Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and EHV-1 Strains
2.2. Nucleic Acid Extraction
2.3. PCR Assays
2.4. Sequencing Assay, MLST, Phylogenetic Analysis and 3D Modeling
2.5. Cell Culture and Virus Culture and Titration
2.6. Neutralisation Assay
2.7. Experimental Infection with EHV-1, Clinical Signs of Diseases, Virus Shedding and Cell-Associated Viraemia
2.8. In Vitro Antiviral Assay
2.9. Statistical Analysis
3. Results
3.1. EHV-1 Outbreak Description
3.2. New (ORF30) C2254 Mutation Identification
3.3. Virus Isolation
3.4. Phylogeny
3.5. Experimental Infection
3.6. Antiviral Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davison, A.J. Herpesvirus systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlsein, P.; Lehmbecker, A.; Spitzbarth, I.; Algermissen, D.; Baumgärtner, W.; Böer, M.; Kummrow, M.; Haas, L.; Grummer, B. Fatal epizootic equine herpesvirus 1 infections in new and unnatural hosts. Vet. Microbiol. 2011, 149, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.S.M.; Kinoh, M.; Matsumura, T.; Kennedy, M.; Allen, G.P.; Yamaguchi, T.; Fukushi, H. Genetic relatedness and pathogenicity of equine herpesvirus 1 isolated from onager, zebra and gazelle. Arch. Virol. 2007, 152, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.R.; Edington, N.; Mumford, J.A. Variation in cellular tropism between isolates of Equine herpesvirus-1 in Foals. Arch. Virol. 1982, 74, 41–51. [Google Scholar] [CrossRef]
- Kydd, J.H.; Smith, K.C.; Hannant, D.; Livesay, G.J.; Mumford, J.A. Distribution of Equid herpesvirus-1 (EHV-1) in the respiratory tract of ponies: Implications for vaccination strategies. Equine Vet. J. 1994, 26, 466–469. [Google Scholar] [CrossRef]
- Kydd, J.H.; Smith, K.C.; Hannant, D.; Livesay, G.J.; Mumford, J.A. Distribution of Equid herpesvirus-1 (EHV-1) in respiratory tract associated lymphoid tissue: Implications for cellular immunity. Equine Vet. J. 1994, 26, 470–473. [Google Scholar] [CrossRef]
- Edington, N.; Bridges, C.G.; Patel, J.R. Endothelial cell infection and thrombosis in paralysis caused by equid herpesvirus-1: Equine stroke. Arch. Virol. 1986, 90, 111–124. [Google Scholar] [CrossRef]
- Edington, N.; Smyth, B.; Griffiths, L. The role of endothelial cell infection in the endometrium, placenta and foetus of equid herpesvirus 1 (EHV-1) Abortions. J. Comp. Pathol. 1991, 104, 379–387. [Google Scholar] [CrossRef]
- Allen, G.P. Respiratory Infections by Equine Herpesvirus Types 1 and 4. In Equine Respiratory Diseases; International Veterinary Information Service: Ithaca, NY, USA, 2002. [Google Scholar]
- Paillot, R.; Case, R.; Ross, J.; Newton, R.; Nugent, J. Equine Herpes Virus-1: Virus, Immunity and Vaccines. TOVSJ 2008, 2, 68–91. [Google Scholar] [CrossRef]
- Welch, H.M.; Bridges, C.G.; Lyon, A.M.; Griffiths, L.; Edington, N. Latent equid herpesviruses 1 and 4: Detection and distinction using the polymerase chain reaction and co-cultivation from lymphoid tissues. J. Gen. Virol. 1992, 73, 261–268. [Google Scholar] [CrossRef]
- Slater, J.D.; Borchers, K.; Thackray, A.M.; Field, H.J. The trigeminal ganglion is a location for equine herpesvirus 1 latency and reactivation in the horse. J. Gen. Virol. 1994, 75, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Bridges, C.G.; Huckle, A. Experimental reactivation of equid herpesvirus 1 (EHV 1) following the administration of corticosteroids. Equine Vet. J. 1985, 17, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.P. Antemortem detection of latent infection with neuropathogenic strains of equine herpesvirus-1 in horses. Am. J. Vet. Res. 2006, 67, 5. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Welch, H.M.; Griffiths, L. The prevalence of latent Equid herpesviruses in the tissues of 40 abattoir horses. Equine Vet. J. 1994, 26, 140–142. [Google Scholar] [CrossRef]
- Telford, E.A.R.; Watson, M.S.; McBride, K.; Davison, A.J. The DNA sequence of equine herpesvirus-1. Virology 1992, 189, 304–316. [Google Scholar] [CrossRef]
- Nugent, J.; Birch-Machin, I.; Smith, K.C.; Mumford, J.A.; Swann, Z.; Newton, J.R.; Bowden, R.J.; Allen, G.P.; Davis-Poynter, N. Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. J. Virol. 2006, 80, 4047–4060. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.B.; Loregian, A.; Perkins, G.A.; Nugent, J.; Buckles, E.L.; Mercorelli, B.; Kydd, J.H.; Palù, G.; Smith, K.C.; Osterrieder, N.; et al. A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathog. 2007, 3. [Google Scholar] [CrossRef]
- Van de Walle, G.R.; Goupil, R.; Wishon, C.; Damiani, A.; Perkins, G.A.; Osterrieder, N. A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J. Infect. Dis. 2009, 200, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Lunn, D.P.; Davis-Poynter, N.; Flaminio, M.J.B.F.; Horohov, D.W.; Osterrieder, K.; Pusterla, N.; Townsend, H.G.G. Equine Herpesvirus-1 Consensus Statement. J. Vet. Intern. Med. 2009, 23, 450–461. [Google Scholar] [CrossRef]
- Pronost, S.; Léon, A.; Legrand, L.; Fortier, C.; Miszczak, F.; Freymuth, F.; Fortier, G. Neuropathogenic and non-neuropathogenic variants of equine herpesvirus 1 in France. Vet. Microbiol. 2010, 145, 329–333. [Google Scholar] [CrossRef]
- Sutton, G.; Garvey, M.; Cullinane, A.; Jourdan, M.; Fortier, C.; Moreau, P.; Foursin, M.; Gryspeerdt, A.C.; Maisonnier, V.; Marcillaud-Pitel, C.; et al. Molecular Surveillance of EHV-1 Strains Circulating in France during and after the Major 2009 Outbreak in Normandy Involving Respiratory Infection, Neurological Disorder, and Abortion. Viruses 2019, 11, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, G.P.; Breathnach, C.C. Quantification by real-time PCR of the magnitude and duration of leucocyte-associated viraemia in horses infected with neuropathogenic vs. non-neuropathogenic strains of EHV- 1. Equine Vet. J. 2010, 38, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Heldens, J.G.M.; Hannant, D.; Cullinane, A.A.; Prendergast, M.J.; Mumford, J.A.; Nelly, M.; Kydd, J.H.; Weststrate, M.W.; van den Hoven, R. Clinical and virological evaluation of the efficacy of an inactivated EHV1 and EHV4 whole virus vaccine (Duvaxyn EHV1,4). Vaccination/challenge experiments in foals and pregnant mares. Vaccine 2001, 19, 4307–4317. [Google Scholar] [CrossRef]
- Goodman, L.; Wagner, B.; Flaminio, M.; Sussman, K.; Metzger, S.; Holland, R.; Osterrieder, N. Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1). Vaccine 2006, 24, 3636–3645. [Google Scholar] [CrossRef] [PubMed]
- Goehring, L.S.; Wagner, B.; Bigbie, R.; Hussey, S.B.; Rao, S.; Morley, P.S.; Lunn, D.P. Control of EHV-1 viremia and nasal shedding by commercial vaccines. Vaccine 2010, 28, 5203–5211. [Google Scholar] [CrossRef] [PubMed]
- Thieulent, C.J.; Hue, E.S.; Fortier, C.I.; Dallemagne, P.; Zientara, S.; Munier-Lehmann, H.; Hans, A.; Fortier, G.D.; Pitel, P.-H.; Vidalain, P.-O.; et al. Screening and evaluation of antiviral compounds against Equid alpha-herpesviruses using an impedance-based cellular assay. Virology 2019, 526, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Garre, B.; Vandermeulen, K.; Nugent, J.; Neyts, J.; Croubels, S.; Debacker, P.; Nauwynck, H. In vitro susceptibility of six isolates of equine herpesvirus 1 to acyclovir, ganciclovir, cidofovir, adefovir, PMEDAP and foscarnet. Vet. Microbiol. 2007, 122, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, L.K.; Bentz, B.G.; Bourne, D.W.A.; Erkert, R.S. Pharmacokinetics of valacyclovir in the adult horse. J. Vet. Pharmacol. Ther. 2008, 31, 312–320. [Google Scholar] [CrossRef]
- Paillot, R.; Sutton, G.; Thieulent, C.; Marcillaud-Pitel, C.; Pronost, S. New EHV-1 variant identified. Vet. Rec. 2020, 186, 573. [Google Scholar] [CrossRef]
- Diallo, I.S.; Hewitson, G.; Wright, L.; Rodwell, B.J.; Corney, B.G. Detection of equine herpesvirus type 1 using a real-time polymerase chain reaction. J. Virol. Methods 2006, 131, 92–98. [Google Scholar] [CrossRef]
- Pronost, S.; Legrand, L.; Pitel, P.-H.; Wegge, B.; Lissens, J.; Freymuth, F.; Richard, E.; Fortier, G. Outbreak of Equine Herpesvirus Myeloencephalopathy in France: A Clinical and Molecular Investigation: Outbreak of EHV-1 myeloencephalopathy. Transbound. Emerg. Dis. 2012, 59, 256–263. [Google Scholar] [CrossRef]
- Allen, G.P. Development of a Real-Time Polymerase Chain Reaction Assay for Rapid Diagnosis of Neuropathogenic Strains of Equine Herpesvirus-1. J. Vet. Diagn. Investig. 2007, 19, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Garvey, M.; Lyons, R.; Hector, R.; Walsh, C.; Arkins, S.; Cullinane, A. Molecular Characterisation of Equine Herpesvirus 1 Isolates from Cases of Abortion, Respiratory and Neurological Disease in Ireland between 1990 and 2017. Pathogens 2019, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hue, E.; Richard, E.; Fortier, C.; Fortier, G.; Paillot, R.; Raue, R.; Pronost, S. Equine PBMC Cytokines Profile after In Vitro α- and γ-EHV Infection: Efficacy of a Parapoxvirus Ovis Based-Immunomodulator Treatment. Vaccines 2017, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, M.A. Determination of 50% endpoint titer using a simple formula. WJV 2016, 5, 85. [Google Scholar] [CrossRef]
- Fang, Y.; Ye, P.; Wang, X.; Xu, X.; Reisen, W. Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology. J. Virol. Methods 2011, 173, 251–258. [Google Scholar] [CrossRef] [Green Version]
- OIE World Organization for Animal Health. Available online: https://www.oie.int/en/standard-setting/terrestrial-manual/access-online/ (accessed on 30 August 2020).
- Garrett, D.; Montesso, F.; Fougerolle, S.; Lopez-Alvarez, M.R.; Birand, I.; De Bock, M.; Huang, C.M.; Legrand, L.; Pronost, S.; Paillot, R. Refinement of the equine influenza model in the natural host: A meta-analysis to determine the benefits of individual nebulisation for experimental infection and vaccine evaluation in the face of decreased strain pathogenicity. Vet. Microbiol. 2017, 211, 150–159. [Google Scholar] [CrossRef]
- PFIE Infectiology of Farm, Model and Wild Animals Facility. Available online: https://www6.val-de-loire.inra.fr/pfie_eng/ (accessed on 2 October 2020).
- Paillot, R.; Prowse, L.; Donald, C.; Medcalf, E.; Montesso, F.; Bryant, N.; Watson, J.; Jeggo, M.; Elton, D.; Newton, R.; et al. Efficacy of a whole inactivated EI vaccine against a recent EIV outbreak isolate and comparative detection of virus shedding. Vet. Immunol. Immunopathol. 2010, 136, 272–283. [Google Scholar] [CrossRef]
- Elion, G.B. The biochemistry and mechanism of action of acyclovir. J. Antimicrob. Chemother. 1983, 12, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.; Boehme, R. Antiviral Activity and Mechanism of Action of Ganciclovir. Clin. Infect. Dis. 1988, 10, S490–S494. [Google Scholar] [CrossRef] [PubMed]
- Sheaff, R.; Ilsley, D.; Kuchta, R. Mechanism of DNA polymerase alpha inhibition by aphidicolin. Biochemistry 1991, 30, 8590–8597. [Google Scholar] [CrossRef] [PubMed]
- StatGraphics Plus. Available online: https://www.statgraphics.com/ (accessed on 30 August 2020).
- Bryant, N.A.; Wilkie, G.S.; Russell, C.A.; Compston, L.; Grafham, D.; Clissold, L.; McLay, K.; Medcalf, L.; Newton, R.; Davison, A.J.; et al. Genetic diversity of equine herpesvirus 1 isolated from neurological, abortigenic and respiratory disease outbreaks. Transbound Emerg. Dis. 2018, 65, 817–832. [Google Scholar] [CrossRef] [Green Version]
- Dimock, W.; Edwards, P. Is there a filterable virus of abortion in mares. Bull. Ky. Agric. Exp. Stn. 1933, 333, 291–301. [Google Scholar]
- Gryspeerdt, A.C.; Vandekerckhove, A.P.; Garré, B.; Barbé, F.; Van de Walle, G.R.; Nauwynck, H.J. Differences in replication kinetics and cell tropism between neurovirulent and non-neurovirulent EHV1 strains during the acute phase of infection in horses. Vet. Microbiol. 2010, 142, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Wellington, J.E.; Love, D.N.; Whalley, J.M. Evidence for involvement of equine herpesvirus 1 glycoprotein B in cell-cell fusion. Arch. Virol. 1996, 141, 167–175. [Google Scholar] [CrossRef]
- Poelaert, K.C.K.; Van Cleemput, J.; Laval, K.; Favoreel, H.W.; Couck, L.; Van den Broeck, W.; Azab, W.; Nauwynck, H.J. Equine Herpesvirus 1 Bridles T Lymphocytes to Reach Its Target Organs. J. Virol. 2019, 93, e02098-18. [Google Scholar] [CrossRef] [Green Version]
- Laval, K.; Van Cleemput, J.; Poelaert, K.C.; Brown, I.K.; Nauwynck, H.J. Replication of neurovirulent equine herpesvirus type 1 (EHV-1) in CD172a+ monocytic cells. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.A.; Goodman, L.B.; Tsujimura, K.; Van de Walle, G.R.; Kim, S.G.; Dubovi, E.J.; Osterrieder, N. Investigation of the prevalence of neurologic equine herpes virus type 1 (EHV-1) in a 23-year retrospective analysis (1984–2007). Vet. Microbiol. 2009, 139, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Vissani, M.A.; Becerra, M.L.; Olguín Perglione, C.; Tordoya, M.S.; Miño, S.; Barrandeguy, M. Neuropathogenic and non-neuropathogenic genotypes of Equid Herpesvirus type 1 in Argentina. Vet. Microbiol. 2009, 139, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, A.-K.; Borchers, K. Detection of neuropathogenic strains of Equid Herpesvirus 1 (EHV-1) associated with abortions in Germany. Vet. Microbiol. 2011, 147, 176–180. [Google Scholar] [CrossRef]
- Pusterla, N.; Hatch, K.; Crossley, B.; Wademan, C.; Barnum, S.; Flynn, K. Equine herpesvirus-1 genotype did not significantly affect clinical signs and disease outcome in 65 horses diagnosed with equine herpesvirus-1 myeloencephalopathy. Vet. J. 2020, 255, 105407. [Google Scholar] [CrossRef] [PubMed]
- Pronost, S.; Cook, R.F.; Fortier, G.; Timoney, P.J.; Balasuriya, U.B.R. Relationship between equine herpesvirus-1 myeloencephalopathy and viral genotype: EHV-1, genotype and EHM. Equine Vet. J. 2010, 42, 672–674. [Google Scholar] [CrossRef]
- Shiraki, K. Antiviral Drugs Against Alphaherpesvirus. Adv. Exp. Med. Biol. 2018, 1045, 103–122. [Google Scholar] [CrossRef]
- Baranovskiy, A.G.; Babayeva, N.D.; Suwa, Y.; Gu, J.; Pavlov, Y.I.; Tahirov, T.H. Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res. 2014, 42, 14013–14021. [Google Scholar] [CrossRef] [Green Version]
- Bucknall, R.A.; Moores, H.; Simms, R.; Hesp, B. Antiviral Effects of Aphidicolin, a New Antibiotic Produced by Cephalosporium aphidicola. Antimicrob. Agents Chemother. 1973, 4, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, M.; Langer, K.; Vogel, J.-U.; Kreuter, J.; Rabenau, H.; Doerr, H.-W.; Cinatl, J. In vitro Antiviral Activity of Aphidicolin and its Derivates. Arzneimittelforschung 2011, 52, 393–399. [Google Scholar] [CrossRef]
- Larder, B.A.; Darby, G. Susceptibility to other antiherpes drugs of pathogenic variants of herpes simplex virus selected for resistance to acyclovir. Antimicrob. Agents Chemother. 1986, 29, 894–898. [Google Scholar] [CrossRef] [Green Version]
- Zarrouk, K.; Piret, J.; Boivin, G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res. 2017, 234, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Knafels, J.D.; Chang, J.S.; Waszak, G.A.; Baldwin, E.T.; Deibel, M.R.; Thomsen, D.R.; Homa, F.L.; Wells, P.A.; Tory, M.C.; et al. Crystal Structure of the Herpes Simplex Virus 1 DNA Polymerase. J. Biol. Chem. 2006, 281, 18193–18200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdis, A.J. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Front. Mol. Biosci. 2017, 4, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieulent, C.; Hue, E.S.; Sutton, G.; Fortier, C.; Dallemagne, P.; Zientara, S.; Munier-Lehmann, H.; Hans, A.; Paillot, R.; Vidalain, P.-O.; et al. Identification of antiviral compounds against equid herpesvirus-1 using real-time cell assay screening: Efficacy of decitabine and valganciclovir alone or in combination. Antivir. Res. 2020, 183, 104931. [Google Scholar] [CrossRef]
- Kasem, S.; Yu, M.H.H.; Yamada, S.; Kodaira, A.; Matsumura, T.; Tsujimura, K.; Madbouly, H.; Yamaguchi, T.; Ohya, K.; Fukushi, H. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology 2010, 400, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Pearson, A.; Coen, D.M. Identification, Localization, and Regulation of Expression of the UL24 Protein of Herpes Simplex Virus Type 1. JVI 2002, 76, 10821–10828. [Google Scholar] [CrossRef] [Green Version]
- Leiva-Torres, G.A.; Rochette, P.A.; Pearson, A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J. Gen. Virol. 2010, 91, 1109–1116. [Google Scholar] [CrossRef]
- Jacobson, J.G.; Martin, S.L.; Coen, D.M. A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J. Virol. 1989, 63, 1839–1843. [Google Scholar] [CrossRef] [Green Version]
- Sanabria-Solano, C.; Gonzalez, C.E.; Richerioux, N.; Bertrand, L.; Dridi, S.; Griffiths, A.; Langelier, Y.; Pearson, A. Regulation of viral gene expression by the herpes simplex virus 1 UL24 protein (HSV-1 UL24 inhibits accumulation of viral transcripts). Virology 2016, 495, 148–160. [Google Scholar] [CrossRef]
- Dridi, S.; Richerioux, N.; Gonzalez Suarez, C.E.; Vanharen, M.; Sanabria-Solano, C.; Pearson, A. A Mutation in the UL24 Gene Abolishes Expression of the Newly Identified UL24.5 Protein of Herpes Simplex Virus 1 and Leads to an Increase in Pathogenicity in Mice. J. Virol. 2018, 92, e00671-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussey, G.; Goehring, L.S.; Lunn, D.P.; Hussey, S.B.; Huang, T.; Osterrieder, N.; Powell, C.; Hand, J.; Holz, C.; Slater, J. Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions. Vet. Res. 2013, 44, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goehring, L.S.; van Maanen, C.; Berendsen, M.; Cullinane, A.; de Groot, R.J.; Rottier, P.J.M.; Wesselingh, J.J.C.M.; Sloet van Oldruitenborgh-Oosterbaan, M.M. Experimental infection with neuropathogenic equid herpesvirus type 1 (EHV-1) in adult horses. Vet. J. 2010, 186, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.P. Risk factors for development of neurologic disease after experimental exposure to equine herpesvirus-1 in horses. Am. J. Vet. Res. 2008, 69, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Whitwell, K.; Mumford, J.; Hannant, D.; Blunden, A.; Tearle, J. Virulence of the V592 Isolate of Equid Herpesvirus-1 in Ponies. J. Comp. Pathol. 2000, 122, 288–297. [Google Scholar] [CrossRef] [PubMed]
Antiviral Molecule Name | Abbreviation | Empirical Formula | DNA Polymerase Inhibitor | Initial Concentration | Final Concentration | Dilution Fold | Replicates |
---|---|---|---|---|---|---|---|
Ganciclovir | GCV | C9H13N5O4 | Nucleoside analogue 1 | 50 µM | 0.10 µM | 2 | 3 |
Aciclovir | ACV | C8H11N5O3 | Nucleoside analogue 2 | 100 µM | 0.78 µM | 2 | 3 |
Aphidicolin | ADP | C20H34O4 | Nucleoside-binding site homology 3 | 2.5 µM | 0.02 µM | 2 | 4 |
Primers and Probe | Sequence |
---|---|
Primer GaF | 5′-CCACCCTGGCGCTCG-3′ |
Primer GaR | 5′-AGCCAGTCGCGCAGCAAGATG-3′ |
Probe C2254 | 5′- NED-CATCCGTCCACTACTC-MGB-NFQ-3′ |
Thermoprofile | 95 °C during 10 min, 55 cycles x {95 °C during 15 s, 65 °C during 1 min} — QuantStudio™ 12K Flex Real-time PCR System |
Mixture for 1 sample | 2.5 µL DNA extract + 12.5 μL TaqMan Universal PCR Master Mix + 0.6 μL of each primer (20µM) + 0.5 µL of 10µM probe (depending on titration) + nuclease free water to complete to 25 µL |
Strain | UL Clade | ORF | 2 | 5 | 8 | 11 | 11 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 14 | 14 | 15 | 22 | 29 | 30 | 30 | 31 | 32 | 33 | 33 | 34 | 36 | 37 | 39 | 40 | 42 | 45 | 46 | 50 | 52 | 57 | 73 | 76 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nt | 175 | 340 | 340 | 565 | 703 | 913 | 1213 | 1378 | 1474 | 1477 | 1495 | 1852–1860 | 1882 | 2074 | 496 | 1288 | 34 | 2254 | 2968 | 268 | 124 | 43 | 2926 | 196 | 139 | 793 | 1318 | 586 | 3823 | 1279 | 418 | 1009 | 1156 | 2410 | 364 | 382 | |||
Ab4 | 1 | GGC | GGC | GAC | CAG | AGG | TCA | GCA | GCC | GAA | ACT | GCA | --- | AGA | AGC | GAT | TCC | ACG | GAC | GAG | AAC | TCG | AAT | AAT | GAT | AGC | GCG | TCA | CGT | AAG | GAA | TTT | CCG | GCC | AAG | GCC | TTT | ||
FR-56628 V1 | 10 | .A. | .T. | ... | ... | ... | .T. | ... | A.. | ... | ... | ... | CCCCAGCCG | ... | ... | A.. | ... | ... | C.. | A.. | .G. | ... | C.. | G.. | ... | ... | .TA | ... | ... | ... | .G. | .C. | ... | .T. | .G. | ... | .C. | ||
FR-56628 V2 | 10 | .A. | .T. | ... | ... | ... | .T. | ... | A.. | ... | ... | ... | CCCCAGCCG | ... | ... | A.. | ... | ... | C.. | A.. | .G. | ... | C.. | G.. | ... | ... | .T. | ... | ... | ... | .G. | .C. | ... | .T. | .G. | ... | .C. | ||
V592 | 9 | .A. | .T. | A.. | A.. | ... | .T. | ... | A.. | ... | ... | ... | CCCCAGCCG | ... | ... | A.. | C.. | .A. | A.. | A.. | .G. | .T. | C.. | G.. | .G. | C.. | .T. | .T. | .A. | .G. | .G. | .C. | T.. | .T. | .G. | .T. | .C. |
Strains | GCV | ACV | APD | |||
---|---|---|---|---|---|---|
qPCR | RTCA | qPCR | RTCA | qPCR | RTCA | |
FR-56628 (C2254/H752) | 0.57 ± 0.2 | 1.29 ± 0.69 | 7.87 ± 0.98 a | 30.32 ± 3.89 c | 0.05 ± 0.03 | 0.14 ± 0.07 |
FR-6815 (A2254/N752) | 0.75 ± 0.44 | 2.49 ± 1.20 | 14.15 ± 5.27 b | 56.19 ± 11.04 c | 0.09 ± 0.04 | 0.19 ± 0.03 b |
FR-38991 (G2254/D752) | 0.73 ± 0.42 | 1.20 ± 0.55 | 35.98 ± 10.97 a,b | 35.09 ± 10.32 | 0.09 ± 0.04 | 0.09 ± 0.05 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutton, G.; Thieulent, C.; Fortier, C.; Hue, E.S.; Marcillaud-Pitel, C.; Pléau, A.; Deslis, A.; Guitton, E.; Paillot, R.; Pronost, S. Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour. Viruses 2020, 12, 1160. https://doi.org/10.3390/v12101160
Sutton G, Thieulent C, Fortier C, Hue ES, Marcillaud-Pitel C, Pléau A, Deslis A, Guitton E, Paillot R, Pronost S. Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour. Viruses. 2020; 12(10):1160. https://doi.org/10.3390/v12101160
Chicago/Turabian StyleSutton, Gabrielle, Côme Thieulent, Christine Fortier, Erika S. Hue, Christel Marcillaud-Pitel, Alexis Pléau, Alain Deslis, Edouard Guitton, Romain Paillot, and Stéphane Pronost. 2020. "Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour" Viruses 12, no. 10: 1160. https://doi.org/10.3390/v12101160
APA StyleSutton, G., Thieulent, C., Fortier, C., Hue, E. S., Marcillaud-Pitel, C., Pléau, A., Deslis, A., Guitton, E., Paillot, R., & Pronost, S. (2020). Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour. Viruses, 12(10), 1160. https://doi.org/10.3390/v12101160