Post-COVID-19 Action: Guarding Africa’s Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions
Abstract
:1. Preamble: COVID-19 Is a Global Wake-Up Call on Preparedness for Viral Pathogens
2. Current State of Africa’s Research in Virus Discovery, Diagnostics, and Plant-Virus-Vector Interactions
2.1. HTS-Driven Virus Discovery
2.2. Plant Virus Diagnostics
2.3. Plant-Virus-Vector Interactions Research
2.4. Learning from Past Application of Transdisciplinary Interventions in Addressing Plant Virus Challenges
2.4.1. Case Study 1. Maize Lethal Necrosis Disease
2.4.2. Case Study 2. Common Bean: Recombinant Viruses and New Viral Threats
3. What a New Research Centre Could Do for Africa
3.1. High-Throughput Sequencing: A Lynchpin in Preparedness for Viral Diseases
3.2. Diagnostics: Enabling Crowdsourcing of Virus Incidence
3.3. Plant-Virus-Vector Interactions Research for Modelling and Disruption of Virus Transmission
4. Practical Steps Forward
Funding
Acknowledgments
Conflicts of Interest
References
- Cyranoski, D. Profile of a killer virus. Nature 2020, 581, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Munnink, B.B.O.; The Dutch-Covid-19 response team; Nieuwenhuijse, D.F.; Stein, M.; O’Toole, Á.; Haverkate, M.; Mollers, M.; Kamga, S.K.; Schapendonk, C.; Pronk, M.; et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 2020, 26, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Nguyen, T.; Bang, D.D.; Wol, A. 2019 Novel coronavirus disease (COVID-19): Paving the road for rapid detection and point-of-care diagnostics. Micromachines 2020, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105955. [Google Scholar] [CrossRef]
- Tang, Y.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 2020, 53, e00512-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Zhai, Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 2020, 62, 102390. [Google Scholar] [CrossRef]
- Galea, S.; Merchant, R.M.; Lurie, N. The mental health consequences of COVID-19 and physical distancing The need for prevention and early intervention. JAMA Int. Med. 2020, 180, 817–818. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Krainer, K.M.C. Pandemics of people and plants: Which is the greater threat to food security? Mol. Plant 2020, 13, 933–934. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; Mcroberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Id, J.N.; Onyegbule, O.; Id, C.N.; Onyeka, J.; Id, S.V.B.; Seal, S.; Colvin, J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLoS Negl. Trop. Dis. 2020, 15, e0232616. [Google Scholar] [CrossRef]
- Mutuku, J.M.; Wamonje, F.O.; Mukeshimana, G.; Njuguna, J.; Wamalwa, M.; Choi, S.-K.; Tungadi, T.; Djikeng, A.; Kelly, K.; Domelevo Entfellner, J.-B.; et al. Metagenomic analysis of plant virus occurrence in common bean (Phaseolus vulgaris) in central Kenya. Front. Microbiol. 2018, 9, 2939. [Google Scholar] [CrossRef] [PubMed]
- Mwaipopo, B.; Nchimbi-Msolla, S.; Njau, P.J.R.; Mark, D.; Mbanzibwa, D.R. Comprehensive surveys of Bean common mosaic virus and Bean common mosaic necrosis virus and molecular evidence for occurrence of other Phaseolus vulgaris viruses in Tanzania. Plant Dis. 2018, 102, 2361–2370. [Google Scholar] [CrossRef] [Green Version]
- Wainaina, J.M.; Kubatko, L.; Harvey, J.; Ateka, E.; Makori, T.; Karanja, D.; Boykin, L.M.; Kehoe, M.A. Evolutionary insights of bean common mosaic necrosis virus and cowpea aphid-borne mosaic virus. PeerJ 2019, 7, e6792. [Google Scholar] [CrossRef] [Green Version]
- Wainaina, J.M.; Ateka, E.; Makori, T.; Kehoe, M.A.; Boykin, L.M. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019, 7, e6465. [Google Scholar] [CrossRef] [Green Version]
- Wamonje, F.O.; Michuki, G.N.; Braidwood, L.A.; Njuguna, J.N.; Mutuku, J.M.; Djikeng, A.; Harvey, J.J.W.; Carr, J.P. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol. J. 2017, 14, 188. [Google Scholar] [CrossRef] [Green Version]
- Wamaitha, M.J.; Nigam, D.; Maina, S.; Stomeo, F.; Wangai, A.; Njuguna, J.N.; Holton, T.A.; Wanjala, B.W.; Wamalwa, M.; Lucas, T.; et al. Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virol. J. 2018, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Kiruwa, F.H.; Mutiga, S.; Njuguna, J.; Machuka, E.; Senay, S.; Feyissa, T.; Ndakidemi, P.A.; Stomeo, F. Status and epidemiology of Maize Lethal Necrotic Disease in northern Tanzania. Pathogens 2020, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Stewart, L.R.; Quality, W.; States, U.; Agricultural, A. Johnsongrass mosaic virus contributes to Maize Lethal Necrosis in East Africa. Plant Dis. 2017, 101, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Wokorach, G.; Njuguna, J.; Edema, H.; Njung, V.; Machuka, E.M.; Yao, N.; Stomeo, F.; Echodu, R. Genomic analysis of Sweet potato feathery mottle virus from East Africa. Physiol. Mol. Plant Pathol. 2020, 110, 101473. [Google Scholar] [CrossRef]
- Nhlapo, T.F.; Rees, D.J.G.; Odeny, D.A.; Mulabisana, J.M.; Rey, M.E.C. Viral metagenomics reveals sweet potato virus diversity in the Eastern and Western Cape provinces of South Africa. S. Afr. J. Bot. 2018, 117, 256–267. [Google Scholar] [CrossRef]
- Nhlapo, T.F.; Mulabisana, J.M.; Odeny, D.A.; Rey, M.E.C.; Rees, D.J.G.; Diego, S. First Report of Sweet potato badnavirus A and Sweet potato badnavirus B in South Africa. Dis. Notes 2018, 102, 1865. [Google Scholar] [CrossRef]
- Mumo, N.N.; Mamati, G.E.; Ateka, E.M.; Rimberia, F.K.; Asudi, G.O.; Boykin, L.M.; Machuka, E.M.; Njuguna, J.N.; Pelle, R.; Stomeo, F.; et al. Metagenomic analysis of plant viruses associated with papaya ringspot disease in Carica papaya L. in Kenya. Front. Microbiol. 2020, 11, 205. [Google Scholar] [CrossRef]
- Kidanemariam, D.B.; Sukal, A.C.; Abraham, A.D.; Njuguna, J.N.; Stomeo, F.; Dale, J.L.; Harding, R.M.; James, A.P. Molecular characterisation of a putative new polerovirus infecting pumpkin (Cucurbita pepo) in Kenya. Arch. Virol. 2019, 164, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Ibaba, J.D.; Laing, M.D.; Gubba, A. Pepo aphid-borne yellows virus: A new species in the genus Polerovirus. Virus Genes 2017, 53, 134–136. [Google Scholar] [CrossRef]
- Leke, W.N.; Khatabi, B.; Fondong, V.N.; Brown, J.K. Complete genome sequence of a new bipartite begomovirus infecting fluted pumpkin (Telfairia occidentalis) plants in Cameroon. Arch. Virol. 2016, 161, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Ndunguru, J.; Sseruwagi, P.; Tairo, F.; Stomeo, F.; Maina, S.; Djinkeng, A.; Kehoe, M.; Boykin, L.M. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation. PLoS ONE 2015, 10, e0139321. [Google Scholar] [CrossRef]
- Alicai, T.; Ndunguru, J.; Sseruwagi, P.; Tairo, F.; Okao-Okuja, G.; Nanvubya, R.; Kiiza, L.; Kubatko, L.; Kehoe, M.A.; Boykin, L.M. Cassava brown streak virus has a rapidly evolving genome: Implications for virus speciation, variability, diagnosis and host resistance. Sci. Rep. 2016, 6, 36164. [Google Scholar] [CrossRef] [Green Version]
- Kathurima, T.M.; Ateka, E.M.; Nyende, A.B.; Holton, T.A. The rolling circle amplification and next generation sequencing approaches reveal genome wide diversity of Kenyan cassava mosaic geminivirus. Afr. J. Biotechnol. 2016, 15, 2045–2052. [Google Scholar] [CrossRef] [Green Version]
- Bömer, M.; Rathnayake, A.I.; Visendi, P.; Sewe, S.O.; Paolo, J.; Sicat, A.; Silva, G.; Kumar, P.L.; Seal, S.E. Tissue culture and next-generation sequencing: A combined approach for detecting yam (Dioscorea spp.) viruses. Physiol. Mol. Plant Pathol. 2019, 105, 54–66. [Google Scholar] [CrossRef]
- Silva, G.; Bömer, M.; Rathnayake, A.I.; Sewe, S.O.; Visendi, P.; Oyekanmi, J.O.; Quain, M.D.; Akomeah, B.; Kumar, P.L.; Seal, S.E. Molecular characterization of a new virus species identified in yam (Dioscorea spp.) by high-throughput sequencing. Plants 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Palanga, E.; Filloux, D.; Martin, D.P.; Fernandez, E.; Bouda, Z.; Gargani, D.; Ferdinand, R.; Zabre, J.; Neya, B.; Sawadogo, M.; et al. Metagenomic-based screening and molecular characterization of cowpea-infecting viruses in Burkina Faso. PLoS ONE 2016, 11, e0165188. [Google Scholar] [CrossRef] [Green Version]
- Claverie, S.; Ouattara, A.; Hoareau, M.; Filloux, D.; Varsani, A.; Roumagnac, P.; Martin, D.P.; Lett, J.; Lefeuvre, P. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci. Rep. 2019, 9, 12716. [Google Scholar] [CrossRef] [Green Version]
- Boykin, L.M.; Sseruwagi, P.; Alicai, T.; Ateka, E.; Mohammed, I.U.; Stanton, J.L.; Kayuki, C.; Mark, D.; Fute, T.; Erasto, J.; et al. Tree Lab: Portable genomics for early detection of plant viruses and pests in sub-Saharan Africa. Genes 2019, 10, 632. [Google Scholar] [CrossRef] [Green Version]
- Mulder, N.; Schwartz, R.; Brazas, M.D.; Brooksbank, C.; Gaeta, B.; Morgan, S.L.; Pauley, M.A.; Rosenwald, A.; Rustici, G.; Sierk, M.; et al. The development and application of bioinformatics core competencies to improve bioinformatics training and education. PLoS Comput. Biol. 2018, 14, e1005772. [Google Scholar] [CrossRef] [Green Version]
- Bishop, O.T.; Adebiyi, E.F.; Alzohairy, A.M.; Everett, D.; Ghedira, K.; Ghouila, A.; Kumuthini, J.; Mulder, N.; Panji, S.; Patterson, H.-G. Bioinformatics education-perspectives and challenges out of Africa. Brief. Bioinform. 2014, 16, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Gurwitz, K.T.; Aron, S.; Panji, S.; Maslamoney, S.; Fernandes, L.; Judge, D.P.; Ghouila, A.; Entfellner, J.D.; Guerfali, Z.; Saunders, C.; et al. Designing a course model for distance-based online bioinformatics training in Africa: The H3ABioNet experience. PLoS Comput. Biol. 2017, 13, e1005715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, T.; Tzanetakis, I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 2014, 471–473, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Mulenga, R.M.; Miano, D.W.; Kaimoyo, E.; Akello, J.; Felister, M.; Al Rwahnih, M.; Chikoti, P.C.; Chiona, M.; Simulundu, E.; Alabi, O.J. First report of southern bean mosaic virus infecting common bean in Zambia. Dis. Notes 2020, 104, 1880. [Google Scholar] [CrossRef]
- Braidwood, L.; Quito-Avila, D.F.; Cabanas, D.; Bressan, A.; Wangai, A.; Baulcombe, D.C. Maize chlorotic mottle virus exhibits low divergence between differentiated regional sub-populations. Sci. Rep. 2018, 8, 1173. [Google Scholar] [CrossRef] [Green Version]
- Braidwood, L.; Müller, S.Y.; Baulcombe, D. Extensive recombination challenges the utility of Sugarcane mosaic virus phylogeny and strain typing. Sci. Rep. 2019, 9, 20067. [Google Scholar] [CrossRef] [Green Version]
- Mbanzibwa, D.R.; Tugume, A.K.; Chiunga, E.; Mark, D.; Tairo, F.D. Small RNA deep sequencing-based detection and further evidence of DNA viruses infecting sweetpotato plants in Tanzania. Ann. Appl. Biol. 2014, 165, 329–339. [Google Scholar] [CrossRef]
- Wainaina, J.M.; Ateka, E.; Makori, T.; Kehoe, M.A.; Boykin, L.M. Phylogenomic relationship and evolutionary insights of sweet potato viruses from the western highlands of Kenya. PeerJ 2018, 6, e5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Misawa, K.; Yamamoto, T.; Hiruta, Y.; Yamazaki, H.; Citterio, D. Text-displaying semiquantitative competitive lateral flow immunoassay relying on inkjet-printed patterns. ACS Sens. 2020, 5, 2076–2085. [Google Scholar] [CrossRef]
- Mbanzibwa, D.R.; Tian, Y.P.; Tugume, A.K.; Mukasa, S.B.; Tairo, F.; Kyamanywa, S.; Kullaya, A.; Valkonen, J.P.T. Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J. Virol. Methods 2011, 171, 394–400. [Google Scholar] [CrossRef]
- Harun, R.; Wilisiani, F.; Mashiko, T.; Neriya, Y.; Ateka, E.M.; Nishigawa, H.; Natsuaki, T. First report of Tomato chlorosis virus infecting tomato in Kenya. Sci. Afr. 2020, 7, e00286. [Google Scholar] [CrossRef]
- Ouattara, A.; Tiendrebeogo, F.; Lefeuvre, P.; Claverie, S.; Hoareau, M.; Traore, V.E.; Barro, N.; Traore, O.; Lett, J. Tomato leaf curl Burkina Faso virus: A novel tomato-infecting monopartite begomovirus from Burkina Faso. Arch. Virol. 2017, 162, 1427–1429. [Google Scholar] [CrossRef]
- Tibiri, E.B.; Pita, J.S.; Tiendrébéogo, F.; Bangratz, M.; Néya, J.B.; Brugidou, C.; Somé, K.; Barro, N. Characterization of virus species associated with sweetpotato virus diseases in Burkina Faso. Plant Pathol. 2020, 69, 1003–1017. [Google Scholar] [CrossRef] [Green Version]
- Tiendrébéogo, F.; Lefeuvre, P.; Hoareau, M.; Harimalala, M.A.; De Bruyn, A.; Villemot, J.; Traoré, V.S.E.; Konaté, G.; Traoré, A.S.; Barro, N.; et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 2012, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Sereme, D.; Neya, B.J.; Bangratz, M.; Brugidou, C.; Ouedraogo, I. First report of Rice stripe necrosis virus infecting rice in Burkina Faso. Plant Dis. 2014, 98, 1451. [Google Scholar] [CrossRef]
- Donnelly, R.; Cunniffe, N.J.; Carr, J.P.; Gilligan, C.A. Pathogenic modification of plants enhances long-distance dispersal of non persistently transmitted viruses to new hosts. Ecology 2019, 100, e02725. [Google Scholar] [CrossRef] [Green Version]
- Wamonje, F.O.; Donnelly, R.; Tungadi, T.D.; Murphy, A.M.; Pate, A.E.; Woodcock, C.M.; Caulfield, J.C.; Mutuku, J.M.; Bruce, T.J.A.; Gilligan, C.A.; et al. Different plant viruses induce changes in feeding behavior of specialist and generalist aphids on common bean that are likely to enhance virus transmission. Front. Plant Sci. 2020, 10, 1811. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, R.; Sikazwe, G.W.; Gilligan, C.A. Estimating epidemiological parameters from experiments in vector access to host plants, the method of matching gradients. PLoS Comput. Biol. 2020, 16, e1007724. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Redinbaugh, M.G.; Stewart, L.R. Maize Lethal Necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef]
- Mahuku, G.; Lockhart, B.E.; Wanjala, B.; Jones, M.W.; Kimunye, J.N.; Stewart, L.R.; Bryan, J.; Sevgan, S.; Nyasani, J.O.; Kusia, E.; et al. Maize Lethal Necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 2015, 105, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Adams, I.P.; Miano, D.W.; Kinyua, Z.M.; Wangai, A.; Kimani, E.; Phiri, N.; Reeder, R.; Harju, V.; Glover, R.; Hany, U.; et al. Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol. 2013, 62, 741–749. [Google Scholar] [CrossRef]
- Boddupalli, P.; Suresh, L.M.; Mwatuni, F.; Beyene, Y.; Makumbi, D.; Gowda, M.; Olsen, M.; Hodson, D.; Worku, M.; Mezzalama, M.; et al. Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Res. 2020, 282, 197943. [Google Scholar] [CrossRef]
- Kinyungu, T.N.; Muthomi, J.W.; Subramanian, S.; Miano, D.W.; Olubayo, F.M.; Kariuki, J.W. Efficiency of aphid and thrips vectors in transmission of maize lethal necrosis viruses. World J. Agric. Res. 2018, 6, 144–152. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef] [Green Version]
- Worrall, E.A.; Wamonje, F.O.; Mukeshimana, G.; Harvey, J.J.W.; Carr, J.P.; Mitter, N. Bean common mosaic virus and bean common mosaic necrosis virus: Relationships, biology, and prospects for control. In Advances in Virus Research; Kielian, M., Maramorosch, K., Mettenleiter, T.C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 93, pp. 1–46. ISBN 9780128021798. [Google Scholar]
- Palukaitis, P.; Garcia-Arenal, F. Cucumoviruses. Adv. Virus Res. 2003, 62, 241–323. [Google Scholar]
- Singh, Z.; Jones, R.A.C.; Jones, M.G.K. Identification of cucumber mosaic virus subgroup I isolates from banana plants affected by infectious chlorosis disease using RT-PCR. Plant Dis. 1995, 79, 713–716. [Google Scholar] [CrossRef]
- Opiyo, S.A.; Ateka, E.M.; Philip, O.; Onyango, L.O.A.; Karuri, H.W. Survey of sweet potato viruses in Western Kenya and detection of Cucumber mosaic virus. J. Plant Pathol. 2010, 92, 795–799. [Google Scholar] [CrossRef]
- Morales, F.J.; Castano, M. Effect of a Colombian isolate of bean southern mosaic virus on selected yield components of Phaseolus vulgaris. Plant Dis. 1985, 69, 803–804. [Google Scholar] [CrossRef]
- Segundo, E.; Gil-Salas, F.M.; Janssen, D.; Martin, G.; Cuadrado, I.M.; Remah, A. First report of Southern bean mosaic virus infecting french bean in Morocco. Dis. Notes 2004, 88, 1162. [Google Scholar] [CrossRef]
- Shih, S.L.; Green, S.K.; Tsai, W.S.; Ssekyewa, C. Molecular Characterization of a Begomovirus associated with tomato leaf curl disease in Uganda. Dis. Notes 2006, 90, 246. [Google Scholar] [CrossRef] [PubMed]
- Mauck, K.E.; De Moraes, C.M.; Mescher, M.C. Effects of pathogens on sensory-mediated interactions between plants and insect vectors. Curr. Opin. Plant Biol. 2016, 32, 53–61. [Google Scholar] [CrossRef] [Green Version]
Crop Ecosystem | Country Origin of Samples | Country Where Sequencing Was Done | Sequencing Provider | Key Viruses Detected | Reference(s) |
---|---|---|---|---|---|
Common Bean | Kenya | Kenya | BecA-ILRI | Bean common mosaic necrosis virus (BCMNV), Cucumber mosaic virus (CMV), Phaseolus vulgaris endornavirus 1 (PvEV-1), Phaseolus vulgaris endornavirus 2 (PvEV-2) | [12] |
Kenya | Australia/Korea | Macrogen | BCMNV, Cowpea aphid-borne mosaic virus (CABMV), Pelargonium vein banding virus (PVBV), Dracaena mottle virus (DrMV), Lucky bamboo bacilliform virus | [14,15] | |
Tanzania | Switzerland | Fasteris | Bean common mosaic virus (BCMV), BCMNV, Southern bean mosaic virus (SBMV), Tomato leaf curl Uganda virus (ToLCUV), PvEV-1, PvEV-2 | [13] | |
Zambia | South Africa | Inqaba | SBMV | [39] | |
Kenya | Kenya | BecA-ILRI | Aphid lethal paralysis virus, new virus tentatively named “Big Sioux River-virus-like dicistrovirus” | [16] | |
Maize | Kenya | Kenya | BecA-ILRI | MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV), Hubei Poty-like virus 1, Barley virus G, Scallion mosaic virus and Johnson grass mosaic virus (JGMV) | [17] |
Tanzania | Kenya | BecA-ILRI | MCMV, SCMV, MYDV-RMV, Maize dwarf mosaic virus (MDMV), Sorghum mosaic virus, Barley yellow dwarf virus | [18] | |
Kenya Uganda Rwanda Tanzania | JGMV, MDMV, MCMV | [19] | |||
Kenya | China | Beijing Genomics Institute (BGI) | MCMV and SCMV | [40,41] | |
Cassava | Tanzania | Kenya | BecA-ILRI | Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) | [27] |
Kenya | Kenya | BecA-ILRI | Cassava mosaic “geminiviruses” | [29] | |
Kenya, Uganda and Tanzania | Kenya | Field sequencing using a portable MinION | Cassava mosaic begomoviruses | [34] | |
Uganda | Australia | Australian Genome Research Facility (AGRF) | CBSV and UCBSV | [28] | |
Yam | Ghana and Nigeria | United Kingdom | Unknown | Yam mosaic virus, New virus tentatively named “Yam virus Y,” New badnaviruses-like viruses tentatively named “Dioscorea bacilliform RT virus, isolate DBRTV3-[2RT]” and “Dioscorea bacilliform RT virus, isolate DBRTV3-[3RT]” | [30,31] |
Sweet potato | Kenya, Rwanda, Tanzania and Uganda | Kenya | BecA-ILRI | Sweet potato feathery mottle virus (SPFMV) | [20] |
Tanzania | Finland | Haartman Institute, University of Helsinki | SPFMV, Sweet potato virus 2, Sweet potato latent virus, Sweet potato mild mottle virus, Sweet potato virus G, Sweet potato badnavirus A, Sweet potato badnavirus B, Sweet potato badnavirus C, Sweet potato chlorotic fleck virus, Sweet potato chlorotic stunt virus Sweet potato begomovirus, Sweet potato caulimo-like virus, Sweet potato geminivirus, Sweet potato leaf curl Spain virus, Sweet potato mosaic associated virus, Sweet potato leaf curl Uganda virus, Sweet potato golden vein associated virus, Sweet potato leaf curl virus | [42] | |
South Africa | South Africa | Unknown | SPFMV, Sweet potato virus G (SPVG), Sweet potato virus C (SPVC), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato leaf curl Sao Paulo virus (SPLCSPV), Sweet potato caulimo-like virus (SPCV) and Sweet potato mosaic virus (SPMaV), Sweet potato badnavirus A and Sweet potato badnavirus B | [21,22] | |
Kenya | Australia/Korea | Macrogen | SPFMV, SPVC, SPCSV, Sweet potato chlorotic fleck virus (SPCFV) | [43] | |
Papaya | Kenya | Kenya | BecA-ILRI | Moroccan watermelon mosaic virus (MWMV) Cowpea mild mottle virus (CpMMV) Two putative Carlaviruses tentatively named “Papaya mottle-associated virus (PaMV)” and “Papaya mild mottle-associated virus (PaMMV)” | [23] |
Pumpkin | Kenya | Kenya | BecA-ILRI | MWMV A putative novel member of the genus Polerovirus tentatively named “pumpkin polerovirus” (PuPV) | [24] |
South Africa | South Africa | Agricultural Research Council Biotechnology Platform (ARC-BTP) | New polerovirus tentatively named “Pepo aphid-borne yellows virus (PABYV)” | [25] | |
Fluted pumpkin | Cameroon | United States of America | Unknown | New begomovirus tentatively named “Telfairia mosaic virus (TelMV)” | [26] |
Cowpea | Burkina Faso | France | Unknown | CABMV, BCMV, Cowpea mottle virus (CPMoV), Southern cowpea mosaic virus (SCPMV), New Cowpea-associated tymovirus-like viruses, Cowpea-associated tombusvirids and Cowpea-associated poleroviruses tentatively named “Cowpea polerovirus 1, Cowpea polerovirus 2, Cowpea tombusvirid 1, Cowpea tombusvirid 2, Cowpea-associated mycotymovirid 1” | [32] |
Poaceae plants | Reunion Island | United States of America | GENEWIZ | Mastrevirus species (African streak viruses) and three novel Mastrevirus species tentatively named “Eleusina indica-associated virus, Sorghum arundinaceum-associated virus, Melinis repens-associated virus” | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wamonje, F.O. Post-COVID-19 Action: Guarding Africa’s Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses 2020, 12, 1276. https://doi.org/10.3390/v12111276
Wamonje FO. Post-COVID-19 Action: Guarding Africa’s Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses. 2020; 12(11):1276. https://doi.org/10.3390/v12111276
Chicago/Turabian StyleWamonje, Francis O. 2020. "Post-COVID-19 Action: Guarding Africa’s Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions" Viruses 12, no. 11: 1276. https://doi.org/10.3390/v12111276
APA StyleWamonje, F. O. (2020). Post-COVID-19 Action: Guarding Africa’s Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses, 12(11), 1276. https://doi.org/10.3390/v12111276