The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review
Abstract
:1. Introduction
2. Taxonomy, Morphology and Genome Organization of RVF Virus
3. Epidemiology of RVF
3.1. RVF Disease Host Susceptibility
3.2. Risk Factors
3.3. RVFV Vectors and Transmission Cycle
3.4. Mode of RVF Virus Transmission to Humans
3.5. Rift Valley Fever in Animals
3.6. Rift Valley Fever in Humans
4. Endemicity of RVF Virus in Egypt
4.1. Vector-Associated Factors
4.2. Host-Associated Factors
4.3. Environmental and Climate Factors
4.4. Additional Factors
5. Epidemics of RVF in Egypt (Major Outbreaks)
5.1. The 1st Outbreak (1977)
5.2. The 2nd Outbreak (1993)
5.3. The 3rd Outbreak (1994)
5.4. The 4th Outbreak (1997)
5.5. The 5th Outbreak (2003)
5.6. Since 2008
6. RVFV Surveillance in Egypt
7. Vaccination and Vaccine Development
7.1. Inactivated RVFV Vaccines
7.2. Live-Attenuated RVFV Vaccines
7.2.1. Smithburn Vaccine
7.2.2. MP-12 Live Attenuated Vaccine
7.2.3. Naturally Attenuated Clone 13 Vaccine
7.3. Recombinant Virus Vaccines
7.3.1. Virus- Vectored vaccine
7.3.2. Plasmid DNA Vaccine
7.3.3. Virus-Like Particles Based Vaccine
7.3.4. Glycoprotein-Based Subunit Vaccine
7.3.5. Reverse Genetic Vaccine
8. Prevention and Control of RVF Disease in Egypt
8.1. For Humans
8.2. For Animals
9. Vaccination Regime of the Imported Animals to Egypt
10. Conclusion, Future Prospective and One Health Approach
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHRI | Animal Health Research Institute |
Ae | Aedes |
ARBO | Arthropod-borne |
BEI | Binary ethylenimine |
BHK-2 | Baby hamster kidney |
ChAdOx1-GnGc | Chimpanzee adenovirus construct vector |
CL13T | Thermostable clonal isolate of Clone 13 |
Cx | Culex |
DIVA | Differentiation between infected and vaccinated animals |
EHV-1 | Equine herpesvirus type 1 |
ELISA | Enzyme-Linked Immune-Sorbent Assay |
FRHL-2 cells | Fetal rhesus monkey lung cells |
GFP | Green fluorescence protein |
GOVs | Egyptian General Organization for Veterinary Services |
IIFA | Indirect immunofluorescence assay |
kDa | Kilo Dalton |
LSDV | Lumpy skin disease virus |
L segment | Large segment |
M segment | Medium segment |
MOH | Egyptian Ministry of Health |
MLVV | Modified live virus vaccine |
MVA | Modified Vaccinia virus Ankara |
NAMRU-3 | Naval Medical Research Unit No.3 |
NDV | New Castle Disease Virus |
NHP | Non-human primate |
NSm | Non-structural M protein |
NSs | Non-structural protein |
OIE | Office international des epizootes |
ORF | Open reading frame |
RVF | Rift Valley fever |
RVFV | Rift Valley fever virus |
cDNA | Complementary DNA |
rRVF-ΔNSs:GFP-ΔNSm | ZH501-Derived mutant RVF virus |
S/C | Subcutaneously |
spp. | Species |
S segment | Small segment |
TCID50 | Tissue Culture Infective Dose50 |
UN | United Nations |
USAMRIID | U.S. Army Medical Research Institute of Infectious Diseases |
Vco | Vaccinia virus Copenhagen strain |
VLPs | Virus-like particles |
VNT | Virus Neutralization Test |
VSVRI | Veterinary Serum and Vaccines Research Institute |
WHO | World Health Organization |
$ | US Dollars |
References
- Pepin, M.; Bouloy, M.; Bird, B.H.; Kemp, A.; Paweska, J. Rift valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 2010, 41, 61. [Google Scholar] [CrossRef] [PubMed]
- Moutailler, S.; Roche, B.; Thiberge, J.-M.; Caro, V.; Rougeon, F.; Failloux, A.-B. Host alternation is necessary to maintain the genome stability of rift valley fever virus. PLoS Negl. Trop. Dis. 2011, 5, e1156. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, S.R.; Nichol, S.T. Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the rift valley fever virus glycoproteins. Virology 2007, 357, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Makino, S. The pathogenesis of rift valley fever. Viruses 2011, 3, 493–519. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.; Poch, O.; Delarue, M.; Bishop, D.H.; Bouloy, M. Rift valley fever virus L segment: Correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J. Gen. Virol. 1994, 75, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Billecocq, A.; Spiegel, M.; Vialat, P.; Kohl, A.; Weber, F.; Bouloy, M.; Haller, O. Nss protein of rift valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 2004, 78, 9798–9806. [Google Scholar] [CrossRef] [PubMed]
- Gauliard, N.; Billecocq, A.; Flick, R.; Bouloy, M. Rift valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology 2006, 351, 170–179. [Google Scholar] [CrossRef]
- Suzich, J.; Kakach, L.; Collett, M. Expression strategy of a phlebovirus: biogenesis of proteins from the rift valley fever virus M segment. J. Virol. 1990, 64, 1549–1555. [Google Scholar]
- Ikegami, T. Molecular biology and genetic diversity of rift valley fever virus. Antivi. Res. 2012, 95, 293–310. [Google Scholar] [CrossRef]
- Daubney, R.; Hudson, J.; Garnham, P. Enzootic hepatitis or rift valley fever. An undescribed virus disease of sheep cattle and man from east Africa. J. Pathol. Bacteriol. 1931, 34, 545–579. [Google Scholar] [CrossRef]
- Bird, B.H.; Ksiazek, T.G.; Nichol, S.T.; Maclachlan, N.J. Rift valley fever virus. J. Am. Vet. Med. Assoc. 2009, 234, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Rich, K.M.; Wanyoike, F. An assessment of the regional and national socio-economic impacts of the 2007 rift valley fever outbreak in Kenya. Am. J. Trop. Med. Hyg. 2010, 83, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Al-Afaleq, A.; Hussein, M. The status of rift valley fever in animals in Saudi Arabia: A mini review. Vector Borne Zoonotic Dis. 2011, 11, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Madani, T.A.; Al-Mazrou, Y.Y.; Al-Jeffri, M.H.; Mishkhas, A.A.; Al-Rabeah, A.M.; Turkistani, A.M.; Al-Sayed, M.O.; Abodahish, A.A.; Khan, A.S.; Ksiazek, T.G.; et al. Rift valley fever epidemic in Saudi Arabia: Epidemiological, clinical, and laboratory characteristics. Clin. Infect. Dis. 2003, 37, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; El-Adawy, H.; Abdelwhab, E.M. A comprehensive review of common bacterial, parasitic and viral zoonoses at the human-animal interface in Egypt. Pathogens 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Borio, L.; Inglesby, T.; Peters, C.J.; Schmaljohn, A.L.; Hughes, J.M.; Jahrling, P.B.; Ksiazek, T.; Johnson, K.M.; Meyerhoff, A.; O’Toole, T.; et al. Hemorrhagic fever viruses as biological weapons: Medical and public health management. JAMA 2002, 287, 2391–2405. [Google Scholar] [CrossRef]
- Baudin, M.; Jumaa, A.M.; Jomma, H.J.E.; Karsany, M.S.; Bucht, G.; Naslund, J.; Ahlm, C.; Evander, M.; Mohamed, N. Association of rift valley fever virus infection with miscarriage in Sudanese women: A cross-sectional study. Lancet Glob. Health 2016, 4, e864–e871. [Google Scholar] [CrossRef]
- Hassan, O.A.; Affognon, H.; Rocklov, J.; Mburu, P.; Sang, R.; Ahlm, C.; Evander, M. The one health approach to identify knowledge, attitudes and practices that affect community involvement in the control of rift valley fever outbreaks. PLoS Negl. Trop. Dis. 2017, 11, e0005383. [Google Scholar] [CrossRef]
- Drake, J.M.; Hassan, A.N.; Beier, J.C. A statistical model of rift valley fever activity in Egypt. J. Soc. Vector Ecol. 2013, 38, 251–259. [Google Scholar] [CrossRef]
- McElroy, A.; Albariño, C.G.; Nichol, S.T. Development of a RVFV Elisa that can distinguish infected from vaccinated animals. Virol. J. 2009, 3, 125. [Google Scholar] [CrossRef]
- Rostal, M.K.; Ross, N.; Machalaba, C.; Cordel, C.; Paweska, J.T.; Karesh, W.B. Benefits of a one health approach: An example using rift valley fever. One Health 2018, 5, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Maes, P.; Alkhovsky, S.V.; Bao, Y.; Beer, M.; Birkhead, M.; Briese, T.; Buchmeier, M.J.; Calisher, C.H.; Charrel, R.N.; Choi, I.R.; et al. Taxonomy of the family Arenaviridae and the order Bunyavirales: Update 2018. Arch. Virol. 2018, 163, 2295–2310. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Makino, S. Rift valley fever virus. Viruses 2004, 54, 229–235. [Google Scholar]
- Giorgi, C.; Accardi, L.; Nicoletti, L.; Gro, M.C.; Takehara, K.; Hilditch, C.; Morikawa, S.; Bishop, D.H.L. Sequences and coding strategies of the S RNAs of Toscana and rift valley fever viruses compared to those of Punta Toro, Sicilian Sandfly fever, and Uukuniemi viruses. Virology 1991, 180, 738–753. [Google Scholar] [CrossRef]
- Brennan, B.; Welch, S.; Elliott, R. The consequences of reconfiguring the Ambisense S genome segment of rift valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging. PLoS Pathog. 2014, 10, e1003922. [Google Scholar] [CrossRef] [PubMed]
- Napp, S.; Chevalier, V.; Busquets, N.; Calistri, P.; Casal, J.; Attia, M.; Elbassal, R.; Hosni, H.; Farrag, H.; Hassan, N.; et al. Understanding the legal trade of cattle and camels and the derived risk of rift valley fever introduction into and transmission within Egypt. PLoS Negl. Trop. Dis. 2018, 12, e0006143. [Google Scholar] [CrossRef] [PubMed]
- Corwin, A.; Habib, M.; Watts, D.; Olson, J.; Darwish, M.; Hibbs, R.; Kilpatrick, M. Prevalence of antibody to rift valley fever virus in the Nile river delta of Egypt, 13 years after a major outbreak. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 161. [Google Scholar] [CrossRef]
- Weiss, K. Rift valley fever a review. Bull. Epizoot. Dis. Afr. 1957, 5, 431–458. [Google Scholar]
- WHO. Rift Valley Fever. 2018. Available online: http://www.Who.Int/news-room/fact-sheets/detail/rift-valley-fever (accessed on 19 February 2018).
- Budasha, N.H.; Gonzalez, J.P.; Sebhatu, T.T.; Arnold, E. Rift valley fever seroprevalence and abortion frequency among livestock of kisoro district, south western Uganda (2016): A prerequisite for zoonotic infection. BMC Vet. Res. 2018, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Allam, I.H.; Feinsod, F.M.; Scott, R.M.; Peters, C.J.; Saah, A.J.; Ghaffar, S.A.; El Said, S.; Darwish, M.A. Rift valley fever surveillance in mobile sheep flocks in the Nile delta. Am. J. Trop. Med. Hyg. 1986, 35, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, M.A.; Abdel-Hamid, Y.M.; Beier, J.C. Rift valley fever in Egypt and other African countries: Historical review, recent outbreaks and possibility of disease occurrence in Egypt. Acta. Trop. 2018, 181, 40–49. [Google Scholar] [PubMed]
- Davies, F.G.; Koros, J.; Mbugua, H. Rift valley fever in Kenya: The presence of antibody to the virus in camels (camelus dromedarius). J. Hyg. (Lond.) 1985, 94, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Nuttall, P. Tick-borne viruses. Parasitology 2004, 129, S221–S245. [Google Scholar] [CrossRef] [PubMed]
- Diallo, D.; Ba, Y.; Dia, I.; Lassana, K.; Diallo, M. Use of insecticide-treated cattle to control rift valley fever and west Nile virus vectors in Senegal. Bull. Soc. Pathol. Exot. 2008, 1, 410–417. [Google Scholar]
- Lumley, S.; Horton, D.L.; Hernandez-Triana, L.L.M.; Johnson, N.; Fooks, A.R.; Hewson, R. Rift valley fever virus: Strategies for maintenance, survival and vertical transmission in mosquitoes. J. Gen. Virol. 2017, 98, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.M.; Riad, I.B.; Farid, H.A. Host-feeding patterns of culex pipiens and cx. antennatus (diptera: Culicidae) from a village in Sharqiya governorate, Egypt. J. Med. Entomol. 1995, 32, 573–577. [Google Scholar] [CrossRef]
- Turell, M.J.; Presley, S.M.; Gad, A.M.; Cope, S.E.; Dohm, D.J.; Morrill, J.C.; Arthur, R.R. Vector competence of Egyptian mosquitoes for rift valley fever virus. Am. J. Trop. Med. Hyg. 1996, 54, 136–139. [Google Scholar] [CrossRef]
- Kenawy, M.A.; Beier, J.C.; Zimmerman, J.H.; el Said, S.; Abbassy, M.M. Host-feeding patterns of the mosquito community (diptera: Culicidae) in Aswan governorate, Egypt. J. Med. Entomol. 1987, 24, 35–39. [Google Scholar] [CrossRef]
- Gad, A.M.; Farid, H.A.; Ramzy, R.R.; Riad, M.B.; Presley, S.M.; Cope, S.E.; Hassan, M.M.; Hassan, A.N. Host feeding of mosquitoes (diptera: Culicidae) associated with the recurrence of rift valley fever in Egypt. J. Med. Entomol. 1999, 36, 709–714. [Google Scholar]
- Hanafi, H.A.; Fryauff, D.J.; Saad, M.D.; Soliman, A.K.; Mohareb, E.W.; Medhat, I.; Earhart, K.C. Virus isolations and high population density implicate culex antennatus (becker) (diptera: Culicidae) as a vector of rift valley fever virus during an outbreak in the Nile delta of Egypt. Acta. Tropica. 2011, 119, 119–124. [Google Scholar] [CrossRef]
- Gerdes, G. Rift valley fever, the veterinary clinics of North America. Food Anim. Pract. 2010, 18, 549–555. [Google Scholar] [CrossRef]
- Busquets, N.; Xavier, F.; Martin-Folgar, R.; Lorenzo, G.; Galindo-Cardiel, I.; del Val, B.P.; Rivas, R.; Iglesias, J.; Rodriguez, F.; Solanes, D.; et al. Experimental infection of young adult European breed sheep with rift valley fever virus field isolates. Vector Borne Zoonotic Dis. 2010, 10, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Archer, B.N.; Thomas, J.; Weyer, J.; Cengimbo, A.; Landoh, D.E.; Jacobs, C.; Ntuli, S.; Modise, M.; Mathonsi, M.; Mashishi, M.S.; et al. Epidemiologic investigations into outbreaks of rift valley fever in humans, South Africa, 2008–2011. Emerg. Infect. Dis 2013, 19, 1918. [Google Scholar] [CrossRef] [PubMed]
- LaBeaud, A.; Muchiri, E.; Ndzovu, M.; Mwanje, M.; Muiruri, S.; Peters, C.; King, C.H. Interepidemic rift valley fever virus seropositivity, northeastern Kenya. Emer. Infect. Dis. 2008, 14, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Seufi, A.; Galal, F. Role of culex and anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007. BMC Infect. Dis. 2010, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Yoser, S.L.; Forster, D.J.; Rao, N.A. Systemic viral infections and their retinal and choroidal manifestations. Surv. Ophthalmol. 1993, 37, 313–352. [Google Scholar] [CrossRef]
- Muiruri, S.; Peters, C.J.; Clinton White, A.; LeDuc, J.; King, C.H.; Njenga, M.K.; Muchiri, E.M. Severe rift valley fever may present with a characteristic clinical syndrome. Amer. J. Trop. Med. Hyg. 2010, 82, 371–375. [Google Scholar]
- Kortekaas, J.; Oreshkova, N.; van Keulen, L.; Kant, J.; Bosch, B.J.; Bouloy, M.; Moulin, V.; Goovaerts, D.; Moormann, R.J. Comparative efficacy of two next-generation rift valley fever vaccines. Vaccine 2014, 32, 4901–4908. [Google Scholar] [CrossRef]
- El-Mekki, A.A. Female gender: A risk factor for acquiring rift valley fever virus infection in Jazan region, southwestern Saudi Arabia. Med. J. Cairo Uni. 2014, 82, 201–205. [Google Scholar]
- Nyakarahuka, L.; de St Maurice, A.; Purpura, L.; Ervin, E.; Balinandi, S.; Tumusiime, A.; Kyondo, J.; Mulei, S.; Tusiime, P.; Lutwama, J.; et al. Prevalence and risk factors of rift valley fever in humans and animals from kabale district in southwestern Uganda, 2016. PLoS Negl. Trop. Dis. 2018, 12, e0006412. [Google Scholar] [CrossRef]
- Kamal, S.A. Observations on rift valley fever virus and vaccines in Egypt. Virol. J. 2011, 8, 532. [Google Scholar] [CrossRef] [PubMed]
- Meegan, J.M. The rift valley fever epizootic in Egypt 1977–1978. Description of the epizzotic and virological studies. Trans. R Soc. Trop Med. Hyg. 1979, 73, 618–623. [Google Scholar] [CrossRef]
- Kamal, S.A. Pathological studies on postvaccinal reactions of rift valley fever in goats. Virol. J. 2009, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Samy, A.M.; Peterson, A.T.; Hall, M. Phylogeography of rift valley fever virus in Africa and the Arabian peninsula. PLoS Negl. Trop. Dis. 2017, 11, e0005226. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Ibrahim MK, F.A. Rift valley fever: Pathological studies on suspected heifers from Friesian dairy farm with a history of abortion. Egypt J. Comp. Pathol. Clin. Pathol. 1989, 2, 1–8. [Google Scholar]
- Imam, I.; El Karamany, R.; Omar, F.; El Kafrawi, O. Rift valley fever in Egypt. J. Egypt. Public Health Assoc. 1981, 56, 356–383. [Google Scholar]
- El-Akkad, A.M. Rift valley fever outbreak in Egypt. October–December 1977. J. Egypt Public Health Assoc. 1978, 53, 123–128. [Google Scholar] [PubMed]
- Grobbelaar, A.A.; Weyer, J.; Leman, P.A.; Kemp, A.; Paweska, J.T.; Swanepoel, R. Molecular epidemiology of rift valley fever virus. Emerg. Infect. Dis. 2011, 17, 2270–2276. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.R.; el-Sharkawy, M.S.; Cope, S.E.; Botros, B.A.; Oun, S.; Morrill, J.C.; Shope, R.E.; Hibbs, R.G.; Darwish, M.A.; Imam, I.Z. Recurrence of rift valley fever in Egypt. Lancet 1993, 342, 1149–1150. [Google Scholar] [CrossRef]
- Taha, M.; Elian, K.; Marcoss, T.; MS Eman, A.L. Monitoring of rift valley fever virus in Egypt during year 2000 using Elisa for detection to both IgM and IgG specific antibodies. J. Egypt Vet. Med. Ass. 2001, 61, 91–98. [Google Scholar]
- Ghoneim, N.H.; Woods, G.T. Rift valley fever and its epidemiology in Egypt: A review. J. Med. 1983, 14, 55–79. [Google Scholar] [PubMed]
- WHO. Disease Outbreak Reported: Rift Valley Fever in Egypt. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever (accessed on 19 February 2018).
- Marawan, M.A.; Ebied, M.H.; Galila, E.M.; Youssef, A.I.; Hassan, K.Z. Epidemiological studies on rift valley fever disease in Egypt. Benha Vet. Med. J. 2012, 23, 171–184. [Google Scholar]
- Mroz, C.; Gwida, M.; El-Ashker, M.; El-Diasty, M.; El-Beskawy, M.; Ziegler, U.; Eiden, M.; Groschup, M.H. Seroprevalence of rift valley fever virus in livestock during inter-epidemic period in Egypt, 2014/15. BMC Vet. Res. 2017, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Boshra, H.; Lorenzo, G.; Busquets, N.; Brun, A. Rift valley fever: Recent insights into pathogenesis and prevention. J. Virol. 2011, 85, 6098–6105. [Google Scholar] [CrossRef] [PubMed]
- Jost, C.C.; Nzietchueng, S.; Kihu, S.; Bett, B.; Njogu, G.; Swai, E.S.; Mariner, J.C. Epidemiological assessment of the rift valley fever outbreak in Kenya and Tanzania in 2006 and 2007. Am. J. Trop. Med. Hyg. 2010, 83, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Mariner, J. Rift Valley Fever Surveillance. Fao Animal Production And Health Manual No. 21. Food and Agriculture Organization of the United Nations: Rome, Italy. Available online: http://www.Fao.Org/3/i8475en/i8475en.Pdf (accessed on 13 June 2018).
- Bird, B.H.; Nichol, S.T. Breaking the chain: Rift valley fever virus control via livestock vaccination. Curr. Opin. Virol. 2012, 2, 315–323. [Google Scholar] [CrossRef]
- Niklasson, B.S.; Meadors, G.F.; Peters, C.J. Active and passive immunization against rift valley fever virus infection in Syrian hamsters. Acta. Pathol. Microbiol. Immunol. Scand. C 1984, 92, 197–200. [Google Scholar] [CrossRef]
- Ikegami, T.; Makino, S. Rift valley fever vaccines. Vaccine 2009, 27 Suppl. 4, D69–D72. [Google Scholar] [CrossRef]
- Randall, R.; Gibbs, C.J., Jr.; Aulisio, C.G.; Binn, L.N.; Harrison, V.R. The development of a formalin-killed rift valley fever virus vaccine for use in man. J. Immunol. 1962, 89, 660–671. [Google Scholar] [PubMed]
- Faburay, B.; LaBeaud, A.D.; McVey, D.S.; Wilson, W.C.; Richt, J.A. Current status of rift valley fever vaccine development. Vaccines (Basel) 2017, 5, 85–91. [Google Scholar] [CrossRef]
- Niklasson, B.; Peters, C.J.; Bengtsson, E.; Norrby, E. Rift valley fever virus vaccine trial: Study of neutralizing antibody response in humans. Vaccine 1985, 3, 123–127. [Google Scholar] [CrossRef]
- Pittman, P.R.; Liu, C.T.; Cannon, T.L.; Makuch, R.S.; Mangiafico, J.A.; Gibbs, P.H.; Peters, C.J. Immunogenicity of an inactivated rift valley fever vaccine in humans: A 12-year experience. Vaccine 1999, 18, 181–189. [Google Scholar] [CrossRef]
- Botros, B.; Omar, A.; Elian, K.; Mohamed, G.; Soliman, A.; Salib, A.; Salman, D.; Saad, M.; Earhart, K. Adverse response of non-indigenous cattle of European breeds to live attenuated Smithburn rift valley fever vaccine. J. Med. Virol. 2006, 78, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Caplen, H.; Peters, C.J.; Bishop, D.H. Mutagen-directed attenuation of rift valley fever virus as a method for vaccine development. J. Gen. Virol. 1985, 66, 2271–2277. [Google Scholar] [CrossRef] [PubMed]
- Saluzzo, J.F.; Smith, J.F. Use of reassortant viruses to map attenuating and temperature-sensitive mutations of the rift valley fever virus mp-12 vaccine. Vaccine 1990, 8, 369–375. [Google Scholar] [CrossRef]
- Morrill, J.C.; Mebus, C.A.; Peters, C.J. Safety and efficacy of a mutagen-attenuated rift valley fever virus vaccine in cattle. Am. J. Vet. Res. 1997, 58, 1104–1109. [Google Scholar] [PubMed]
- Morrill, J.C.; Peters, C.J. Protection of mp-12-vaccinated rhesus macaques against parenteral and aerosol challenge with virulent rift valley fever virus. J. Infect. Dis. 2011, 204, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.L.; Banyard, A.C.; McElhinney, L.; Johnson, N.; Horton, D.L.; Hernandez-Triana, L.M.; Fooks, A.R. Rift valley fever virus: A review of diagnosis and vaccination, and implications for emergence in europe. Vaccine 2015, 33, 5520–5531. [Google Scholar] [CrossRef]
- Kortekaas, J.; Oreshkova, N.; Cobos-Jimenez, V.; Vloet, R.P.; Potgieter, C.A.; Moormann, R.J. Creation of a nonspreading rift valley fever virus. J. Virol. 2011, 85, 12622–12630. [Google Scholar] [CrossRef]
- Muller, R.; Saluzzo, J.F.; Lopez, N.; Dreier, T.; Turell, M.; Smith, J.; Bouloy, M. Characterization of clone 13, a naturally attenuated avirulent isolate of rift valley fever virus, which is altered in the small segment. Am. J. Trop. Med. Hyg. 1995, 53, 405–411. [Google Scholar] [CrossRef]
- Dungu, B.; Louw, I.; Lubisi, A.; Hunter, P.; von Teichman, B.F.; Bouloy, M. Evaluation of the efficacy and safety of the rift valley fever clone 13 vaccine in sheep. Vaccine 2010, 28, 4581–4587. [Google Scholar] [CrossRef]
- von Teichman, B.; Engelbrecht, A.; Zulu, G.; Dungu, B.; Pardini, A.; Bouloy, M. Safety and efficacy of rift valley fever smithburn and clone 13 vaccines in calves. Vaccine 2011, 29, 5771–5777. [Google Scholar] [CrossRef] [PubMed]
- Njenga, M.K.; Njagi, L.; Thumbi, S.M.; Kahariri, S.; Githinji, J.; Omondi, E.; Baden, A.; Murithi, M.; Paweska, J.; Ithondeka, P.M.; et al. Randomized controlled field trial to assess the immunogenicity and safety of rift valley fever clone 13 vaccine in livestock. PLoS Negl. Trop. Dis. 2015, 9, e0003550. [Google Scholar] [CrossRef] [PubMed]
- Dodd, K.A.; McElroy, A.K.; Jones, T.L.; Zaki, S.R.; Nichol, S.T.; Spiropoulou, C.F. Rift valley fever virus encephalitis is associated with an ineffective systemic immune response and activated t cell infiltration into the CNS in an immunocompetent mouse model. PLoS Negl. Trop. Dis. 2014, 8, e2874. [Google Scholar] [CrossRef] [PubMed]
- Vialat, P.; Billecocq, A.; Kohl, A.; Bouloy, M. The s segment of rift valley fever phlebovirus (bunyaviridae) carries determinants for attenuation and virulence in mice. J. Virol. 2000, 74, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Makoschey, B.; van Kilsdonk, E.; Hubers, W.R.; Vrijenhoek, M.P.; Smit, M.; Wichgers Schreur, P.J.; Kortekaas, J.; Moulin, V. Rift valley fever vaccine virus clone 13 is able to cross the ovine placental barrier associated with foetal infections, malformations, and stillbirths. PLoS Negl. Trop. Dis. 2016, 10, e0004550. [Google Scholar] [CrossRef] [PubMed]
- Daouam, S.; Fakri, F.; Ennaji, M.; El arkam, A.; Tadlaoui, K.; Oura, C.; Elharrak, M. Heat stability of the rift valley fever virus clone 13 live vaccines. Trials Vaccinol. 2014, 3, 61–64. [Google Scholar] [CrossRef]
- Daouam, S.; Ghzal, F.; Arkam, A.E.; Naouli, Y.; Jazouli, M.; Ennaji, M.M.; Tadlaoui, K.O.; Oura, C.; El Harrak, M. Evaluation of the safety and efficacy of a live attenuated thermostable rift valley fever vaccine in sheep, goats and cattle. J. Vaccines Vaccin. 2015, 6, 295. [Google Scholar]
- Papin, J.F.; Verardi, P.H.; Jones, L.A.; Monge-Navarro, F.; Brault, A.C.; Holbrook, M.R.; Worthy, M.N.; Freiberg, A.N.; Yilma, T.D. Recombinant rift valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice. Proc. Natl. Acad. Sci. USA 2011, 108, 14926–14931. [Google Scholar] [CrossRef]
- Soi, R.K.; Rurangirwa, F.R.; McGuire, T.C.; Rwambo, P.M.; DeMartini, J.C.; Crawford, T.B. Protection of sheep against rift valley fever virus and sheep poxvirus with a recombinant capripoxvirus vaccine. Clin. Vaccine Immunol. 2010, 17, 1842–1849. [Google Scholar] [CrossRef]
- Wallace, D.B.; Ellis, C.E.; Espach, A.; Smith, S.J.; Greyling, R.R.; Viljoen, G.J. Protective immune responses induced by different recombinant vaccine regimes to rift valley fever. Vaccine 2006, 24, 7181–7189. [Google Scholar] [CrossRef]
- Warimwe, G.M.; Gesharisha, J.; Carr, B.V.; Otieno, S.; Otingah, K.; Wright, D.; Charleston, B.; Okoth, E.; Elena, L.G.; Lorenzo, G.; et al. Chimpanzee adenovirus vaccine provides multispecies protection against rift valley fever. Sci. Rep. 2016, 6, 20617. [Google Scholar] [CrossRef] [PubMed]
- Warimwe, G.M.; Lorenzo, G.; Lopez-Gil, E.; Reyes-Sandoval, A.; Cottingham, M.G.; Spencer, A.J.; Collins, K.A.; Dicks, M.D.; Milicic, A.; Lall, A.; et al. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored rift valley fever vaccine in mice. Virol. J. 2013, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gil, E.; Lorenzo, G.; Hevia, E.; Borrego, B.; Eiden, M.; Groschup, M.; Gilbert, S.C.; Brun, A. A single immunization with MVA expressing GNGC glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection. PLoS Negl. Trop. Dis. 2013, 7, e2309. [Google Scholar] [CrossRef] [PubMed]
- Kortekaas, J.; Antonis, A.F.; Kant, J.; Vloet, R.P.; Vogel, A.; Oreshkova, N.; de Boer, S.M.; Bosch, B.J.; Moormann, R.J. Efficacy of three candidate rift valley fever vaccines in sheep. Vaccine 2012, 30, 3423–3429. [Google Scholar] [CrossRef] [PubMed]
- Kortekaas, J.; Dekker, A.; de Boer, S.M.; Weerdmeester, K.; Vloet, R.P.; de Wit, A.A.; Peeters, B.P.; Moormann, R.J. Intramuscular inoculation of calves with an experimental newcastle disease virus-based vector vaccine elicits neutralizing antibodies against rift valley fever virus. Vaccine 2010, 28, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Heise, M.T.; Whitmore, A.; Thompson, J.; Parsons, M.; Grobbelaar, A.A.; Kemp, A.; Paweska, J.T.; Madric, K.; White, L.J.; Swanepoel, R.; et al. An alphavirus replicon-derived candidate vaccine against rift valley fever virus. Epidemiol. Infect. 2009, 137, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Elmanzalawy, M.; Ma, G.; Damiani, A.M.; Osterrieder, N. An equine herpesvirus type 1 (EHV-1) vector expressing rift valley fever virus (RVFV) GN and GC induces neutralizing antibodies in sheep. Virol. J. 2017, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Albarino, C.G.; Hartman, A.L.; Erickson, B.R.; Ksiazek, T.G.; Nichol, S.T. Rift valley fever virus lacking the NSS and NSM genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J. Virol. 2008, 82, 2681–2691. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.C.; DeVit, M.; Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 1992, 356, 152–154. [Google Scholar] [CrossRef]
- Rajcani, J.; Mosko, T.; Rezuchova, I. Current developments in viral DNA vaccines: Shall they solve the unsolved? Rev. Med. Virol. 2005, 15, 303–325. [Google Scholar] [CrossRef]
- Wolff, J.A.; Budker, V. The mechanism of naked DNA uptake and expression. Adv. Genet. 2005, 54, 3–20. [Google Scholar] [PubMed]
- Belekova, J.; Horynova, M.; Krupka, M.; Weigl, E.; Raska, M. DNA vaccines: Are they still just a powerful tool for the future? Arch. Immunol. Ther. Exp. 2007, 55, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Spik, K.; Shurtleff, A.; McElroy, A.K.; Guttieri, M.C.; Hooper, J.W.; SchmalJohn, C. Immunogenicity of combination DNA vaccines for rift valley fever virus, tick-borne encephalitis virus, hantaan virus, and crimean congo hemorrhagic fever virus. Vaccine 2006, 24, 4657–4666. [Google Scholar] [CrossRef] [PubMed]
- Lagerqvist, N.; Naslund, J.; Lundkvist, A.; Bouloy, M.; Ahlm, C.; Bucht, G. Characterisation of immune responses and protective efficacy in mice after immunisation with rift valley fever virus cDNA constructs. Virol. J. 2009, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, G.; Martin-Folgar, R.; Hevia, E.; Boshra, H.; Brun, A. Protection against lethal rift valley fever virus (RVFV) infection in transgenic ifnar(-/-) mice induced by different DNA vaccination regimens. Vaccine 2010, 28, 2937–2944. [Google Scholar] [CrossRef] [PubMed]
- Habjan, M.; Penski, N.; Spiegel, M.; Weber, F. T7 RNA polymerase-dependent and -independent systems for cdna-based rescue of rift valley fever virus. J. Gen. Virol. 2008, 89, 2157–2166. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Celma, C.C.; Roy, P. Rift valley fever virus structural proteins: Expression, characterization and assembly of recombinant proteins. Virol. J. 2008, 5, 82. [Google Scholar] [CrossRef]
- Pichlmair, A.; Habjan, M.; Unger, H.; Weber, F. Virus-like particles expressing the nucleocapsid gene as an efficient vaccine against rift valley fever virus. Vector Borne Zoonotic Dis. 2010, 10, 701–703. [Google Scholar] [CrossRef]
- Beyer, T.; Herrmann, M.; Reiser, C.; Bertling, W.; Hess, J. Bacterial carriers and virus-like-particles as antigen delivery devices: Role of dendritic cells in antigen presentation. Curr. Drug Targ. Infect. Disord. 2001, 1, 287–302. [Google Scholar] [CrossRef]
- Mandell, R.B.; Koukuntla, R.; Mogler, L.J.; Carzoli, A.K.; Holbrook, M.R.; Martin, B.K.; Vahanian, N.; Link, C.J.; Flick, R. Novel suspension cell-based vaccine production systems for rift valley fever virus-like particles. J. Virol. Methods 2010, 169, 259–268. [Google Scholar] [CrossRef]
- Naslund, J.; Lagerqvist, N.; Habjan, M.; Lundkvist, A.; Evander, M.; Ahlm, C.; Weber, F.; Bucht, G. Vaccination with virus-like particles protects mice from lethal infection of rift valley fever virus. Virology 2009, 385, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Faburay, B.; Wilson, W.C.; Gaudreault, N.N.; Davis, A.S.; Shivanna, V.; Bawa, B.; Sunwoo, S.Y.; Ma, W.; Drolet, B.S.; Morozov, I.; et al. A recombinant rift valley fever virus glycoprotein subunit vaccine confers full protection against rift valley fever challenge in sheep. Sci. Rep. 2016, 6, 27719. [Google Scholar] [CrossRef] [PubMed]
- Faburay, B.; Lebedev, M.; McVey, D.S.; Wilson, W.; Morozov, I.; Young, A.; Richt, J.A. A glycoprotein subunit vaccine elicits a strong rift valley fever virus neutralizing antibody response in sheep. Vector Borne Zoonotic Dis. 2014, 14, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Hansson, M.; Nygren, P.A.; Stahl, S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000, 32, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Stobart, C.C.; Moore, M.L. RNA virus reverse genetics and vaccine design. Viruses 2014, 6, 2531–2550. [Google Scholar] [CrossRef] [PubMed]
- Wichgers Schreur, P.J.; Oreshkova, N.; Moormann, R.J.; Kortekaas, J. Creation of rift valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging. J. Virol. 2014, 88, 10883–10893. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Angel, M.; Li, W.; Finch, C.; Gonzalez, A.S.; Sutton, T.; Santos, J.; Perez, D.R. All-in-one bacmids: An efficient reverse genetics strategy for influenza a virus vaccines. J. Virol. 2014, 88, 10013–10025. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jiang, J.; Zhan, J.; Li, G.; Jiang, Y.; Guan, X.; Chen, Y.; Fang, Z. Development of a reverse genetics system for respiratory syncytial virus long strain and an immunogenicity study of the recombinant virus. Virol. J. 2014, 11, 142. [Google Scholar] [CrossRef] [PubMed]
- Billecocq, A.; Gauliard, N.; Le May, N.; Elliott, R.M.; Flick, R.; Bouloy, M. Rna polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent rift valley fever viruses. Virology 2008, 378, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Won, S.; Peters, C.J.; Makino, S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSS gene, and expression of a foreign gene. J. Virol. 2006, 80, 2933–2940. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Maartens, L.H.; Campbell, S.; Erasmus, B.J.; Erickson, B.R.; Dodd, K.A.; Spiropoulou, C.F.; Cannon, D.; Drew, C.P.; Knust, B.; et al. Rift valley fever virus vaccine lacking the NSS and NSM genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J. Virol. 2011, 85, 12901–12909. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Laughlin, R.C.; Lokugamage, N.; Wu, J.; Pugh, R.; Kanani, P.; Adams, L.G.; Makino, S.; Peters, C.J. Immunogenicity of a recombinant rift valley fever mp-12-nsm deletion vaccine candidate in calves. Vaccine 2013, 31, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Weingartl, H.M.; Nfon, C.K.; Zhang, S.; Marszal, P.; Wilson, W.C.; Morrill, J.C.; Bettinger, G.E.; Peters, C.J. Efficacy of a recombinant rift valley fever virus mp-12 with nsm deletion as a vaccine candidate in sheep. Vaccine 2014, 32, 2345–2349. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Johnston, S.C.; Piper, A.; Botto, M.; Donnelly, G.; Shamblin, J.; Albarino, C.G.; Hensley, L.E.; Schmaljohn, C.; Nichol, S.T.; et al. Attenuation and efficacy of live-attenuated rift valley fever virus vaccine candidates in non-human primates. PLoS Negl. Trop. Dis. 2018, 12, e0006474. [Google Scholar] [CrossRef] [PubMed]
- Youssef, B. Study the immune response for sheep and cattle with rift valley fever inactivated and attenuated vaccine. Alex J. Med. Sci. 2004, 20, 85–97. [Google Scholar]
Outbreaks | Presumable Source of Infection | Affected Areas | Main Vectors | Human Cases | Affected Animals | Used Vaccine | References |
---|---|---|---|---|---|---|---|
1977 (August–December) to 1978 (July–December) | The infected person returns back from Africa and importation of infected camels from Sudan-Zimbabwe | Belbies, El-Sharquia province, then spread to the Nile valley, delta, and Sudan | Cx. Pipiens | 1977: up to 20,000 cases, with 598 deaths 1978: 114 confirmed cases, with 12 deaths | Domestic animals (sheep, cattle, camels, goats, horses), rats and humans | No available vaccines | [27,37,52,53,55,56,57,58,59] |
1993–1994 (May–August) | The virus either remains endemic after 1977 outbreak or reintroduced in 1993 from the same source (Sudan) | Aswan, then spread to Nile Delta provinces, El-Faiyum and Damietta | Ae. Caspius | Up to 1500 estimated cases, with 128 confirmed cases | Domestic animals (cattle and buffaloes) and humans | Live attenuated Smithburn strain | [27,38,52,60,61] |
1997 (April–August) | Importation of animals especially camels from Africa with the absence of effective control measure | Upper Egypt, then spread to all Egyptian provinces | - | 7 confirmed cases | Domestic animals (sheep and cattle) and humans | Live attenuated Smithburn strain | [52] |
2003 (June–October) | RVFV appeared in the main market of livestock animals in Egypt, where animals were collected from all over the country | Began to appear in four provinces (Kafr El-Sheikh, El-Sharquiya, El-Dakahliya and El-Beheira) in the Nile Delta | Cx. Antennatus | 373 confirmed cases, with 112 deaths | Domestic animals (cattle and sheep) and humans | Live attenuated Smithburn strain | [41,52] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fawzy, M.; Helmy, Y.A. The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019, 11, 139. https://doi.org/10.3390/v11020139
Fawzy M, Helmy YA. The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses. 2019; 11(2):139. https://doi.org/10.3390/v11020139
Chicago/Turabian StyleFawzy, Mohamed, and Yosra A. Helmy. 2019. "The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review" Viruses 11, no. 2: 139. https://doi.org/10.3390/v11020139
APA StyleFawzy, M., & Helmy, Y. A. (2019). The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses, 11(2), 139. https://doi.org/10.3390/v11020139