Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Line
2.2. Viruses
2.3. SARS-CoV-2 qRT-PCR
2.4. Lysis Buffers
2.5. SARS-CoV-2 Titration
2.6. Inactivation of Cell-Culture Supernatant
2.7. Inactivation of Nasopharyngeal Samples
3. Results
3.1. Inactivation of Cell-Culture Supernatant
3.2. Inactivation of Nasopharyngeal Samples
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Li, Y.; Wong, T.; Hui, D.S.C. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS ONE 2017, 12, e0181558. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laboratory Biosafety Guidance Related to the Novel Coronavirus (2019-nCoV)-Interim Guidance. 2020. Available online: https://www.who.int/publications/i/item/laboratory-biosafety-guidance-related-to-coronavirus-disease-2019-(covid-19) (accessed on 8 June 2020).
- Sagripanti, J.-L.; Hülseweh, B.; Grote, G.; Voß, L.; Böhling, K.; Marschall, H.-J. Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples. Appl. Environ. Microbiol. 2011, 77, 7289–7295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Yang, H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 2020, jmv.25749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020, 20, 411–412. [Google Scholar] [CrossRef]
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Bullard, J.; Dust, K.; Funk, D.; Strong, J.E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z.; et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin. Infect. Dis. 2020, ciaa638. [Google Scholar] [CrossRef] [PubMed]
- Blow, J.A.; Dohm, D.J.; Negley, D.L.; Mores, C.N. Virus inactivation by nucleic acid extraction reagents. J. Virol. Methods 2004, 119, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Ngo, K.A.; Jones, S.A.; Church, T.M.; Fuschino, M.E.; George, K.S.; Lamson, D.M.; Maffei, J.; Kramer, L.D.; Ciota, A.T. Unreliable Inactivation of Viruses by Commonly Used Lysis Buffers. Appl. Biosaf. 2017, 22, 56–59. [Google Scholar] [CrossRef]
- Smither, S.J.; Weller, S.A.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.M.; Steward, J.; Lonsdale, S.G.; Lever, M.S. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type. J. Clin. Microbiol. 2015, 53, 3148–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- French Standard NF EN 14476+A2 October 2019-Chemical Disinfectants and Antiseptics-Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area-Test Method and Requirements. Available online: https://www.boutique.afnor.org/norme/nf-en-14476a2/antiseptiques-et-desinfectants-chimiques-essai-quantitatif-de-suspension-pour-l-evaluation-de-l-activite-virucide-dans-le-domain/article/933966/fa197568 (accessed on 8 June 2020).
- Burton, J.E.; Easterbrook, L.; Pitman, J.; Anderson, D.; Roddy, S.; Bailey, D.; Vipond, R.; Bruce, C.B.; Roberts, A.D. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples. J. Virol. Methods 2017, 250, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.A.; Mioulet, V.; Henry, E.; Gray, A.; Azhar, M.; Thapa, B.; Diederich, S.; Hoffmann, B.; Beer, M.; King, D.P.; et al. Inactivation of foot-and-mouth disease virus A/IRN/8/2015 with commercially available lysis buffers. J. Virol. Methods 2020, 278, 113835. [Google Scholar] [CrossRef] [PubMed]
- Haddock, E.; Feldmann, F.; Feldmann, H. Effective Chemical Inactivation of Ebola Virus. Emerg. Infect. Dis. 2016, 22, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V.T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raoult, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Version 2. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
Lysis Buffer | Composition a | Nucleic Acid Extraction Kit (Catalog #) | Interfering Substance/Added | Lysis Buffer/Sample | Temperature (°C) | Contact Time (min) |
---|---|---|---|---|---|---|
Buffer ATL | 1%–10% SDS b | QIAsymphony DSP Virus/Pathogen Kits (#937036) or QIAsymphony DSP DNA Mini Kit (#937236) | ±BSA f (3 g/L) | 1:1 | 20 | 10 |
Buffer VXL | 30%–50% GuHCl c + 2.5%–10% Triton X-100 d | QIAmp cador Pathogen Mini kit (#54104) or QIAmp 96 DNA QIAcube HT kit (#51331) | ±BSA (3 g/L) | 1:1 | 20 | 10 |
Buffer AVL | 50%–70% GITC e | QIAamp Viral RNA Minikit (#52904) | ±BSA (3 g/L) | 4:1 | 20 | 10 |
±BSA (3 g/L) + 1 volume ethanol 100% | 4:1 | 20 | 10 | |||
±BSA (3 g/L) + 1% Triton X-100 g | 4:1 | 20 | 10 |
Cell-Culture Supernatant (106 TCID50/Ct Value 13.7) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Inactivation Protocol | ATL Buffer | VXL Buffer | AVL Buffer | AVL Buffer + 100% Ethanol | AVL Buffer + 1% Triton X-100 | |||||
Without BSA | BSA (3 g/L) | Without BSA | BSA (3 g/L) | Without BSA | BSA (3 g/L) | Without BSA | BSA (3 g/L) | Without BSA | BSA (3 g/L) | |
Titer reduction | ≥106 | ≥106 | ≥106 | ≥106 | <106 | <106 | <106 | ≥106 | <106 | <106 |
CPE | 0/2 | 0/2 | 0/2 | 0/2 | 2/2 | 2/2 | 1/2 | 0/2 | 1/2 | 1/2 |
RT-qPCR a | >40 | >40 | >40 | >40 | 27 | 29 | 28 | >40 | 30 | 28 |
SARS-CoV-2-Spiked Nasopharyngeal Samples (106 TCID50/Ct Value 13.7) | SARS-CoV-2 Nasopharyngeal Samples (1.2 × 104 TCID50/Ct Value 18) b | |||||
---|---|---|---|---|---|---|
ATL Buffer | VXL Buffer | AVL Buffer | ATL Buffer | VXL Buffer | AVL Buffer | |
Titer reduction | ≥106 | ≥106 | <106 | ≥104 | ≥104 | <104 |
CPE | 0/6 | 0/6 | 5/6 | 0/6 | 0/6 | 4/6 |
RT-qPCR a | >40 | >40 | 28 | >40 | >40 | 31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorino, B.; Touret, F.; Gilles, M.; Luciani, L.; de Lamballerie, X.; Charrel, R.N. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses 2020, 12, 624. https://doi.org/10.3390/v12060624
Pastorino B, Touret F, Gilles M, Luciani L, de Lamballerie X, Charrel RN. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses. 2020; 12(6):624. https://doi.org/10.3390/v12060624
Chicago/Turabian StylePastorino, Boris, Franck Touret, Magali Gilles, Lea Luciani, Xavier de Lamballerie, and Remi N. Charrel. 2020. "Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples" Viruses 12, no. 6: 624. https://doi.org/10.3390/v12060624
APA StylePastorino, B., Touret, F., Gilles, M., Luciani, L., de Lamballerie, X., & Charrel, R. N. (2020). Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses, 12(6), 624. https://doi.org/10.3390/v12060624