Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers
Abstract
:1. Introduction
2. Morbillivirus Proteins
3. Origin of CDV
4. Geographical Spread and Species Jumping of PDV and CDV
4.1. PDV Spread and Species Susceptibility
4.2. PDV in North Pacific Ocean
4.3. Morbillivirus Spread to the Antarctica
4.4. Canine Distemper Virus Spread to Felines and Other Wildlife Species
4.5. CDV Infection in Non-Human Primates
4.6. Evidence for CDV Vaccine Spread to Wildlife
5. Genetic Analysis of Cross Species Infection
5.1. Adaptation to Non-Canine Species
5.2. P Gene Sequences
5.3. H gene Sequences
6. Virus Adaption to Cell Entry Receptors
7. Vaccine Infection of Wildlife
8. Potential for CDV to Infect Humans
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lan, N.T.; Yamaguchi, R.; Inomata, A.; Furuya, Y.; Uchida, K.; Sugano, S.; Tateyama, S. Comparative analysis of canine distemper viral isolates from clinical cases of canine distemper in vaccinated dogs. Vet. Microbiol. 2006, 115, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.S.; Anderson, S.L.; Cavender, J.; Lynn, C.; List, K.; Hearn, C.; Appel, M.J. Vaccination of black-footed ferret (Mustela nigripes) Siberian polecat (M. eversmanni) hybrids and domestic ferrets (M. putorius furo) against canine distemper. Wildl. Dis. 1996, 32, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Cosby, S.L.; Weir, L. Measles vaccination: Threat from related veterinary viruses and need for continued vaccination post measles eradication. Hum. Vaccines Immunother. 2018, 14, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T. Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet. Microbiol. 1999, 69, 3–13. [Google Scholar] [CrossRef]
- Mamaev, L.V.; Denikina, N.; Belikov, S.I.; Volchkov, V.E.; Visser, I.K.; Fleming, M.M.; Kai, C.C.; Harder, T.C.; Liess, B.B.; Osterhaus, A.D.; et al. Characterisation of morbilliviruses isolated from Lake Baikal seals (Phoca sibirica). Vet. Microbiol. 1995, 44, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, K.; Miyazaki, N.; Tanabe, S.; Nakata, H.; Miura, R.; Fujita, K.; Wakasa, C.; Uema, M.; Shiotani, M.; Takahashi, E.; et al. Seroepidemiological survey of distemper virus infection in the Caspian Sea and in Lake Baikal. Vet. Microbiol. 2001, 82, 203–210. [Google Scholar] [CrossRef]
- Longhi, S. Nucleocapsid Structure and Function. Curr. Top. Microbiol. Immunol. 2009, 329, 103–128. [Google Scholar]
- Rima, B.K.; Duprex, W.P. The measles virus replication cycle. Curr. Top. Microbiol. Immunol. 2009, 329, 77–102. [Google Scholar]
- Liljeroos, L.; Huiskonen, J.T.; Ora, A.; Susi, P.; Butcher, S.J. Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc. Natl. Acad. Sci. USA 2011, 108, 18085–18090. [Google Scholar] [CrossRef] [Green Version]
- Cathomen, T.; Mrkic, B.; Spehner, D.; Drillien, R.; Naef, R.; Pavlovic, J.; Aguzzi, A.; Billeter, M.A.; Cattaneo, R. A matrix-less measles virus is infectious and elicits extensive cell fusion: Consequences for propagation in the brain. EMBO J. 1998, 17, 3899–3908. [Google Scholar] [CrossRef]
- Suryanarayana, K.; Baczko, K.; Ter Meulen, V.; Wagner, R.R. Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J. Virol. 1994, 68, 1532–1543. [Google Scholar] [PubMed]
- Hall, W.W.; Martin, S.J. Structure and function relationships of the envelope of measles virus. Med. Microbiol. Immunol. 1974, 160, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.T.; Richardson, C.D. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Von Messling, V.; Oezguen, N.; Zheng, Q.; Vongpunsawad, S.; Braun, W.; Cattaneo, R. Nearby Clusters of Hemagglutinin Residues Sustain SLAM-Dependent Canine Distemper Virus Entry in Peripheral Blood Mononuclear Cells. J. Virol. 2005, 79, 5857–5862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melia, M.M.; Earle, J.P.; Abdullah, H.; Reaney, K.; Tangy, F.; Cosby, S.L. Use of SLAM and PVRL4 and Identification of Pro-HB-EGF as Cell Entry Receptors for Wild Type Phocine Distemper Virus. PLoS ONE 2014, 9, e106281. [Google Scholar] [CrossRef]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.T.; Sisson, G.; Tsao, M.S.; Richardson, C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2001, 7, e1002240. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Frenzke, M.; Leonard, V.H.; Welstead, G.G.; Richardson, C.D.; Cattaneo, R. Measles Virus Infection of Alveolar Macrophages and Dendritic Cells Precedes Spread to Lymphatic Organs in Transgenic Mice Expressing Human Signaling Lymphocytic Activation Molecule (SLAM, CD150). J. Virol. 2010, 84, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Lemon, K.; De Vries, R.D.; Mesman, A.W.; McQuaid, S.; Van Amerongen, G.; Yüksel, S.; Ludlow, M.; Rennick, L.J.; Kuiken, T.; Rima, B.K.; et al. Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathog. 2011, 7, 1001263. [Google Scholar] [CrossRef]
- Mühlebach, M.D.; Mateo, M.; Sinn, P.L.; Prüfer, S.; Uhlig, K.M.; Leonard, V.H.J.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B.; et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Parisien, J.-P.; Horvath, C.M. STAT2 Is a Primary Target for Measles Virus V Protein-Mediated Alpha/Beta Interferon Signaling Inhibition. J. Virol. 2008, 82, 8330–8338. [Google Scholar] [CrossRef] [Green Version]
- Sparrer, K.M.; Pfaller, C.K.; Conzelmann, K.K. Measles virus C protein interferes with Beta interferon transcription in the nucleus. J. Virol. 2012, 86, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Nakatsu, Y.; Takeda, M.; Ohno, S.; Shirogane, Y.; Iwasaki, M.; Yanagi, Y. Measles Virus Circumvents the Host Interferon Response by Different Actions of the C and V Proteins. J. Virol. 2008, 82, 8296–8306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, M.; Miura, R.; Barrett, T.; Tsukiyama-Kohara, K.; Kai, C. Rinderpest Virus Phosphoprotein Gene Is a Major Determinant of Species-Specific Pathogenicity. J. Virol. 2004, 78, 6676–6681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhl, E.W.; Kelderhouse, C.; Buikstra, J.; Blick, J.P.; Bolon, B.; Hogan, R.J. New world origin of canine distemper: Interdisciplinary insights. Int. J. Paleopathol. 2019, 24, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Cosby, S.L.; Mcquaid, S.; Duffy, N.; Lyons, C.; Rima, B.K.; Allan, G.M.; Mccullough, S.J.; Kennedy, S.; Smyth, J.A.; Mcneilly, F.; et al. Characterisation of a seal morbillivirus. Nature 1988, 336, 115–116. [Google Scholar] [CrossRef]
- Mahy, B.W.J.; Barrett, T.; Evans, S.; Anderson, E.C.; Bostock, C.J. Characterization of a seal morbillivirus. Nature 1988, 336, 115. [Google Scholar] [CrossRef]
- Earle, J.A.P.; Melia, M.M.; Doherty, N.V.; Nielsen, O.; Cosby, S.L. Phocine distemper virus in seals, east coast, United States, 2006. Emerg. Infect. Dis. 2006, 17, 215–220. [Google Scholar] [CrossRef]
- Siebert, U.; Gulland, F.; Harder, T.; Jauniaux, T.; Seibel, H.; Wohlsein, P.; Baumgärtner, W. Epizootics in harbor Seals (Phoca vitulina): Clinical Aspects. NAMMCO Sci. Publ. 2010, 8, 265–274. [Google Scholar] [CrossRef]
- Duignan, P.; Van Bressem, M.F.; Baker, J.; Barbieri, M.; Colegrove, K.; De Guise, S.; de Swart, R.; Di Guardo, G.; Dobson, A.; Duprex, W.P.; et al. Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses 2014, 6, 5093–5134. [Google Scholar] [CrossRef]
- Kennedy, S.; Kuiken, T.; Jepson, P.D.; Deaville, R.; Forsyth, M.; Barrett, T.; Van de Bildt, M.W.; Osterhaus, A.D.; Eybatov, T.; Duck, C.; et al. Mass die off of Caspian seals caused by canine distemper virus. Emerg. Infect. Dis. 2002, 6, 637–639. [Google Scholar] [CrossRef]
- Zarnke, R.L.; Saliki, J.T.; Macmillan, A.P.; Brew, S.D.; Dawson, C.E.; Ver Hoef, J.M.; Frost, K.J.; Small, R.J. Serologic survey for Brucella spp., phocid herpesvirus-1, phocid herpesvirus-2, and phocine distemper virus in harbor seals from Alaska, 1976–1999. J. Wildl. Dis. 2006, 42, 290–300. [Google Scholar]
- Burek, K.A.; Gulland, F.M.; Sheffield, G.; Beckmen, K.B.; Keyes, E.; Spraker, T.R.; Smith, A.W.; Skilling, D.E.; Evermann, J.F.; Stott, J.L.; et al. Infectious disease and the decline of Steller sea lions (Eumetopias jubatus) in Alaska, USA: Insights from serologic data. J. Wildl. Dis. 2005, 41, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, T.; Mazet, J.A.; Gill, V.A.; Doroff, A.M.; Burek, K.A.; Hammond, J.A. Phocine distemper virus in Northern sea otters in the Pacific Ocean, 690 Alaska, USA. Emerg. Infect. Dis. 2009, 15, 925–927. [Google Scholar] [CrossRef] [PubMed]
- VanWormer, E.; Mazet, J.A.K.; Hall, A.; Gill, V.A.; Boveng, P.L.; London, J.M.; Gelatt, T.; Fadely, B.S.; Lander, M.A.; Sterling, J.; et al. Emergence of. Phocine Distemper virus in the North Pacific May be Linked to Arctic Sea Ice Reduction. Sci. Rep. 2019. In Press. [Google Scholar]
- Laws, R.M.; Taylor, R.J.F. A MASS DYING OF CRABEATER SEALS, LOBODON CARCINOPHAGUS (GRAY). J. Zool. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Bengtson, J.L.; Boveng, P.; Franzen, U.; Have, P.; Härkönen, T.J.; Heide-Jorgensen, M.P.; Heide-Jørgensen, M.P. ANTIBODIES TO CANINE DISTEMPER VIRUS IN ANTARCTIC SEALS. Mar. Mammal Sci. 1991, 7, 85–87. [Google Scholar] [CrossRef]
- McFarlane, R.A.; Norman, R.J.B.; Jones, H.I. Diseases and Parasites of Antarctic and Sub-Antarctic Seals. Health Antarct. Wildl. 2009, 57–93. [Google Scholar]
- Smeele, Z.E.; Ainley, D.G.; Varsani, A. Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res. 2018, 243, 91–105. [Google Scholar] [CrossRef]
- Cosby, S.L.; Queen’s University, Belfast BT9 7BL, UK. Unpublished work. 2019.
- Nakano, H.; Kameo, Y.; Sato, H.; Mochizuki, M.; Yokoyama, M.; Uni, S.; Shibasaki, T.; Maeda, K. Detection of antibody to canine distemper virus in wild raccoons (Procyon lotor) in Japan. J. Vet. Med. Sci. 2009, 71, 1661–1663. [Google Scholar] [CrossRef]
- Bronson, E.; Deem, S.L.; Sanchez, C.; Murray, S. Serologic response to a canarypox-vectored canine distemper virus vaccine in the giant panda (ailuropoda melanoleuca). J. Zoo Wildl. Med. 2007, 38, 363–366. [Google Scholar] [CrossRef]
- Appel, M.J.; Yates, R.A.; Foley, G.L.; Bernstein, J.J.; Santinelli, S.; Spelman, L.H.; Miller, L.D.; Arp, L.H.; Anderson, M.; Barr, M.; et al. Canine distemper epizootic in lions, tigers and leopards in North America. J. Vet. Diagn. Investig. 1994, 6, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Roelke-Parker, M.E.; Munson, L.; Packer, C.; Kock, R.; Cleaveland, S.; Carpenter, M.; O’Brien, S.J.; Pospischil, A.; Hofmann-Lehmann, R.; Lutz, H.; et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 1996, 379, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.C.; Kenter, M.; Appel, M.J.G.; Roelke-Parker, M.E.; Barrett, T. Phylogenetic evidence of canine distemper virus in Serengeti’s lions. Vaccine 1995, 6, 521–523. [Google Scholar] [CrossRef]
- Morell, V. Mystery ailment strikes Serengeti lions. Science 1994, 264, 1404. [Google Scholar] [CrossRef]
- Craft, M.E.; Voltz, E.; Packer, C.; Meyers, L.A. Distinguishing epidemic waves from diseases spillover in a wildlife population. Proc. R. Soc. B 1196, 276, 1777–1785. [Google Scholar] [CrossRef]
- Haas, L.; Hofer, H.; East, M.; Wohlsein, P.; Liess, B.; Barrett, T. Canine distemper virus infection in Serengeti spotted hyenas. Vet. Microbiol. 1996, 49, 147–152. [Google Scholar] [CrossRef]
- Munson, L.; Terio, K.A.; Kock, R.; Mlengeya, T.; Roelke, M.E.; Dubovi, E.; Summers, B.; Sinclair, A.R.E.; Packer, C. Climate Extremes Promote Fatal Co-Infections during Canine Distemper Epidemics in African Lions. PLoS ONE 2008, 3, e2545. [Google Scholar] [CrossRef]
- Goller, K.V.; Fyumagwa, R.D.; Nikolin, V.; East, M.L.; Kilewo, M.; Speck, S.; Müller, T.; Matzke, M.; Wibbelt, G. Fatal canine distemper infection in a pack of African wild dogs in the Serengeti ecosystem, Tanzania. Vet. Microbiol. 2010, 146, 245–252. [Google Scholar] [CrossRef] [Green Version]
- van de Bildt, M.W.; Kuiken, T.; Visee, A.M.; Lema, S.; Fitzjohn, T.R.; Osterhaus, A.B. Distemper outbreak and its effect on African wild dog conservation. Emerg. Infect. Dis. 2002, 8, 211–213. [Google Scholar] [CrossRef]
- Cleaveland, S.; Appel, M.; Chalmers, W.; Chillingworth, C.; Kaare, M.; Dye, C. Serological and demographic evidence for domestic dogs as a source of canine distemper virus infection for Serengeti wildlife. Vet. Microbiol. 2000, 72, 217–227. [Google Scholar] [CrossRef]
- Nikolin, V.M.; Olarte-Castillo, X.A.; Osterrieder, N.; Hofer, H.; Dubovi, E.; Mazzoni, C.J.; Brunner, E.; Goller, K.V.; Fyumagwa, R.D.; Moehlman, P.D.; et al. Canine distemper virus in the Serengeti ecosystem: Molecular adaptation to different carnivore species. Mol. Ecol. 2017, 26, 2111–2130. [Google Scholar] [CrossRef] [PubMed]
- Loots, A.K.; Mokgokong, P.S.; Mitchell, E.; Venter, E.H.; Kotze, A.; Dalton, D.L. Phylogenetic analysis of canine distemper virus in South African wildlife. PLoS ONE 2018, 13, e0199993. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, Y.; Ochikubo, F.; Matsubara, Y.; Tsuruoka, H.; Ishii, M.; Shirota, K.; Nomura, Y.; Sugiyama, M.; Yamanouchi, K. Natural infection with canine distemper virus in a Japanese monkey (Macaca fuscata). Vet. Microbiol. 1989, 20, 193–205. [Google Scholar] [CrossRef]
- Sun, Z.; Li, A.; Ye, H.; Shi, Y.; Hu, Z.; Zeng, L. Natural infection with canine distemper virus in hand-feeding Rhesus monkeys in China. Vet. Microbiol. 2010, 141, 374–378. [Google Scholar] [CrossRef]
- Qiu, W.; Zheng, Y.; Zhang, S.; Fan, Q.; Liu, H.; Zhang, F.; Wang, W.; Liao, G.; Hu, R. Canine Distemper Outbreak in Rhesus Monkeys, China. Emerg. Infect. Dis. 2011, 17, 1541–1543. [Google Scholar] [CrossRef]
- Sakai, K.; Nagata, N.; Ami, Y.; Seki, F.; Suzaki, Y.; Iwata-Yoshikawa, N.; Suzuki, T.; Fukushi, S.; Mizutani, T.; Yoshikawa, T.; et al. Lethal Canine Distemper Virus Outbreak in Cynomolgus Monkeys in Japan in 2008. J. Virol. 2013, 87, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Appel, M.J.G. Reversion to virulence of attenuated canine distemper virus in vivo and in vitro. J. Gen. Virol. 1978, 41, 358–393. [Google Scholar] [CrossRef]
- Cornwell, H.; Thompson, H.; McCandlish, I.; Macartney, L.; Nash, A. Encephalitis in dogs associated with a batch of canine distemper (Rockborn) vaccine. Vet. Rec. 1988, 122, 54–59. [Google Scholar] [CrossRef]
- Van Heerden, J.; Bainbridge, N.; Burroughs, R.E.; Kriek, N.P. Distemper-like disease and encephalitozoonosis in wild dogs (Lycaon pictus). J. Wildl. Dis. 1989, 25, 70–75. [Google Scholar] [CrossRef]
- Demeter, Z.; Palade, E.A.; Hornyák, Á.; Rusvai, M. Controversial results of the genetic analysis of a canine distemper vaccine strain. Vet. Microbiol. 2010, 142, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Martella, V.; Cirone, F.; Elia, G.; Lorusso, E.; Decaro, N.; Campolo, M.; Desario, C.; Lucente, M.S.; Bellacicco, A.L.; Blixenkrone-Møller, M.; et al. Heterogeneity within the haemagglutin genes of canine distemper virus (CDV) strains in Italy. Vet. Microbiol. 2006, 116, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Woma, T.Y.; Van Vuuren, M.; Bosman, A.M.; Quan, M.; Oosthuizen, M.; Bwala, D.G.; Ibu, J.O.; Ularamu, H.G.; Shamaki, D. Genetic Variant of canine distemper virus from clinical cases in vaccinated dogs in South Africa. Niger. Vet. J. 2010, 31, 14–25. [Google Scholar] [CrossRef]
- Woma, T.Y.; Van Vuuren, M.; Bosman, A.M.; Quan, M.; Oosthuizen, M. Phylogenetic analysis of the haemagglutinin gene of current wild-type canine distemper viruses from South Africa: Lineage Africa. Vet. Microbiol. 2010, 143, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.; Montali, R.J.; Brownstein, D.; E James, A.; Appel, M.J. Vaccine-induced canine distemper in a lesser panda. J. Am. Vet. Med. Assoc. 1976, 169, 959–960. [Google Scholar] [PubMed]
- Pardu, I.D.R.; Johnson, G.C.; Kleiboeker, S.B. Phylogenetic characterization of canine distemper viruses detected in naturally infected dogs in North America. J. Clin. Microbiol. 2005, 43, 5009–5017. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.A.; Appel, M.J.; Roelke-Parker, M.E.; Munson, L.; Hofer, H.; East, M.; O’Brien, S.J. Genetic characterization of canine distemper virus in Serengetti Carnivores. Vet. Immunol. Immunopathol. 1998, 65, 259–266. [Google Scholar] [CrossRef]
- von Messling, V.; Springfeld, C.; Devaux, P.; Cattaneo, R. A ferret model of canine distemper virus virulence and immunosuppression. J. Virol 2003, 77, 12579–12591. [Google Scholar] [CrossRef]
- Evermann, J.F.; Appel, M.J.G.; McKeirnan, A.J.; Leathers, C.W.; Gorham, J.R. Pathogenesis of Two Strains of Lion (Panthera leo) Morbillivirus in Ferrets (Mustela putorius furo). Vet. Pathol. 2001, 38, 311–316. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.J.; Shaw, M.A.; Goodman, S.J. Pathogen evolution and disease emergence in carnivores. Proc. R. Soc. B Boil. Sci. 2007, 274, 3165–3174. [Google Scholar] [CrossRef] [Green Version]
- Feng, N.; Liu, Y.; Wang, J.; Xu, W.; Li, T.; Wang, T.; Wang, L.; Yu, Y.; Wang, H.; Zhao, Y.; et al. Canine distemper virus isolated from a monkey efficiently replicates on Vero cells expressing non-human primate SLAM receptors but not human SLAM receptor. BMC Vet. Res. 2016, 12, 160. [Google Scholar] [CrossRef]
- Mochizuki, M.; Hashimoto, M.; Hagiwara, S.; Yoshida, Y.; Ishiguro, S. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J. Clin. Microbiol. 1999, 37, 2936–2942. [Google Scholar] [PubMed]
- Lan, N.; Yamaguchi, R.; Furuya, Y.; Inomata, A.; Ngamkala, S.; Naganobu, K.; Kai, K.; Mochizuki, M.; Kobayashi, Y.; Uchida, K. Pathogenesis and phylogenetic analyses of canine distemper virus strain 007Lm, a new isolate in dogs. Vet. Microbiol. 2005, 110, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Bolt, G.; Jensen, T.D.; Gottschalck, E.; Arctander, P.; Appel, M.J.; Buckland, R.; Blixenkrone-Møller, M. Genetic diversity of the attachment (H) protein gene of current field isolates of canine distemper virus. J. Gen. Virol. 1997, 78, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Demeter, Z.Z.; Lakatos, B.B.; Palade, E.A.; Kozma, T.T.; Forgách, P.P.; Rusvai, M. Genetic diversity of Hungarian canine distemper virus strains. Vet. Microbiol. 2007, 122, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Nikolin, V.M.; Wibbelt, G.; Michler, F.U.F.; Wolf, P.; East, M.L. Susceptibility of carnivore hosts to strains of canine distemper virus from distinct genetic lineages. Vet. Microbiol. 2012, 156, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.C.; Kenter, M.; Vos, H.; Siebelink, K.; Huisman, W.; van Amerongen, G.; Orvell, C.; Barrett, T.; Appel, M.J.; Osterhaus, A.D. Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships. J. Gen. Virol. 1996, 77, 397–405. [Google Scholar] [CrossRef]
- Lednicky, J.A.; Meehan, T.P.; Kinsel, M.J.; Dubach, J.; Hungerford, L.L.; Sarich, N.A.; Witecki, K.E.; Braid, M.D.; Pedrak, C.; Houde, C.M. Effective primary isolation of wild-type canine distemper virus in MDCK, MV1 Lu and Vero cells without nucleotide sequence changes within the entire haemagglutinin protein gene and in subgenomic sections of the fusion and phospho protein genes. J. Virol. Methods. 2004, 118, 147–157. [Google Scholar] [CrossRef]
- Iwatsuki, K.; Miyashita, N.; Yoshida, E.; Gemma, T.; Shin, Y.S.; Mori, T.; Hirayama, N.; Kai, C.; Mikami, T. Molecular and phylogenetic analyses of the haemagglutinin (H) proteins of field isolates of canine distemper virus from naturally infected dogs. J. Gen. Virol. 1997, 78, 373–380. [Google Scholar] [CrossRef]
- Martella, V.; Blixenkrone-Møller, M.; Elia, G.; Lucente, M.S.; Cirone, F.; Decaro, N.; Nielsen, L.; Bányai, K.; Carmichael, L.E.; Buonavoglia, C. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain. Vaccine 2011, 29, 1222–1227. [Google Scholar] [CrossRef]
- Chulakasian, S.; Lee, M.S.; Wang, C.Y.; Chiou, S.S.; Lin, K.H.; Lin, F.Y.; Hsu, T.H.; Wong, M.L.; Chang, T.J.; Hsu, W.L. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus. Virol. J. 2010, 7, 122. [Google Scholar] [CrossRef]
- Von Messling, V.; Zimmer, G.; Herrler, G.; Hass, L.; Cattaneo, R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J. Virol. 2001, 75, 6418–6427. [Google Scholar] [CrossRef]
- Bieringer, M.; Han, J.W.; Kendl, S.; Khosravi, M.; Plattet, P.; Schneider-Schaulies, J. Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150. PLoS ONE 2013, 8, e57488. [Google Scholar] [CrossRef] [PubMed]
- Loots, A.K.; Mitchell, E.; Dalton, D.L.; Kotzé, A.; Venter, E.H. Advances in canine distemper virus pathogenesis research: A wildlife perspective. J. Gen. Virol. 2017, 98, 311–321. [Google Scholar] [CrossRef]
- Sattler, U.; Khosravi, M.; Avila, M.; Pilo, P.; Langedijk, J.P.; Ader-Ebert, N.; Alves, L.A.; Plattet, P.; Origgi, F.C. Identification of Amino Acid Substitutions with Compensational Effects in the Attachment Protein of Canine Distemper Virus. J. Virol. 2014, 88, 8057–8064. [Google Scholar] [CrossRef] [Green Version]
- Von Messling, V.; Svitek, N.; Cattaneo, R. Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J. Virol. 2006, 80, 6084–6092. [Google Scholar] [CrossRef] [PubMed]
- Langedijk, J.P.M.; Janda, J.; Origgi, F.C.; Örvell, C.; Vandevelde, M.; Zurbriggen, A.; Plattet, P. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein. J. Virol. 2011, 85, 11242–11254. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Tanaka, S.; Watanabe, H.; Shimane, Y.; Iwasawa, M.; Ohishi, K.; Maruyama, T. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Viruses 2018, 10, 236. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, G.; Qi, J.; Li, Y.; He, Y.; Xu, X.; Shi, J.; Zhang, C.W.; Yan, J.; Gao, G.F. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat. Struct. Mol. Biol. 2013, 20, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pratakpiriya, W.; Seki, F.; Otsuki, N.; Sakai, K.; Fukuhara, H.; Katamoto, H.; Hirai, T.; Maenaka, K.; Techangamsuwan, S.; Lan, N.T. Nectin4 is an epithelial cell receptor for canine distemper virus and involved in the neurovirulence. J. Virol. 2012, 86, 10207–10210. [Google Scholar] [CrossRef]
- Sakai, K.; Yoshikawa, T.; Seki, F.; Fukushi, S.; Tahara, M.; Nagata, N.; Ami, Y.; Mizutani, T.; Kurane, I.; Yamaguchi, R.; et al. Canine Distemper Virus Associated with a Lethal Outbreak in Monkeys Can Readily Adapt to Use Human Receptors. J. Virol. 2013, 87, 7170–7175. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, W.; Baxendale, W. A comparison of canine distemper vaccine and measles vaccine for the prevention of canine distemper in young puppies. Vet. Rec. 1994, 135, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.A. Measles vaccine for protection of dogs against canine distemper. J. Am. Vet. Med. Assoc. 1970, 156, 1743–1746. [Google Scholar] [PubMed]
- de Vries, R.D.; Ludlow, M.; Verburgh, R.J.; van Amerongen, G.; Yüksel, S.; Nguyen, D.T.; McQuaid, S.; Osterhaus, A.D.; Duprex, W.P.; de Swart, R.L. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J. Virol. 2014, 88, 4423–4433. [Google Scholar] [CrossRef] [PubMed]
*Sample Id | Species of Origin | Tissue Isolated From | Date Collected | Accession No H Gene | Accession No. P Gene |
---|---|---|---|---|---|
CCR- 71 | Hyena 2 | Brain | 23/12/93 | MN335910 | MN335915 |
CCR- 111 | Hyena 1 | Brain | 03/07/94 | MN335912 | MN335918 |
PLE- 6411 | Lion 1 | Lung | 18/11/94 | MN335911 | MN335916 |
OME- 81 | Bat eared Fox | Lymph node | 16/07/94 | MN335908 | MN335913 |
A94-11/15 | Domestic dog | Brain | 9/9/1994 | MN335909 | MN335914 |
Gene | NT Number | Base Change | AA Number and Change |
---|---|---|---|
H gene | 8086 | T→C | Silent |
8156 | A→C | Silent | |
8202 | A→C | Pro/327/Leu | |
8316 | C→A | Lys/375/Glu | |
8321 | T→C | Silent | |
P gene | 2172 | A→C | Glut/124/Ala |
2320 | C→T | Silent | |
2456 | T→G | Silent | |
2483 | T→A | Silent | |
2512 | C→T | Ser/236/Leu |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, J.M.; Earle, J.A.P.; Omar, S.; Abdullah, H.; Nielsen, O.; Roelke-Parker, M.E.; Cosby, S.L. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019, 11, 944. https://doi.org/10.3390/v11100944
Kennedy JM, Earle JAP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses. 2019; 11(10):944. https://doi.org/10.3390/v11100944
Chicago/Turabian StyleKennedy, Judith M., J.A. Philip Earle, Shadia Omar, Hani’ah Abdullah, Ole Nielsen, Melody E. Roelke-Parker, and S. Louise Cosby. 2019. "Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers" Viruses 11, no. 10: 944. https://doi.org/10.3390/v11100944
APA StyleKennedy, J. M., Earle, J. A. P., Omar, S., Abdullah, H., Nielsen, O., Roelke-Parker, M. E., & Cosby, S. L. (2019). Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses, 11(10), 944. https://doi.org/10.3390/v11100944