Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Cell Culture
2.2. Rescue of SBV and SHUV from cDNA
2.3. Production of Rabbit Antisera Against the SBV and SHUV Gc Head Domains (Gchead)
2.4. Immunofluorescence Assays
2.5. Virus Neutralization Test
2.6. Growth Curves
3. Results
3.1. Rescue of Wild-Type rSHUV and rSHUV-ΔNSs
3.2. Replication of rSHUV and rSHUV∆NSs in Interferon-Competent and Interferon-Incompetent Cells
3.3. Rescue of an SBV/SHUV Reassortant
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, E.; Blair, C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [Green Version]
- Hughes, H.R.; Adkins, S.; Alkhovskiy, S.; Beer, M.; Blair, C.; Calisher, C.H.; Drebot, M.; Lambert, A.J.; de Souza, W.M.; Marklewitz, M.; et al. ICTV Virus Taxonomy Profile: Peribunyaviridae. J. Gen. Virol. 2020, 101, 1–2. [Google Scholar] [CrossRef]
- St George, T.D.; Standfast, H.A. Diseases caused by Akabane and related Simbu-group viruses. In Infectious Disease of Livestock: With Special Reference to Southern Africa; Oxford University Press: Cape Town, South Africa, 1994; pp. 681–687. [Google Scholar]
- Behar, A.; Leibovich, B.B.; Edery, N.; Yanase, T.; Brenner, J. First genomic detection of Peaton virus in a calf with hydranencephaly in Israel. Vet. Med. Sci. 2019, 5, 87–92. [Google Scholar] [CrossRef]
- Yanase, T.; Kato, T.; Aizawa, M.; Shuto, Y.; Shirafuji, H.; Yamakawa, M.; Tsuda, T. Genetic reassortment between Sathuperi and Shamonda viruses of the genus Orthobunyavirus in nature: Implications for their genetic relationship to Schmallenberg virus. Arch. Virol. 2012, 157, 1611–1616. [Google Scholar] [CrossRef]
- Saeed, M.F.; Li, L.; Wang, H.; Weaver, S.C.; Barrett, A.D.T. Phylogeny of the Simbu serogroup of the genus Bunyavirus. J. Gen. Virol. 2001, 82, 2173–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakkas, H.; Bozidis, P.; Franks, A.; Papadopoulou, C. Oropouche Fever: A Review. Viruses 2018, 10, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, S.; Greig, J.; Mascarenhas, M.; Young, I.; Waddell, L.A. La Crosse virus: A scoping review of the global evidence. Epidemiol. Infect. 2018, 1–13. [Google Scholar] [CrossRef]
- Dutuze, M.F.; Nzayirambaho, M.; Mores, C.N.; Christofferson, R.C. A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses with Potential One Health Implications. Front. Vet. Sci. 2018, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraatz, F.; Wernike, K.; Reiche, S.; Aebischer, A.; Reimann, I.; Beer, M. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains. Virology 2018, 516, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Schnettler, E.; Caporale, M.; Murgia, C.; Barry, G.; McFarlane, M.; McGregor, E.; Piras, I.M.; Shaw, A.; Lamm, C.; et al. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog. 2013, 9, e1003133. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.; Varela, M.; Ratinier, M.; Blomstrom, A.L.; Caporale, M.; Seehusen, F.; Hahn, K.; Schnettler, E.; Baumgartner, W.; Kohl, A.; et al. NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery. J. Gen. Virol. 2014, 95, 1640–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, B.; Scheuch, M.; Hoper, D.; Jungblut, R.; Holsteg, M.; Schirrmeier, H.; Eschbaumer, M.; Goller, K.V.; Wernike, K.; Fischer, M.; et al. Novel orthobunyavirus in Cattle, Europe, 2011. Emerg. Infect. Dis. 2012, 18, 469–472. [Google Scholar] [CrossRef]
- Wernike, K.; Beer, M. Schmallenberg Virus: A Novel Virus of Veterinary Importance. Adv. Virus Res. 2017, 99, 39–60. [Google Scholar] [CrossRef] [PubMed]
- Balenghien, T.; Pages, N.; Goffredo, M.; Carpenter, S.; Augot, D.; Jacquier, E.; Talavera, S.; Monaco, F.; Depaquit, J.; Grillet, C.; et al. The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe. Prev. Vet. Med. 2014, 116, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Reusken, C.; van den Wijngaard, C.; van Beek, P.; Beer, M.; Bouwstra, R.; Godeke, G.J.; Isken, L.; van den Kerkhof, H.; van Pelt, W.; van der Poel, W.; et al. Lack of evidence for zoonotic transmission of Schmallenberg virus. Emerg. Infect. Dis. 2012, 18, 1746–1754. [Google Scholar] [CrossRef]
- Causey, O.R. Shuni (SHU) strain AN 10107. Am. J. Trop. Med. Hyg. 1970, 19, 1139–1140. [Google Scholar]
- Coetzer, J.A.W.; Erasmus, B. Viral diseases Bunyaviridae. In Infectious Diseases of Livestock with Special Reference to Southern Africa; Oxford University Press Southern Africa Ltd.: Cape Town, South Africa, 1994; pp. 460–475. [Google Scholar]
- Howell, P.G.; Coetzer, J.A.W. Serological evidence of infection of horses by viruses of the Simbu-serogroup in South Africa. In Proceedings of the 8th International Conference, Dubai, UAE, 23–26 March 1998; p. 549. [Google Scholar]
- van Eeden, C.; Williams, J.H.; Gerdes, T.G.; van Wilpe, E.; Viljoen, A.; Swanepoel, R.; Venter, M. Shuni virus as cause of neurologic disease in horses. Emerg. Infect. Dis. 2012, 18, 318–321. [Google Scholar] [CrossRef]
- van Eeden, C.; Swanepoel, R.; Venter, M. Antibodies against West Nile and Shuni viruses in veterinarians, South Africa. Emerg. Infect. Dis. 2014, 20, 1409–1410. [Google Scholar] [CrossRef] [Green Version]
- Golender, N.; Brenner, J.; Valdman, M.; Khinich, Y.; Bumbarov, V.; Panshin, A.; Edery, N.; Pismanik, S.; Behar, A. Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerg. Infect. Dis. 2015, 21, 2267–2268. [Google Scholar] [CrossRef] [Green Version]
- Golender, N.; Bumbarov, V.; Assis, I.; Beer, M.; Khinich, Y.; Koren, O.; Edery, N.; Eldar, A.; Wernike, K. Shuni virus in Israel: Neurological disease and fatalities in cattle. Transbound. Emerg. Dis. 2019, 66, 1126–1131. [Google Scholar] [CrossRef]
- Golender, N.; Wernike, K.; Bumbarov, V.; Aebischer, A.; Panshin, A.; Jenckel, M.; Khinich, Y.; Beer, M. Characterization of Shuni viruses detected in Israel. Virus Genes 2016, 52, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.H. Isolation of viruses from field populations of culicoides (Diptera: Ceratopogonidae) in Nigeria. J. Med. Entomol. 1979, 16, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Mclntosh, B.M.; Jupp, P.G.; De Sousa, J. Further isolations of arboviruses from mosquitoes collected in Tongaland, South Africa, 1960–1968. J. Med. Entomol. 1972, 9, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mohlmann, T.W.R.; Oymans, J.; Wichgers Schreur, P.J.; Koenraadt, C.J.M.; Kortekaas, J.; Vogels, C.B.F. Vector competence of biting midges and mosquitoes for Shuni virus. PLoS Negl. Trop. Dis. 2018, 12, e0006993. [Google Scholar] [CrossRef] [PubMed]
- Briese, T.; Bird, B.; Kapoor, V.; Nichol, S.T.; Lipkin, W.I. Batai and Ngari viruses: M segment reassortment and association with severe febrile disease outbreaks in East Africa. J. Virol. 2006, 80, 5627–5630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briese, T.; Kapoor, V.; Lipkin, W.I. Natural M-segment reassortment in Potosi and Main Drain viruses: Implications for the evolution of orthobunyaviruses. Arch. Virol. 2007, 152, 2237–2247. [Google Scholar] [CrossRef]
- Goller, K.V.; Hoper, D.; Schirrmeier, H.; Mettenleiter, T.C.; Beer, M. Schmallenberg virus as possible ancestor of Shamonda virus. Emerg. Infect. Dis. 2012, 18, 1644–1646. [Google Scholar] [CrossRef] [Green Version]
- Kinney, R.M.; Calisher, C.H. Antigenic relationships among serogroup (Bunyaviridae) viruses. Am. J. Trop. Hyg. 1981, 30, 1307. [Google Scholar] [CrossRef]
- Tilston-Lunel, N.L.; Shi, X.; Elliott, R.M.; Acrani, G.O. The Potential for Reassortment between Oropouche and Schmallenberg Orthobunyaviruses. Viruses 2017, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Lipps, C.; Klein, F.; Wahlicht, T.; Seiffert, V.; Butueva, M.; Zauers, J.; Truschel, T.; Luckner, M.; Koster, M.; MacLeod, R.; et al. Expansion of functional personalized cells with specific transgene combinations. Nat. Commun. 2018, 9, 994. [Google Scholar] [CrossRef]
- Madden, T. The BLAST Sequence Analysis Tool. In The NCBI Handbook, 2nd ed.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2013. [Google Scholar]
- Elliott, R.M.; Blakqori, G.; van Knippenberg, I.C.; Koudriakova, E.; Li, P.; McLees, A.; Shi, X.; Szemiel, A.M. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. J. Gen. Virol. 2013, 94, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernike, K.; Aebischer, A.; Roman-Sosa, G.; Beer, M. The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection. Sci. Rep. 2017, 7, 42500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oymans, J.; Wichgers Schreur, P.J.; van Keulen, L.; Kant, J.; Kortekaas, J. Rift Valley fever virus targets the maternal-foetal interface in ovine and human placentas. PLoS Negl. Trop. Dis. 2020, 14, e0007898. [Google Scholar] [CrossRef] [PubMed]
- Vloet, R.P.M.; Vogels, C.B.F.; Koenraadt, C.J.M.; Pijlman, G.P.; Eiden, M.; Gonzales, J.L.; van Keulen, L.J.M.; Wichgers Schreur, P.J.; Kortekaas, J. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0006145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyn, J.; Motlou, P.; Van Eeden, C.; Pretorius, M.; Stivakis, V.I.; Williams, J.H.; Snyman, L.P.; Buss, P.E.; Beechler, B.; Jolles, A.; et al. Shuni Virus in Wildlife and Nonequine Domestic Animals, South Africa. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Motlou, T.P.; Venter, M. Detection of Shuni virus, an emerging zoonotic arthropodborne virus, in cases of neurological disease in humans in South Africa. Emerg. Infect. Dis. 2020. (under review). [Google Scholar]
- Barr, J.N.; Wertz, G.W. Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J. Virol. 2005, 79, 3586–3594. [Google Scholar] [CrossRef] [Green Version]
- Brisse, M.; Ly, H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
Primer Set | What | Primer Sequence (′5-′3) | Length Expected Product |
---|---|---|---|
1 | S segment SHUV | ATGGCAAACCAGTTTATTTTCCA | 320 bp |
TGATCTGCAACCCATTTTGC | |||
2 | S segment SBV | GTGAACTCCACTATTAACTACAG | 545 bp |
TCCATATTGTCCTTGAGGACCCTATGCATT | |||
3 | L segment SHUV | AGAGAAAACAATTCAAAATGGATCCTTACC | 654 bp |
TAAGTGAGTTGTAAAACTCTTTGAATATAGGATGAGTA | |||
4 | M segment SHUV | TGGAGAGCTGGTGAAAACTGTCA | 432 bp |
GTTTTGAGGCCACAAGTGACATC | |||
5 | S segment SHUV | AGAACAAGTTTTTAAATGGCAAACCAGT | 238 bp |
TAACCAATGTAAATTTGATGCCACCAAATG | |||
6 | L segment SBV | CATGGCTAGACATGACTACTTTGGTAG | 666 bp |
AAAATGTTATAATCATTGCCATATCTATTTATAACCTTTTGT | |||
7 | M segment SBV | CCTGTTTAGCTTTTGCACTCCC | 483 bp |
CACATGTTACCTCAATGGATTCGC | |||
8 | S segment SBV | TTGAAGATGTACCACAACGGAATGCA | 286 bp |
CGTGCTAGATATCCTGACATCCTG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oymans, J.; Wichgers Schreur, P.J.; van Oort, S.; Vloet, R.; Venter, M.; Pijlman, G.P.; van Oers, M.M.; Kortekaas, J. Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses 2020, 12, 455. https://doi.org/10.3390/v12040455
Oymans J, Wichgers Schreur PJ, van Oort S, Vloet R, Venter M, Pijlman GP, van Oers MM, Kortekaas J. Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses. 2020; 12(4):455. https://doi.org/10.3390/v12040455
Chicago/Turabian StyleOymans, Judith, Paul J. Wichgers Schreur, Sophie van Oort, Rianka Vloet, Marietjie Venter, Gorben P. Pijlman, Monique M. van Oers, and Jeroen Kortekaas. 2020. "Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential" Viruses 12, no. 4: 455. https://doi.org/10.3390/v12040455
APA StyleOymans, J., Wichgers Schreur, P. J., van Oort, S., Vloet, R., Venter, M., Pijlman, G. P., van Oers, M. M., & Kortekaas, J. (2020). Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses, 12(4), 455. https://doi.org/10.3390/v12040455