1.6) | 0/3 | |
Patas-SHFV | 9.34 (6–12) | 23.04 (4.51–59.42) | 5.31 (0.32–39.05) | 0/3 | |
IL-4 | Rhesus-Mock | 5.34 (2–8) | 107.71 (100.81–117.81) | 7.5 (3.13–14.18) | 0/3 |
Patas-Mock | 14.67 (10–19) | 65 (51.98–75.98) | 9.61 (0.75–29.45) | 1/3 | |
Rhesus-SHFV | 8 (6–10) | 85.2 (71.17–97.69) | 6.4 (0.3–29.86) | 0/3 | |
Patas-SHFV | 6 (−9–19) | 167.85 (136.68–220.38) | 33.54 (0.12–144.82) | 0/3 | |
IL-6 | Rhesus-Mock | 4.67 (2–8) | 3.96 (3.65–4.5) | 0.27 (0.03–0.45) | 0/3 |
Patas-Mock | 4.67 (−9–15) | 6.25 (3.14–10.5) | 1.07 (0.43–2.38) | 0/3 | |
Rhesus-SHFV | 9 (8–11) | 1765.16 (20.34–5212.14) | 19.84 (0.79–322.88) | 1/3 | |
Patas-SHFV | 7.67 (2–15) | 22.41 (18.46–28.86) | 5.27 (0.21–18.96) | 0/3 | |
IL-8 | Rhesus-Mock | −3.34 (−6–2) | 1062.94 (440.5–1640.1) | 30.11 (5.28–112.68) | 0/3 |
Patas-Mock | −3.67 (−9–4) | 556.13 (1.53–1640.1) | 7.95 (0–103.88) | 0/3 | |
Rhesus-SHFV | 5 (2–11) | 1520.19 (610.34–2102) | 59.82 (10.78–564.94) | 1/3 | |
Patas-SHFV | 15 (12–21) | 4.53 (2.3–8.99) | 0.92 (0.01–5.91) | 1/3 | |
MCP-1 | Rhesus-Mock | 2 (−6–8) | 237.47 (204.28–294.46) | 21 (13.69–27.62) | 0/3 |
Patas-Mock | 2 (−6–8) | 2681.4 (459.13–6776.22) | 132.74 (34.86–458.34) | 0/3 | |
Rhesus-SHFV | 6 (2–8) | 10549.99 (7716.58–13654.57) | 503.84 (102.16–2358.69) | 0/3 | |
Patas-SHFV | 2 (2–2) | 11477.69 (5959.96–15828.29) | 1074.52 (85.91–5030.32) | 0/3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornish, J.P.; Moore, I.N.; Perry, D.L.; Lara, A.; Minai, M.; Promeneur, D.; Hagen, K.R.; Virtaneva, K.; Paneru, M.; Buechler, C.R.; et al. Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses 2019, 11, 67. https://doi.org/10.3390/v11010067
Cornish JP, Moore IN, Perry DL, Lara A, Minai M, Promeneur D, Hagen KR, Virtaneva K, Paneru M, Buechler CR, et al. Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses. 2019; 11(1):67. https://doi.org/10.3390/v11010067
Chicago/Turabian StyleCornish, Joseph P., Ian N. Moore, Donna L. Perry, Abigail Lara, Mahnaz Minai, Dominique Promeneur, Katie R. Hagen, Kimmo Virtaneva, Monica Paneru, Connor R. Buechler, and et al. 2019. "Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis" Viruses 11, no. 1: 67. https://doi.org/10.3390/v11010067
APA StyleCornish, J. P., Moore, I. N., Perry, D. L., Lara, A., Minai, M., Promeneur, D., Hagen, K. R., Virtaneva, K., Paneru, M., Buechler, C. R., O’Connor, D. H., Bailey, A. L., Cooper, K., Mazur, S., Bernbaum, J. G., Pettitt, J., Jahrling, P. B., Kuhn, J. H., & Johnson, R. F. (2019). Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses, 11(1), 67. https://doi.org/10.3390/v11010067