Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Histopathology, and Processing
2.2. Virus Propagation
2.3. RNA Extraction, Reverse Transcription, qPCR, and Sequencing
2.4. Data Analysis and Phylogenetic Analysis
2.5. Recombination Analysis
3. Results
3.1. Clinical Background, Gross Lesions, and Histopathology
3.2. Whole Genome Sequencing
3.3. ORF1a
3.4. ORF1b
3.5. Genotyping and Comparison of ORF2
3.6. Recombination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baxendale, W.; Mebatsion, T. The isolation and characterisation of astroviruses from chickens. Avian Pathol. 2004, 33, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Han, T.; Zhao, Y.; Yang, H.; Zhang, G. Complete genome sequence and phylogenetic analysis of novel avastroviruses circulating in China from 2016 to 2018. Virus Res. 2020, 278, 197858. [Google Scholar] [CrossRef] [PubMed]
- Saif, Y.M.; Guy, J.S.; Day, J.M.; Cattoli, G.; Hayhow, C.S. Viral Enteric Infections. In Diseases of Poultry; Swayne, D., Ed.; Elsevier: Cambridge, MA, USA, 2020; pp. 401–445. [Google Scholar]
- Long, K.E.; Ouckama, R.M.; Weisz, A.; Brash, M.L.; Ojkic, D. White Chick Syndrome Associated with Chicken Astrovirus in Ontario, Canada. Avian Dis. 2018, 62, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Smyth, V.J. A Review of the Strain Diversity and Pathogenesis of Chicken Astrovirus. Viruses 2017, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Sajewicz-Krukowska, J.; Pac, K.; Lisowska, A.; Minta, Z.; Kroliczewska, B.; Domanska-Blicharz, K. Astrovirus induced “white chicks” condition-field observation, virus detection and preliminary characterization. Avian Pathol. 2015, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Pantin-Jackwood, M.J.; Day, J.M.; Jackwood, M.W.; Spackman, E. Enteric viruses detected by molecular methods in commercial chicken and turkey flocks in the United States between 2005 and 2006. Avian Dis. 2008, 52, 235–244. [Google Scholar] [CrossRef] [Green Version]
- McNulty, M.S.; Connor, T.J.; McNeilly, F.; McFerran, J.B. Biological characterisation of avian enteroviruses and enterovirus-like viruses. Avian Pathol. 1990, 19, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Spackman, D.; Gough, R.E.; Collins, M.S.; Lanning, D. Isolation of an enterovirus-like agent from the meconium of dead-in-shell chicken embryos. Vet. Rec. 1984, 114, 216–218. [Google Scholar] [CrossRef]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; Junglen, S.; et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch. Virol. 2019, 164, 2417–2429. [Google Scholar] [CrossRef] [Green Version]
- ICTV Astroviridae Taxonomy. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/247/astroviridae (accessed on 24 May 2020).
- McNulty, M.S.; Curran, W.L.; McFerran, J.B. Detection of astroviruses in turkey faeces by direct electron microscopy. Vet. Rec. 1980, 106, 561. [Google Scholar] [CrossRef]
- McNulty, M.S.; Curran, W.L.; Todd, D.; McFerran, J.B. Detection of viruses in avian faeces by direct electron microscopy. Avian Pathol. 1979, 8, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, E.; Arias, C.F. Astroviruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 609–628. [Google Scholar]
- Kang, K.I.; Linnemann, E.; Icard, A.H.; Durairaj, V.; Mundt, E.; Sellers, H.S. Chicken astrovirus as an aetiological agent of runting-stunting syndrome in broiler chickens. J. Gen. Virol. 2018, 99, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.F.; DuBois, R.M. The Astrovirus Capsid: A Review. Viruses 2017, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Toh, Y.; Harper, J.; Dryden, K.A.; Yeager, M.; Arias, C.F.; Mendez, E.; Tao, Y.J. Crystal Structure of the Human Astrovirus Capsid Protein. J. Virol. 2016, 90, 9008–9017. [Google Scholar] [CrossRef] [Green Version]
- Dryden, K.A.; Tihova, M.; Nowotny, N.; Matsui, S.M.; Mendez, E.; Yeager, M. Immature and mature human astrovirus: Structure, conformational changes, and similarities to hepatitis E virus. J. Mol. Biol. 2012, 422, 650–658. [Google Scholar] [CrossRef]
- McNeilly, F.; Connor, T.J.; Calvert, V.M.; Smyth, J.A.; Curran, W.L.; Morley, A.J.; Thompson, D.; Singh, S.; McFerran, J.B.; Adair, B.M.; et al. Studies on a new enterovirus-like virus isolated from chickens. Avian Pathol. 1994, 23, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Bulbule, N.R.; Mandakhalikar, K.D.; Kapgate, S.S.; Deshmukh, V.V.; Schat, K.A.; Chawak, M.M. Role of chicken astrovirus as a causative agent of gout in commercial broilers in India. Avian Pathol. 2013, 42, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Smyth, V.; Trudgett, J.; Wylie, M.; Jewhurst, H.; Conway, B.; Welsh, M.; Kaukonen, E.; Perko-Makela, P. Chicken astrovirus detected in hatchability problems associated with “white chicks”. Vet. Rec. 2013, 173, 403–404. [Google Scholar] [CrossRef]
- Long, K.E.; Hastie, G.M.; Ojkic, D.; Brash, M.L. Economic Impacts of White Chick Syndrome in Ontario, Canada. Avian Dis. 2017, 61, 402–408. [Google Scholar] [CrossRef]
- Smyth, V.J.; Jewhurst, H.L.; Wilkinson, D.S.; Adair, B.M.; Gordon, A.W.; Todd, D. Development and evaluation of real-time TaqMan(R) RT-PCR assays for the detection of avian nephritis virus and chicken astrovirus in chickens. Avian Pathol. 2010, 39, 467–474. [Google Scholar] [CrossRef]
- Skibinska, A.; Lee, A.; Wylie, M.; Smyth, V.J.; Welsh, M.D.; Todd, D. Development of an indirect ELISA test for detecting antibodies to chicken astrovirus in chicken sera. Avian Pathol. 2015, 1–28. [Google Scholar]
- Pantin-Jackwood, M.; Todd, D.; Koci, M.D. Avian Astroviruses. In Astrovirus Research: Essential Ideas, Everyday Impacts, Future Directions; Schultz-Cherry, S., Ed.; Springer: New York, NY, USA, 2013; pp. 151–180. [Google Scholar]
- Smyth, V.J.; Todd, D.; Trudgett, J.; Lee, A.; Welsh, M.D. Capsid protein sequence diversity of chicken astrovirus. Avian Pathol. 2012, 41, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deol, P.; Kattoor, J.J.; Sircar, S.; Ghosh, S.; Banyai, K.; Dhama, K.; Malik, Y.S. Avian Group D Rotaviruses: Structure, Epidemiology, Diagnosis, and Perspectives on Future Research Challenges. Pathogens 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Wlliams, S.M.; American Association of Avian Pathologists. A Laboratory Manual for the Isolation, Identification and Characterization of Avian Pathogens, 6th ed.; American Association of Avian Pathologists: Jacksonville, FL, USA, 2016; pp. 754–780. [Google Scholar]
- Villegas, P. PDRC Laboratory Manual. In Georgia; T.U., o., Ed.; PDRC Laboratory: Athens, GA, USA, 2008. [Google Scholar]
- Hess, M. Detection and differentiation of avian adenoviruses: A review. Avian Pathol. 2000, 29, 195–206. [Google Scholar] [CrossRef]
- Jones, R.C.; Islam, M.R.; Kelly, D.F. Early pathogenesis of experimental reovirus infection in chickens. Avian Pathol. 1989, 18, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Kohn, F.S.; Henneman, S.A. Preparation of primary chicken embryo livers cells. PLoS ONE 1975, 14, e0225863. [Google Scholar] [CrossRef]
- Schultz-Cherry, S. Astrovirus Infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Ed.; John Wiley & Sons: Ames, IA, USA, 2013; pp. 391–395. [Google Scholar]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Palomino-Tapia, V.; Mitevski, D.; Inglis, T.; van der Meer, F.; Abdul-Careem, M.F. Molecular characterization of emerging avian reovirus variants isolated from viral arthritis cases in Western Canada 2012–2017 based on partial sigma (sigma)C gene. Virology 2018, 522, 138–146. [Google Scholar] [CrossRef]
- Abadi, S.; Azouri, D.; Pupko, T.; Mayrose, I. Model selection may not be a mandatory step for phylogeny reconstruction. Nat. Commun. 2019, 10, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Posada, D.; Crandall, K.A.; Williamson, C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. Aids Res. Hum. Retrovir. 2005, 21, 98–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Rybicki, E. RDP: Detection of recombination amongst aligned sequences. Bioinformatics 2000, 16, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Padidam, M.; Sawyer, S.; Fauquet, C.M. Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.M. Analyzing the mosaic structure of genes. J. Mol. Evol 1992, 34, 126–129. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef]
- Lam, H.M.; Ratmann, O.; Boni, M.F. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm. Mol. Biol. Evol 2018, 35, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Markham, P.F.; Coppo, M.J.; Legione, A.R.; Markham, J.F.; Noormohammadi, A.H.; Browning, G.F.; Ficorilli, N.; Hartley, C.A.; Devlin, J.M. Attenuated vaccines can recombine to form virulent field viruses. Science 2012, 337, 188. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.S.H.; Ojkic, D.; Coffin, C.S.; Cork, S.C.; van der Meer, F.; Abdul-Careem, M.F. Delmarva (DMV/1639) Infectious Bronchitis Virus (IBV) Variants Isolated in Eastern Canada Show Evidence of Recombination. Viruses 2019, 11, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.K.; Pandit, R.J.; Thakkar, J.R.; Hinsu, A.T.; Pandey, V.C.; Pal, J.K.; Prajapati, K.S.; Jakhesara, S.J.; Joshi, C.G. Complete genome sequence analysis of chicken astrovirus isolate from India. Vet. Res. Commun. 2017, 41, 67–75. [Google Scholar] [CrossRef]
- Sajewicz-Krukowska, J.; Domanska-Blicharz, K. Nearly full-length genome sequence of a novel astrovirus isolated from chickens with ‘white chicks’ condition. Arch. Virol. 2016, 161, 2581–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyth, V.; (Avian Virology Unit of the Agri-Foods and Biosciences Institute (AFBI), Stoney Road, Stormont, Belfast, BT4 3SD, UK). Personal Communication, 2020.
- Stayer, P.A.; Riley, E.G.; French, J.D.; Ferro, P.J.; Vanhooser, S.L.; Banda, A.; Baughman, B. Incursion and Recursion of ‘‘White Chicks’’ in U.S. Commercial Broiler Production. In Proceedings of the Annual Meeting of the American Veterinary Medical Association, San Antonio, TX, USA, 6–9 September 2016; p. 8. [Google Scholar]
- Brash, M.; Ojkic, A.D.; Ouckama, R.; Long, K.E.; Weisz, A. Etiologic Investigations into White chick Syndrome in Ontario. In Proceedings of the 65th Western Poultry Disease Conference, Vancouver, BC, Canada, 24–27 April 2016; p. 30. [Google Scholar]
- Bishop, R. Poor hatchability and increased cull chicks associatedwith White Chick Syndrome as experienced in Eastern Canada in 2009. In Proceedings of the 59th Western Poultry Disease Conference, Vancouver, BC, Canada, 24–27 April 2010; p. 118. [Google Scholar]
- Martin, E.; Brash, M.; Ojkic, A.D.; Ouckama, R.; Long, K.E. In Proceedings of the White chick syndrome in Ontario: Clinical features, pathology and viral etiology. Annual Meeting of the American Veterinary Medical Association, San Antonio, TX, USA, 6–9 August 2016; p. 53. [Google Scholar]
- McKinley, E.T.; Hilt, D.A.; Jackwood, M.W. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 2008, 26, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- European Union Committee for Medicinal Products for Veterinary Use (CVMP). Guideline on Data Requirements for the Replacement of Established Master Seeds (MS) Already Used in Authorised Immunological Veterinary Medicinal Products (IVMPs) by New Master Seed of the Same Origin Ed. 2010. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-data-requirements-replacement-established-master-seeds-ms-already-used-authorised_en.pdf (accessed on 28 July 2020).
- USDA, 2015, 9 CFR 113. Animal and Animal Products. Chapter I Animal and Plant Health Inspection Service, United States Department of Agriculture, Part 113. Code of Federal Regulations, USA. 2015; pp. 707–826. Available online: https://www.govinfo.gov/content/pkg/CFR-2015-title9-vol1/pdf/CFR-2015-title9-vol1.pdf (accessed on 28 July 2020).
- Houle, D.; Kondrashov, A.S. Mutation. In Principles of Evolutionary Genetics; Syrawood Publishing House: New York, NY, USA, 2018. [Google Scholar]
- Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018, 16, e3000003. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan, R.; Nebot, M.R.; Chirico, N.; Mansky, L.M.; Belshaw, R. Viral mutation rates. J. Virol. 2010, 84, 9733–9748. [Google Scholar] [CrossRef] [Green Version]
- Malpica, J.M.; Fraile, A.; Moreno, I.; Obies, C.I.; Drake, J.W.; Garcia-Arenal, F. The rate and character of spontaneous mutation in an RNA virus. Genetics 2002, 162, 1505–1511. [Google Scholar]
- Lanier, H.C.; Knowles, L.L. Is Recombination a Problem for Species-Tree Analyses? Syst. Biol. 2012, 61, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Posada, D. How does recombination affect phylogeny estimation? Trends Ecol. Evol. 2000, 15, 489–490. [Google Scholar] [CrossRef]
- Bousalem, M.; Douzery, E.J.; Fargette, D. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: A contribution to understanding potyvirus evolution. J. Gen. Virol. 2000, 81, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Worobey, M.; Holmes, E.C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 1999, 80, 2535–2543. [Google Scholar] [CrossRef]
- Strain, E.; Kelley, L.A.; Schultz-Cherry, S.; Muse, S.V.; Koci, M.D. Genomic analysis of closely related astroviruses. J. Virol. 2008, 82, 5099–5103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantin-Jackwood, M.J.; Spackman, E.; Woolcock, P.R. Molecular characterization and typing of chicken and turkey astroviruses circulating in the United States: Implications for diagnostics. Avian Dis. 2006, 50, 397–404. [Google Scholar] [CrossRef]
- Liu, N.; Wang, F.; Shi, J.; Zheng, L.; Wang, X.; Zhang, D. Molecular characterization of a duck hepatitis virus 3-like astrovirus. Vet. Microbiol. 2014, 170, 39–47. [Google Scholar] [CrossRef]
- De Battisti, C.; Salviato, A.; Jonassen, C.M.; Toffan, A.; Capua, I.; Cattoli, G. Genetic characterization of astroviruses detected in guinea fowl (Numida meleagris) reveals a distinct genotype and suggests cross-species transmission between turkey and guinea fowl. Arch. Virol. 2012, 157, 1329–1337. [Google Scholar] [CrossRef]
- Martella, V.; Pinto, P.; Tummolo, F.; De Grazia, S.; Giammanco, G.M.; Medici, M.C.; Ganesh, B.; L’Homme, Y.; Farkas, T.; Jakab, F.; et al. Analysis of the ORF2 of human astroviruses reveals lineage diversification, recombination and rearrangement and provides the basis for a novel sub-classification system. Arch. Virol. 2014, 159, 3185–3196. [Google Scholar] [CrossRef]
- De Grazia, S.; Medici, M.C.; Pinto, P.; Moschidou, P.; Tummolo, F.; Calderaro, A.; Bonura, F.; Banyai, K.; Giammanco, G.M.; Martella, V. Genetic heterogeneity and recombination in human type 2 astroviruses. J. Clin. Microbiol. 2012, 50, 3760–3764. [Google Scholar] [CrossRef] [Green Version]
- Babkin, I.V.; Tikunov, A.Y.; Zhirakovskaia, E.V.; Netesov, S.V.; Tikunova, N.V. High evolutionary rate of human astrovirus. Infect. Genet. Evol. 2012, 12, 435–442. [Google Scholar] [CrossRef]
- Graham, R.L.; Baric, R.S. Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission. J. Virol. 2010, 84, 3134–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, P. Recombination and Selection in the Evolution of Picornaviruses and Other Mammalian Positive-Stranded RNA Viruses. J. Virol. 2006, 80, 11124–11140. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.M.; Izeta, A.; Sánchez-Morgado, J.M.; Alonso, S.; Sola, I.; Balasch, M.; Plana-Durán, J.; Enjuanes, L. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 1999, 73, 7607–7618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez, V.; Meliopoulos, V.A.; Karlsson, E.A.; Hargest, V.; Johnson, C.; Schultz-Cherry, S. Astrovirus Biology and Pathogenesis. Annu. Rev. Virol. 2017, 4, 327–348. [Google Scholar] [CrossRef] [PubMed]
# | CAstV ID e | Capsid Genotyping | Origin | Province | Breeder Age | Age | Clinical Case | GenBank Accession |
---|---|---|---|---|---|---|---|---|
1 | 14-1235 a | Biv | Liver | AB | 30W | 1 DOA b | Flock A. Drop in production, very poor hatchability and poor viability of hatched chicks. | MT789774 |
2 | 14-1235 b | Biv | Intestine | AB | 30W | 1 DOA | MT789775 | |
3 | 14-1235 c | Biv | Intestine | AB | 28W | 1 DOA | Flock B. Drop in production, very poor hatchability and poor viability of hatched chicks. | MT789776 |
4 | 14-1235 d | Biv | Liver | AB | 28W | 1 DOA | MT789777 | |
5 | 15-1262 a | Biv | Liver | AB | 32W | 1 DOA | Flock A. Poor hatchability. Slow hatching eggs. Red hocks on many chicks, yellow livers. No white chicks. | MT789778 |
6 | 15-1262 b | Biv | Liver | AB | 32W | 1 DOA | MT789779 | |
7 | 15-1262 c | Biv | Liver | AB | 33W | 1 DOA | Flock B. Poor hatchability. Slow hatching eggs. Increased culls with green livers and white chicks. | MT789780 |
8 | 15-1262 d | Biv | Liver | AB | 33W | 1 DOA | MT789781 | |
9 | 17-0773 a | Biv | Liver | AB | 30W | ~20 DOE c | Flock A. Poor hatchability. Increased culls were weak with green livers and white feathering. | MT789782 |
10 | 17-0773 b | Biv | Liver | AB | 30W | 1 DOA | MT789783 | |
11 | 17-0823 | Biv | Liver | AB | NDa | 6 DOA | High first week mortality at 0.25% per day- RSS d with swollen/pale kidneys and mottled livers. | MT789784 |
12 | 18-0942 | Biv | Liver | SK | 40W | 1 DOA | Fertility 92%; hatchability 79%. High number of culls, 70% of them small and white with bronze/tan livers. | MT789785 |
13 | 19-0935 | Biv | Liver | SK | 28W | 1 DOA | Fertility 81%; hatchability 68.9%; Culls 2– 90% of culls were white. | MT789786 |
14 | 19-0981 | Biv | Liver | SK | 38W | 1 DOA | Fertility 92.2%; hatchability 84.3%; Culls 1.42%—25–30% culls are white. | MT789787 |
Sequence | Genotype | Phylogenetic Tree | GenBank Number | Paper Published | |||
---|---|---|---|---|---|---|---|
Whole Genome | ORF1a | ORF1b | ORF2 | ||||
14-1235a-AB | Biv | X | X | X | X | MT789774 | This Study |
14-1235b-AB | Biv | X | X | X | X | MT789775 | |
14-1235c-AB | Biv | X | X | X | X | MT789776 | |
14-1235d-AB | Biv | X | X | X | X | MT789777 | |
15-1262a-AB | Biv | X | X | X | X | MT789778 | |
15-1262b-AB | Biv | X | X | X | X | MT789779 | |
15-1262c-AB | Biv | X | X | X | X | MT789780 | |
15-1262d-AB | Biv | X | X | X | X | MT789781 | |
17-0773a-AB | Biv | X | X | X | X | MT789782 | |
17-0773b-AB | Biv | X | X | X | X | MT789783 | |
17-0823-AB | Biv | X | X | X | X | MT789784 | |
18-0942-SK | Biv | X | X | X | X | MT789785 | |
19-0935-SK | Biv | X | X | X | X | MT789786 | |
19-0981-SK | Biv | X | X | X | X | MT789787 | |
HBLP717-1/CN/2018 * | Bi | X | X | X | X | MN725025 | [2] |
GDYHTJ718-6/CN/2018 * | Bi | X | X | X | X | MN725026 | |
GA2011/US/2011 ** | Bii | X | X | X | X | JF414802 | [15] |
CkP5/US/2016 ** | Biv | X | X | X | X | KX397576 | |
CC_CkAstV/US/2014 ** | Biv | X | X | X | X | KX397575 | |
ANAND/IN/2016 *** | Biii | X | X | X | X | KY038163 | [50] |
G059/PL/2014 **** | Aiii | X | X | X | X | KT886453 | [51] |
4175/US/2011 ** | Bii | X | X | X | X | JF832365 | Unpublished, 2011 |
CZ1701/CN/2017 * | Bi | X | X | X | X | MN807051 | Unpublished, 2019 |
NJ1701/CN/2017 * | Bi | X | X | X | X | MK746105 | |
612 | Ai | X | JN582317 | [5] | |||
P22-18.8.00 | Ai | X | JN582318 | ||||
VF08-56 | Ai | X | JN582319 | ||||
VF08-60 | Ai | X | JN582320 | ||||
VF08-54 | Aii | X | JN582323 | ||||
VF08-18/7 | Aii | X | JN582324 | ||||
VF08-36 | Aii | X | JN582325 | ||||
VF08-48 | Aii | X | JN582326 | ||||
VF08-46 | Aiii | X | JN582321 | ||||
VF08-65 | Aiii | X | JN582322 | ||||
1010 | Bi | X | JN582306 | ||||
11522 | Bi | X | JN582305 | ||||
11672 | Bi | X | JN582327 | ||||
FP3 | Bi | X | JN582328 | ||||
VF06-1/1 | Bi | X | JN582307 | ||||
VF06-1/2 | Bi | X | JN582308 | ||||
VF06-1/4 | Bi | X | JN582309 | ||||
VF06-7/5 | Bi | X | JN582310 | ||||
VF06-7/8 | Bi | X | JN582311 | ||||
05V150/152/154 | Bii | X | JN582312 | ||||
VF06-7/3 | Bii | X | JN582313 | ||||
VF07-4/2 | Bii | X | JN582314 | ||||
VF08-29 | Bii | X | JN582315 | ||||
VF08-3 | Bii | X | JN582316 | ||||
PDRC/200/EastZone | Biii | X | JX945853 | Unpublished, 2013 | |||
PDRC/526/NorthZone | Biii | X | JX945857 | ||||
PDRC/573/WestZone | Biii | X | JX945861 | ||||
PDRC/447/SouthZone | Biii | X | KC618323 |
Event | Recombinant (R)& Parents (P1, P2) | No. of Methods | P-Value Range | Position of Breaking Points |
---|---|---|---|---|
3 | (R)- 19-0981/CA-SK/19 P1- Bii-GA2011/US/2011 P2- 19-0935/CA-SK/19 | 6 | 1.811 × 10−28–1.695 × 10−90 | ORF2 Start: 5090 nt End: 7750 nt |
4 | (R)- 19-0981/CA-SK/19 P1- Bii-4175/US/2011 P2- 19-0935/CA-SK/19 | 6 | 5.440 × 10−11–8.389 × 10−86 | ORF2 Start: 5088 nt End: 84 nt |
5 | (R)- Biii-ANAND/IN/2016 P1- Bi-HBLP717-1/CN/2018 P2- 15-1262b/CA-AB/15 | 7 | 7.876 × 10−06–1.566 × 10−86 | ORf2 Start: 7770 nt End: 5470 nt |
6 | (R)- Bi-GDYHTJ718-6/CN/2018 P1- Bi-CZ1701/CN/2017 P2- CC_CkAstV/US/2014 | 6 | 1.501 × 10−07–2.149 × 10−32 | Start: 7606 nt End: 130 nt |
7 | (R)- 18-0942/CA-SK/18 P1- 19-0981/CA-SK/19 P2- 19-0935/CA-SK/19 | 7 | 5.222 × 10−11–4.321 × 10−46 * | ORF1a-ORF1b Start: 1507 nt End: 5332 nt |
8 | (R)- 18-0942/CA-SK/18 P1- Bi-GDYHTJ718-6/CN/2018 P2- Bii-GA2011/US/2011 | 6 | 1.613 × 10−04–1.910 × 10−14 ** | ORF2 Start: ~7294 nt End: 5620 nt |
9 | (R)- 19-0935/CA-SK/19 P1- 17-0773a/CA-AB/17 P2- 19-0981/CA-SK/19 | 6 | 1.129 × 10−03–1.876 × 10−13 | ORF2 Start: 5098 nt End: 7573 nt |
10 | (R)- 19-0981/CA-SK/19 P1- 15-1262b/CA-AB/15 P2- 17-0773a/CA-AB/17 | 6 | 3.210 × 10−07–1.015 × 10−23 | ORF2 Start: 5133 nt End: 804 nt |
12 | (R)- CC_CkAstV/US/2014 P1- 14-1235d/CA-AB/14 P2- Bii-4175/US/2011 | 6 | 1.171 × 10−05–3.033 × 10−23 | ORF1a-ORF1b Start: 2818 nt End: ~4929 nt |
13 | (R)- Bii-GA2011/US/2011 P1- Bii-4175/US/2011 P2- 18-0942/CA-SK/18 | 6 | 1.630 × 10−02–3.383 × 10−09 | ORF1a-ORF1b Start: 2408 nt End: 4012 nt |
14 | (R)- Bii-GA2011/US/2011 P1- 18-0942/CA-SK/18 P2- Biii-ANAND/IN/2016 | 7 | 1.088 × 10−03–9.808 × 10−08 | ORF1a Start: 1912 nt End: ~2407 nt |
15 | (R)- Bii-GA2011/US/2011 P1- 19-0981/CA-SK/19 P2- CC_CkAstV/US/2014 | 7 | 1.167 × 10−03–3.633 × 10−08 | ORF1a Start: 1000 nt End: 1327 nt |
# | Recombinant Genotype | Recombinant Sequence | Parental Genotype | Parent Sequences |
---|---|---|---|---|
1 | Biv | 19-0981/CA-SK/19 | Biv | CC_CkAstV/US/2014 |
Bii | GA2011/US/2011 | |||
Bii | 4175/US/2011 | |||
2 | Biii | ANAND/IN/2016 | Bi | HBLP717-1/CN/2018 |
Biv | 15-1262b/CA-AB/15 | |||
3 | Bi | GDYHTJ718-6/CN/2018 | Bi | CZ1701/CN/2017 |
Biv | CC_CkAstV/US/2014 | |||
4 | Biv | 18-0942/CA-SK/18 | Biv | 19-0981/CA-SK/19 |
Biv | 19-0935/CA-SK/19 | |||
5 | Biv | Biv-19-0935/CA-SK/19 | Biv | 17-0773a/CA-AB/17 |
Biv | 19-0981/CA-SK/19 | |||
6 | Biv | CC_CkAstV/US/2014 | Biv | 14-1235d/CA-AB/14, |
Bii | GA2011/US/2011 | |||
Bii | 4175/US/2011 | |||
7 | Bii | GA2011/US/2011 | Bii | 4175/US/2011, |
Biv | 19-0981/CA-SK/19, | |||
Biv | CC_CkAstV/US/2014, | |||
Biii | ANAND/IN/2016 | |||
Biv | 18-0942/CA-SK/18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomino-Tapia, V.; Mitevski, D.; Inglis, T.; van der Meer, F.; Martin, E.; Brash, M.; Provost, C.; Gagnon, C.A.; Abdul-Careem, M.F. Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada. Viruses 2020, 12, 1096. https://doi.org/10.3390/v12101096
Palomino-Tapia V, Mitevski D, Inglis T, van der Meer F, Martin E, Brash M, Provost C, Gagnon CA, Abdul-Careem MF. Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada. Viruses. 2020; 12(10):1096. https://doi.org/10.3390/v12101096
Chicago/Turabian StylePalomino-Tapia, Victor, Darko Mitevski, Tom Inglis, Frank van der Meer, Emily Martin, Marina Brash, Chantale Provost, Carl A. Gagnon, and Mohamed Faizal Abdul-Careem. 2020. "Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada" Viruses 12, no. 10: 1096. https://doi.org/10.3390/v12101096
APA StylePalomino-Tapia, V., Mitevski, D., Inglis, T., van der Meer, F., Martin, E., Brash, M., Provost, C., Gagnon, C. A., & Abdul-Careem, M. F. (2020). Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada. Viruses, 12(10), 1096. https://doi.org/10.3390/v12101096