Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Homology Analysis
2.3. Phylogenetic Analysis
3. Results
3.1. COVID-19 and SARS—the Initial Events
3.2. Clinical Symptoms
3.3. Virus Incubation
3.4. Susceptible Populations
3.5. Animal Reservoirs
3.6. Regional Distribution
3.7. Prevention, Diagnosis, and Treatment
3.7.1. Prevention
3.7.2. Diagnosis
3.7.3. Treatment
3.8. Genomic Comparison
3.9. Proteomic Comparison
3.10. Pathogenic Mechanisms
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.F.; Shi, Z.; Zhang, S.; Field, H.; Daszak, P.; Eaton, B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006, 12, 1834. [Google Scholar] [CrossRef]
- Ge, X.-Y.; Li, J.; Yang, X.-L.; Chmura, A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol. Sin. 2016, 31, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauchemez, S.; Van Kerkhove, M.D.; Riley, S.; Donnelly, C.A.; Fraser, C.; Ferguson, N.M. Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill. 2013, 18, 18. [Google Scholar]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- WHO Named the New Pneumonia “COVID-19”. Available online: http://www.xinhuanet.com/world/2020-02/12/c_1125561389.htm (accessed on 12 February 2020).
- Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Butt, K.M.; et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Ki, M. 2015 MERS outbreak in Korea: Hospital-to-hospital transmission. Epidemiol. Health 2015, 37, 37. [Google Scholar] [CrossRef] [Green Version]
- Azhar, E.I.; El-Kafrawy, S.A.; Farraj, S.A.; Hassan, A.M.; Al-Saeed, M.S.; Hashem, A.M.; Madani, T.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 2014, 370, 2499–2505. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes. Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.M.; Song, S.H.; Chen, M.L.; Zou, D.; Ma, L.N.; Ma, Y.K.; Li, R.J.; Hao, L.L.; Li, C.P.; Tian, D.M.; et al. The 2019 Novel Coronavirus Resource. Hereditas 2020, 36, 1–9. [Google Scholar]
- NCBI Database. 2019-nCoV. Available online: https://www.ncbi.nlm.nih.gov/pubmed/?term=2019-nCoV (accessed on 14 February 2020).
- GSAID Database. 2020 Coronavirus. Available online: https://www.gisaid.org/CoV2020/ (accessed on 14 February 2020).
- NCBI Blast. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 30 January 2020).
- Zpicture. Available online: https://zpicture.dcode.org (accessed on 1 February 2020).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, V.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007, 20, 660–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Weekly Epidemiological Record, 2013, vol. 88, 35 [full issue]. Wkly. Epidemiol. Rec. 2013, 88, 365–380. [Google Scholar]
- Lee, N.; Hui, D.S.; Wu, A.; Chan, P.K.S.; Cameron, P.; Joynt, G.; Ahuja, A.T.; Yung, M.Y.; Leung, C.; To, K.; et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1986–1994. [Google Scholar] [CrossRef]
- Poutanen, S.; Low, N.E.; Henry, B.; Finkelstein, S.; Rose, D.; Green, K.; Tellier, R.; Draker, R.; Adachi, D.; Ayers, M.; et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 2003, 348, 1995–2005. [Google Scholar] [CrossRef]
- Leo, Y.S.; Chen, M.; Heng, B.H.; Lee, C.C. Severe acute respiratory syndrome-Singapore, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 405. [Google Scholar]
- World Health Organization. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. Available online: http://www.who.int/csr/sars/country/table2004_04_21/en/index.html. (accessed on 27 January 2020).
- Nuttall, I.; Dye, C. The SARS wake-up call. Science 2013, 339, 1287–1288. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Zumla, A.; Memish, Z.A. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel. Med. Infect. Dis. 2014, 12, 422–428. [Google Scholar] [CrossRef]
- Chinese Center for Disease Control and Prevention. Epidemic Update and Risk Assessment of 2019 Novel Coronavirus. Available online: http://www.chinacdc.cn/yyrdgz/202001/P020200128523354919292.pdf (accessed on 28 January 2020).
- Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.T.; Sheng, W.H.; Fang, C.T.; Chen, Y.C.; Wang, J.L.; Yu, C.J.; Yang, P.C. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 2004, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Fehr, A.R.; Channappanavar, R.; Perlman, S. Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus. Annu. Rev. Med. 2017, 68, 387–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health Commission of the People’s Republic of China. Diagnosis and Treatment of Pneumonia Caused by 2019-nCoV (Trial Version 4). Available online: http://www.nhc.gov.cn/jkj/s3577/202002/573340613ab243b3a7f61df260551dd4/files/c791e5a7ea5149f680fdcb34dac0f54e.pdf (accessed on 6 February 2020).
- Yang, F. Pulmonary rehabilitation guidelines in the principle of 4S for patients infected with 2019 novel coronavirus (2019-nCoV). Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, E004. [Google Scholar]
- Lessler, J.; Reich, N.G.; Brookmeyer, R.; Perl, T.M.; Nelson, K.E.; Cummings, D.A. Incubation periods of acute respiratory viral infections: A systematic review. Lancet. Infect. Dis. 2009, 9, 291–300. [Google Scholar] [CrossRef]
- Meltzer, M.I. Multiple contact dates and SARS incubation periods. Emerg. Infect. Dis. 2004, 10, 207. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Q.; Liu, M.; Wang, Y.; Zhang, A.; Jalali, N.; Dean, N.; Longini, I.; Halloran, M.E.; Xu, B.; et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Chan-Yeung, M.; Xu, R.H. SARS: Epidemiology. Respirology 2003, 8, S9–S14. [Google Scholar] [CrossRef]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Peiris, J.S.; Yuen, K.Y.; Osterhaus, A.D.; Stöhr, K. The severe acute respiratory syndrome. N. Engl. J. Med. 2003, 349, 2431–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, G.M.; Hedley, A.J.; Ho, L.-M.; Chau, P.; Wong, I.O.; Thach, T.Q.; Ghani, A.C.; Donnelly, C.; Fraser, C.; Riley, S.; et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: An analysis of all 1755 patients. Ann. Intern. Med. 2004, 141, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Infectious Disease Expert Li Lanjuan Responded to Six Questions of 2019-nCoV. Available online: http://m.news.cctv.com/2020/01/23/ARTIEw78LIxqpgx6Ilm7NkBo200123.shtml (accessed on 23 January 2020).
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Press Conference of the National Health Commission of the People’s Republic of China on 3 February 2020. Available online: http://www.nhc.gov.cn/wjw/xwfbh/xwzb.shtml (accessed on 4 February 2020).
- Yuan, J.; Hon, C.-C.; Li, Y.; Wang, D.; Xu, G.; Zhang, H.; Zhou, P.; Poon, L.; Lam, T.Y.; Leung, F.C.-C.; et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J. Gen. Virol. 2010, 91, 1058–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T. Novel coronavirus: From discovery to clinical diagnostics. Infect. Genet. Evol. 2020, 79, 104211. [Google Scholar] [CrossRef]
- Wang, M.; Yan, M.; Xu, H.; Liang, W.; Kan, B.; Zheng, B.; Chen, H.; Zheng, H.; Xu, Y.; Zhang, E.; et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 2005, 11, 1860. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Li, M.; Wang, C.; Wang, P.; Fang, Z.; Tan, J.; Wu, S.; Xiao, Y.; Zhu, H. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol. 2020, 92, 433–440. [Google Scholar] [CrossRef]
- South China Agricultural University: Pangolin May Be a Potential Intermediate Host of New Coronavirus. Available online: http://www.chinanews.com/sh/2020/02-07/9082279.shtml (accessed on 7 February 2020).
- Chowell, G.; Castillo-Chavez, C.; Fenimore, P.W.; Kribs-Zaleta, C.M.; Arriola, L.; Hyman, J.M. Model parameters and outbreak control for SARS. Emerg. Infect. Dis. 2004, 10, 1258. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.H.Y.; Hsiung, C.A.; Cowling, B.J.; Chen, C.-H.; Ho, L.-M.; Tsang, T.; Chang, C.-W.; Donnelly, C.; Leung, G.M. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infect. Dis. 2010, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Center for Disease Control and Prevention. Distribution of Pneumonia Infected by 2019-nCoV. Available online: http://2019ncov.chinacdc.cn/2019-nCoV/ (accessed on 15 February 2020).
- Real-time Updates of COVID-19 Epidemic in China. Available online: https://ncov.dxy.cn/ncovh5/view/pneumonia (accessed on 15 February 2020).
- Nishiura, H.; Jung, S.-M.; Linton, N.; Kinoshita, R.; Yang, Y.; Hayashi, K.; Kobayashi, T.; Yuan, B.; Akhmetzhanov, A.R. The extent of transmission of novel coronavirus in Wuhan, China, 2020. J. Clin. Med. 2020, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zai, J.; Wang, X.; Li, Y. Potential of large ‘first generation’ human-to-human transmission of 2019-nCoV. J. Med. Virol. 2020, 92, 448–454. [Google Scholar] [CrossRef]
- Carlos, W.G.; Dela Cruz, C.S.; Cao, B.; Pasnick, S.; Jamil, S. Novel Wuhan (2019-nCoV) Coronavirus. Am. J. Respir. Crit. Care Med. 2020, 201, 7–8. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China. The Role of Fecal-Oral Transmission in All transmission Still Need Further Observation and Research. Available online: http://news.cctv.com/2020/02/13/ARTISJWExxLSLWoL8mtJos97200213.shtml (accessed on 13 February 2020).
- Chinese Center for Disease Control and Prevention. There Is No Evidence That the New Coronavirus Can Be Transmitted through Aerosol. Available online: http://news.cctv.com/2020/02/09/ARTIiVFnLC1ww5sTSMqbcXlz200209.shtml (accessed on 9 February 2020).
- Lau, J.T.; Tsui, H.; Lau, M.; Yang, X. SARS transmission, risk factors, and prevention in Hong Kong. Emerg. Infect. Dis. 2004, 10, 587. [Google Scholar] [CrossRef]
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: The Mystery and the Miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [Green Version]
- Rouquet, P.; Froment, J.-M.; Bermejo, M.; Kilbourn, A.; Karesh, W.; Reed, P.; Kumulungui, B.; Yaba, P.; Delicat, A.; Rollin, P.E.; et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg. Infect. Dis. 2005, 11, 283. [Google Scholar] [CrossRef]
- Yoo, J.H. The Fight against the 2019-nCoV Outbreak: An Arduous March Has Just Begun. J. Korean Med. Sci. 2020, 35, e56. [Google Scholar] [CrossRef]
- De Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Chinese Center for Disease Control and Prevention. The First New Coronavirus Species Information Was Published by the National Pathogen Microorganism Resource Bank. Available online: http://www.chinacdc.cn/yw_9324/202001/t20200124_211413.html (accessed on 1 February 2020).
- Zeng, Q.; Khan, K.; Wu, J.; Zhu, H. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Math. Biosci. Eng. 2007, 4, 739. [Google Scholar] [PubMed]
- Wang, N.; Luo, C.; Liu, H.; Yang, X.-L.; Hu, B.; Zhang, W.; Li, B.; Zhu, Y.; Zhu, G.; Shen, X.; et al. Characterization of a New Member of Alphacoronavirus with Unique Genomic Features in Rhinolophus Bats. Viruses 2019, 11, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhadra, S.; Jiang, Y.S.; Kumar, M.R.; Johnson, R.F.; Hensley, L.E.; Ellington, A.D. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). PLoS ONE 2015, 10, e0123126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.-W.; Choi, G.K.-Y.; Tsang, A.K.-L.; Tee, K.-M.; Lam, H.-Y.; Yip, C.C.-Y.; To, K.K.-W.; Cheng, V.C.-C.; Yeung, M.L.; Lau, S.K.; et al. Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses. J. Clin. Microbiol. 2015, 53, 2722–2726. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Hao, X.; Lau, E.H.Y.; Wong, J.Y.; Leung, K.S.M.; Wu, J.T.; Cowling, B.J.; Leung, G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro. Surveill. 2020, 25, 2000044. [Google Scholar] [CrossRef]
- National Medical Products Administration. National Medical Products Administration Examined and Approved the New Nucleic Acid Test Reagent of Coronavirus Again. Available online: http://www.nmpa.gov.cn/WS04/CL2056/374398.html (accessed on 28 January 2020).
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Treatment of SARS with human interferons. Lancet 2003, 362, 293–294. [Google Scholar] [CrossRef]
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.; Kao, R.Y.; Poon, L.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020. [Google Scholar] [CrossRef] [Green Version]
- Beijing Municipal Health Commission. Explanation on the Situation that Drugs for AIDS Can Be Tried to Treat Pneumonia Caused by 2019-nCoV Infection. Available online: http://wjw.beijing.gov.cn/wjwh/ztzl/xxgzbd/202001/t20200126_1621354.html (accessed on 26 January 2020).
- The Joint Research Team of Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and ShanghaiTech University Discovered a Batch of Old Drugs and Traditional Chinese Medicines with Therapeutic Potential for COVID-19. Available online: http://www.shanghaitech.edu.cn/2020/0125/c1001a50141/page.htm (accessed on 25 January 2020).
- High-Resolution Crystal Structure of 2019-nCoV Coronavirus 3CL Hydrolase (Mpro) was Announced by the Joint Research Team of Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and ShanghaiTech University. Available online: http://www.shanghaitech.edu.cn/2020/0126/c1001a50145/page.htm (accessed on 26 January 2020).
- Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019 nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulangu, S.; Dodd, L.E.; Davey, R.T.; Mbaya, O.T.; Proschan, M.; Mukadi, D.; Manzo, M.L.; Nzolo, D.; Oloma, A.T.; Ibanda, A.; et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef] [PubMed]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Song, G.; Cheng, M.Q.; Wei, X.W. Research progress on novel coronavirus (2019-nCoV) related drugs in vitro/vivo. Bing Du Xue Bao 2020. [Google Scholar] [CrossRef]
- China-Japan Friendship Hospital: Clinical Experimental Research Work Is Being Carried Out on Remdesivir. Available online: http://www.chinanews.com/sh/shipin/cns-d/2020/02-12/news847712.shtml (accessed on 12 February 2020).
- Lai, M.M. Recombination in large RNA viruses: Coronaviruses. Semin. Virol. 1996, 7, 381–388. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; Lau, S.K.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–4008. [Google Scholar]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.S.; Nabar, N.R.; Huang, N.N.; Kehrl, J.H. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Menachery, V.D.; Graham, R.L.; Baric, R.S. Jumping species—A mechanism for coronavirus persistence and survival. Curr. Opin. Virol. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Wang, N.; Li, S.-Y.; Yang, X.-L.; Huang, H.-M.; Zhang, Y.-J.; Guo, H.; Luo, C.-M.; Miller, M.; Zhu, G.; Chmura, A.; et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 2018, 33, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, S.; Yan, L.; Xu, W.; Agrawal, A.S.; Algaissi, A.; Tseng, C.-T.K.; Wang, Q.; Du, L.; Tan, W.; Wilson, I.A.; et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 2019, 5, eaav4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, J.; DONG, X.P.; Jiang, G.; Peiris, M. SARS: Clinical virology and pathogenesis. Respirology 2003, 8, S6–S8. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ding, Y.; Zhang, Q.; Che, X.; He, Y.; Shen, H.; Wang, H.; Li, Z.; Zhao, L.; Geng, J.; et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006, 210, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, H.; Shen, H.; Li, Z.; Geng, J.; Han, H.; Cai, J.; Li, X.; Kang, W.; Weng, D.; et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J. Pathol. 2003, 200, 282–289. [Google Scholar] [CrossRef]
- Ding, Y.; He, L.; Zhang, Q.; Huang, Z.; Che, X.-Y.; Hou, J.-L.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- HUI, D.S.C.; WONG, P.C.; Wang, C. SARS: Clinical features and diagnosis. Respirology 2003, 8, S20–S24. [Google Scholar] [CrossRef]
- Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus. Res. 2015, 202, 120–134. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Roberto Giacobbe, D. The Novel Chinese Coronavirus (2019-nCoV) Infections: Challenges for fighting the storm. Eur. J. Clin. Investig. 2020. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends. Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.K.W.; Poon, L.; Gomaa, M.; Shehata, M.; Perera, R.A.; Abu Zeid, D.; El Rifay, A.S.; Siu, L.Y.; Guan, Y.; Webby, R.J.; et al. MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 2014, 20, 1049. [Google Scholar] [CrossRef] [Green Version]
Items | SARS | COVID-19 |
---|---|---|
First occurrence | Nov. 16th, 2002 in Foshan, Guangdong | Dec. 07th, 2019 in Wuhan, Hubei |
Pathogen | SARS-CoV | SARS-CoV-2 |
Intermediate host | Paguma larvata | Pangolin, Mink (Possible) |
Definitive host | Rhinolophus sinicus | Rhinolophus affinis (Possible) |
Virus type | RNA virus | RNA virus |
Species pathogen | β-coronavirus | β-coronavirus |
Total DNA sequence length of pathogen | 29,751 | 29,903 |
Latency | 1–4 days on average | 3–7 days on average |
Susceptible people | Young adults | People who have not been exposed to SARS-CoV-2 |
Male–female patient ratio | 1:1.25 | 2.70:1 |
Mortality | 9.60% | 2.10% |
Clinical symptoms | Fever, cough, myalgia, dyspnea, and diarrhea | Fever, fatigue, and dry cough |
Propagation mode | Droplets or close contacts | Droplets or close contacts |
Major regional distribution | Beijing, Guangdong, Shanxi in China | Hubei, especially Wuhan in China |
Diagnostic methods | RT-PCR, rRT-PCR, RT-LAMP, rRT-LAMP, Coronavirus detection kit | RT-PCR, rRT-PCR, RT-LAMP, rRT-LAMP, Coronavirus detection kit |
Treatment | Glucocorticoid and interferon | Lopinavir/ritonavir (in testing) |
SARS-CoV-2 | SARS-CoV | |||||
---|---|---|---|---|---|---|
Protein Name | Accession Number | Putative Function/Domain | Accession Number | Query Cover * | Percent Identity | |
1 | nsp2 | YP_009725298.1 | nonstructural polyprotein pp1a | ABF65834.1 | 100% | 68.34% |
2 | nsp3 | YP_009725299.1 | polyprotein orf1a | AFR58698.1 | 100% | 75.82% |
3 | nsp4 | YP_009725300.1 | polyprotein 1a | ARO76381.1 | 100% | 80.80% |
4 | nsp6 | YP_009725302.1 | nsp6-pp1a/pp1ab (TM3) | NP_828864.1 | 98% | 88.15% |
5 | nsp7 | YP_009725303.1 | Chain A, Replicase Polyprotein 1ab, Light Chain | 2AHM_A | 100% | 98.80% |
6 | nsp8 | YP_009725304.1 | Chain E, Replicase Polyprotein 1ab, Heavy Chain | 2AHM_E | 100% | 97.47% |
7 | nsp9 | YP_009725305.1 | nsp9-pp1a/pp1ab | NP_828867.1 | 100% | 97.35% |
8 | nsp10 | YP_009725306.1 | Chain A, Non-structural Protein 10 | 5C8S_A | 100% | 97.12% |
9 | nsp11 | YP_009725312.1 | nsp11-pp1a | NP_904321.1 | 100% | 84.62% |
10 | orf1a polyprotein | YP_009725295.1 | orf1a polyprotein (pp1a) | NP_828850.1 | 100% | 80.58% |
11 | orf1ab polyprotein | YP_009724389.1 | orf1ab polyprotein (pp1ab) | NP_828849.2 | 100% | 86.26% |
12 | orf3a protein | YP_009724391.1 | hypothetical protein sars3a | NP_828852.2 | 100% | 72.04% |
13 | orf6 protein | YP_009724394.1 | hypothetical protein sars6 | NP_828856.1 | 100% | 68.85% |
14 | orf7a protein | YP_009724395.1 | protein 8 | ARO76387.1 | 100% | 87.70% |
15 | orf7b protein | YP_009725296.1 | hypothetical protein sars7b | NP_849175.1 | 95% | 85.37% |
16 | orf8 protein | YP_009724396.1 | - | - | - | - |
17 | orf10 protein | YP_009725255.1 | - | - | - | - |
18 | 2’-O-ribose methyltransferase | YP_009725311.1 | nsp16-pp1ab (2’-o-MT) | NP_828873.2 | 99% | 93.60% |
19 | 3C-like proteinase | YP_009725301.1 | polyprotein 1a | ARO76381.1 | 100% | 96.08% |
20 | 3’-to-5’ exonuclease | YP_009725309.1 | nsp14-pp1ab (nuclease ExoN homolog) | NP_828871.1 | 100% | 95.07% |
21 | endoRNAse | YP_009725310.1 | nsp15-pp1ab (endoRNAse) | NP_828872.1 | 100% | 88.73% |
22 | envelope protein | YP_009724392.1 | E protein | APO40581.1 | 100% | 94.74% |
23 | helicase | YP_009725308.1 | nsp13-pp1ab (ZD, NTPase/HEL) | NP_828870.1 | 100% | 99.83% |
24 | leader protein | YP_009725297.1 | nsp1-pp1a/pp1ab | NP_828860.2 | 100% | 84.44% |
25 | membrane glycoprotein | YP_009724393.1 | matrix protein | NP_828855.1 | 100% | 90.54% |
26 | nucleocapsid phosphoprotein | YP_009724397.2 | nucleocapsid protein | ARO76389.1 | 100% | 90.52% |
27 | RNA-dependent RNA polymerase | YP_009725307.1 | nsp12-pp1ab (RdRp) | NP_828869.1 | 100% | 96.35% |
28 | surface glycoprotein | YP_009724390.1 | spike glycoprotein | ABD72985.1 | 100% | 76.42% |
What is the effect of the surface epitope and receptor binding domain of S protein of SARS-CoV-2 on the virus’ infectivity? |
Is there any effect of SARS-CoV vaccine designed according to S protein on SARS-CoV-2? |
Does SARS-CoV-2 orf8 and orf10 proteins, which have no homology proteins in SARS-CoV, play roles in the infectivity and pathogenicity of SARS-CoV-2? |
Can the susceptibility of asymptomatic carriers be judged by detecting the serum reactivity level of N protein? |
Apart from droplet transmission and contact transmission, are there other methods to transmit SARS-CoV-2? |
What is the percentage of COVID-19 patients have been infected with SARS and produced antibodies? |
Is there an effective specific anti-SARS-CoV-2 solution? |
Does traditional Chinese medicine have any effect on the treatment of COVID-19 caused by SARS-CoV-2? |
Do ethnic differences affect the transmissibility and pathogenicity of SARS-CoV-2? |
Do any environmental factors, such as regional conditions or climate, affect SARS-CoV-2 transmission? |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020, 12, 244. https://doi.org/10.3390/v12020244
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020; 12(2):244. https://doi.org/10.3390/v12020244
Chicago/Turabian StyleXu, Jiabao, Shizhe Zhao, Tieshan Teng, Abualgasim Elgaili Abdalla, Wan Zhu, Longxiang Xie, Yunlong Wang, and Xiangqian Guo. 2020. "Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV" Viruses 12, no. 2: 244. https://doi.org/10.3390/v12020244
APA StyleXu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y., & Guo, X. (2020). Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12(2), 244. https://doi.org/10.3390/v12020244