Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strain and Titration
2.2. Samples Used for Heat Inactivation
2.3. Heat Inactivation of SARS-CoV-2 Samples
2.4. Integrity of SARS-CoV-2 RNA before and after Heat Inactivation
2.5. Impact of 56 °C-30 min Heating on Results of Serological Assays
2.5.1. Detection of SARS-CoV-2 IgG by ELISA
2.5.2. Detection of SARS-CoV-2 Neutralizing Antibodies
3. Results
3.1. Heat Inactivation of SARS-CoV-2 Samples
3.1.1. Heat Inactivation of SARS-CoV-2 Infected Cell Supernatant
3.1.2. Heat Inactivation of SARS-CoV-2 Spiked Nasopharyngeal Samples
3.1.3. Heat Inactivation of SARS-CoV-2 Spiked Blood Donor Sera
3.2. Impact of 56 °C-30 min Protocol on the Results of Serological Assays
3.2.1. ELISA
3.2.2. Virus Neutralization Test
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Li, Y.; Wong, T.; Hui, D.S.C. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS ONE 2017, 12, e0181558. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Laboratory Biosafety Guidance Related to Coronavirus Disease 2019 ( COVID-19): Interim Guidance; WHO: Geneva, Switzerland, 12 February; Available online: https://apps.who.int/iris/handle/10665/331138 (accessed on 12 February 2020).
- Sagripanti, J.-L.; Hülseweh, B.; Grote, G.; Voß, L.; Böhling, K.; Marschall, H.-J. Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples. Appl. Environ. Microbiol. 2011, 77, 7289–7295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Huang, Y.-J.S.; Hsu, W.-W.; Higgs, S.; Vanlandingham, D.L. Temperature Tolerance and Inactivation of Chikungunya Virus. Vector Borne Zoonotic Dis. 2015, 15, 674–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurtop, E.; Villarroel, P.M.S.; Pastorino, B.; Ninove, L.; Drexler, J.F.; Roca, Y.; Gake, B.; Dubot-Peres, A.; Grard, G.; Peyrefitte, C.; et al. Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol. J. 2018, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Isnard, C.; Pastorino, B. Absence of Effect of 56°C-30 min Treatment on SARS-CoV-2 ELISA Using Pre-Pandemic Serum Samples; Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207): Marseille, France, 2020. [Google Scholar]
- Saknimit, M.; Inatsuki, I.; Sugiyama, Y.; Yagami, K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu 1988, 37, 341–345. [Google Scholar] [PubMed] [Green Version]
- Cartwright, S.F.; Harris, H.M.; Blandford, T.B.; Fincham, I.; Gitter, M. A cytopathic virus causing a transmissible gastroenteritis in swine. I. Isolation and properties. J. Comp. Pathol. 1965, 75, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, B.; Touret, F.; Gilles, M.; Luciani, L.; de Lamballerie, X.; Charrel, R.N. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses 2020, 12, 624. [Google Scholar] [CrossRef] [PubMed]
- Batéjat, C.; Grassin, Q.; Manuguerra, J.-C.; Leclercq, I. Heat inactivation of the Severe Acute Respiratory Syndrome Coronavirus 2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Pastorino, B.; Bessaud, M.; Grandadam, M.; Murri, S.; Tolou, H.J.; Peyrefitte, C.N. Development of a TaqMan® RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J. Virol. Methods 2005, 124, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Bruce, E.A.; Huang, M.L.; Perchetti, G.A.; Tighe, S.; Laaguiby, P.; Hoffman, J.J.; Gerrard, D.L.; Nalla, A.K.; Wei, Y.; Greninger, A.L.; et al. Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Long, L.; Zhang, D.; Yan, T.; Cui, S.; Yang, P.; Wang, Q.; Ren, S. Potential false-negative nucleic acid testing results for Severe Acute Respiratory Syndrome Coronavirus 2 from thermal inactivation of samples with low viral loads. Clin. Chem. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- General Procedures for Inactivation of Potentially Infectious Samples with Ebola Virus and Other Highly Pathogenic Viral Agents. 2014. Available online: https://www.paho.org/hq/dmdocuments/2014/2014-cha-procedures-inactivation-ebola.pdf (accessed on 26 June 2020).
- Hu, X.; An, T.; Situ, B.; Hu, Y.; Ou, Z.; Li, Q.; He, X.; Zhang, Y.; Tian, P.; Sun, D.; et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Petrov, A.; Becher, P. Inactivation of Classical Swine Fever Virus in Porcine Serum Samples Intended for Antibody Detection. Pathogens 2019, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenyon, R.H.; Peters, C.J. Actions of complement on Junin virus. Rev. Infect. Dis. 1989, 11 (Suppl. 4), S771–S776. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Freed, D.C.; Tang, A.; Rustandi, R.R.; Troutman, M.C.; Espeseth, A.S.; Zhang, N.; An, Z.; McVoy, M.; Zhu, H.; et al. Complement enhances in vitro neutralizing potency of antibodies to human cytomegalovirus glycoprotein B (gB) and immune sera induced by gB/MF59 vaccination. NPJ Vaccines 2017, 2, 36. [Google Scholar] [CrossRef] [PubMed]
Type of Sample | Heating Protocol | Viral Titer (TCID50/mL) a | Log10 Reduction Factor (LRF) | Number of RNA Copies | Ct Var b | |||
---|---|---|---|---|---|---|---|---|
Before Heat Inactivation | After Heat Inactivation | Before Heat Inactivation | After Heat Inactivation | |||||
No BSA | 3g/L BSA | |||||||
SARS-CoV-2 infected cell supernatant c | 56 °C, 30 min | 3.3 ± 2.3 × 106 | 8.5 ± 7 | ND (0/2) e | 5 < LRF < 6 | 8.01 × 106 | 5.16 × 106 | <0.7 |
60 °C, 60 min | 3.3 ± 2.3 × 106 | ND (0/2) | 5 ± 2.8 | 5 < LRF < 6 | 8.01 × 106 | 4.54 × 106 | <0.8 | |
92 °C, 15 min | 3.3 ± 2.3 × 106 | ND (0/2) | ND (0/2) | LRF > 6 | 8.01 × 106 | 1.6 × 105 | >5 | |
SARS-CoV-2 spiked nasopharyngeal sampled | 56 °C, 30 min | 3.5 ± 2.3 × 105 | ND (0/6) | LRF > 5 | 7.5 × 105 | 2.1 × 105 | <1.5 | |
60 °C, 60 min | 3.5 ± 2.3 × 105 | ND (0/6) | LRF > 5 | 7.5 × 105 | 1.5 × 105 | <2 | ||
SARS-CoV-2 spiked blood donor sera d | 56 °C, 30 min | 3.5 ± 2.3 × 105 | ND (0/6) | LRF > 5 | 7.5 × 105 | 3.5 × 105 | <1 | |
60 °C, 60 min | 3.5 ± 2.3 × 105 | ND (0/6) | LRF > 5 | 7.5 × 105 | 1.5 × 105 | <2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics? Viruses 2020, 12, 735. https://doi.org/10.3390/v12070735
Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN. Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics? Viruses. 2020; 12(7):735. https://doi.org/10.3390/v12070735
Chicago/Turabian StylePastorino, Boris, Franck Touret, Magali Gilles, Xavier de Lamballerie, and Remi N. Charrel. 2020. "Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics?" Viruses 12, no. 7: 735. https://doi.org/10.3390/v12070735
APA StylePastorino, B., Touret, F., Gilles, M., de Lamballerie, X., & Charrel, R. N. (2020). Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics? Viruses, 12(7), 735. https://doi.org/10.3390/v12070735