The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti
Abstract
:1. Introduction
2. Results
2.1. Distribution of SINV MG Infection Foci
2.2. Distribution of FMRFamide Positive ECs
2.3. GFP Virus Infection Foci and FMRFamide-Positive ECs
2.4. Percent Infection of Mosquito MGs at Day 7 p.i.
2.5. Multiple Infection Foci in Ae. aegypti MGs
3. Discussion
4. Materials and Methods
4.1. Hatching and Maintenance of Colony Mosquitoes
4.2. Morphology of Gut Cross-Section
4.3. Virus Growth and Plaque Assay
4.4. Spatial Distribution of SINV Foci and Enteroendocrine Cells in MGs
4.5. Immunofluorescent Labeling of Mosquito Tissues
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chamberlain, R.W. Epidemology of Arthropod-Borne Togaviruses: The Role of Arthropods as Hosts and Vectors and of Vertebrate Hosts in Natural Transmission Cycles; Schlesinger, R.W., Ed.; Academic Press, Inc.: New York, NY, USA, 1980; pp. 175–227. [Google Scholar]
- Sick, F.; Beer, M.; Kampen, H.; Wernike, K. Culicoides Biting Midges-Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019, 11, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO (World Health Organization). Vector-Borne Diseases. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 2 March 2020).
- Higgs, S.; Vanlandingham, D. Chikungunya Virus and Its Mosquito Vectors. Vector-Borne Zoo. Dis. 2015, 15, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Chen, R.; Diallo, M. Chikungunya Virus: Role in enzootic cycles. Ann. Rev. Entomol. 2020, 65, 313–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinkley, A.F.; Mead, P.S.; Hooks, H. Vital signs: Trends in reported vector-borne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 496. [Google Scholar] [CrossRef] [Green Version]
- Schiefer, B.A.; Smith, J.R. Comparative susceptibility of eight mosquito species to Sindbis virus. Am. J. Trop. Med. Hyg. 1974, 23, 131–134. [Google Scholar] [CrossRef]
- Jackson, A.C.; Bowen, J.C.; Downe, A.E.C. Infection of Aedes aegypti (Diptera: Culicidae) by the oral route with Sindbis virus. J. Med. Entomol. 1993, 30, 332–337. [Google Scholar] [CrossRef]
- Taylor, R.M.; Hurlbut, T.H.; Work, J.R.; Kingston, J.R.; Frothingham, T.E. Sindbis virus: Newly recognized arthropod transmitted virus. Am. J. Trop. Med. Hyg. 1955, 4, 844–862. [Google Scholar] [CrossRef]
- Adouchief, S.; Sumura, T.; Sane, J.; Vapalahti, O.; Kurkela, S. Sindbis as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev. Med. Virol. 2016, 26, 221–241. [Google Scholar] [CrossRef]
- Strauss, E.G.; Rice, C.M.; Strauss, J.H. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 1984, 133, 92–110. [Google Scholar] [CrossRef]
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbio. 2009, 4, 837–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spuul, P.; Balistreri, G.; Hellstrom, K.; Golubtsov, A.V.; Jokitalo, E.; Ahola, T. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J. Virol. 2011, 85, 4739–4751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, K.; de Almeida, F.; Mortara, R.A.; Kriegar, H.; Marinotti, O.; Bijovsky, A.T. Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. J. Insect Physiol. 2007, 53, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Ann. Rev. Entomol. 1983, 28, 229–262. [Google Scholar] [CrossRef] [PubMed]
- Bowers, D.F.; Abell, B.A.; Brown, D.T. Replication and Tissue Tropism of the Alphavirus Sindbis in the Mosquito Aedes albopictus. J. Med. Entomol. 1995, 212, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Parikah, G.R.; Oliver, J.D.; Bartholomay, L.C. A Haemocyte tropism for an arbovirus. J. Gen. Virol. 2009, 90, 292–296. [Google Scholar] [CrossRef]
- Clements, A.N. Structure of the Adult Alimentary Canal. In The Biology of Mosquitoes; Chapman and Hall: London, UK, 1996; Chapter 13; pp. 263–271. [Google Scholar]
- Saredy, J.J.; Chim, F.Y.; Lyski, Z.L.; Ahearn, Y.P.; Bowers, D.F. Confocal Analysis of the Distribution and Persistence of Sindbis Virus (TaV-GFP) Infection in Midguts of Aedes aegypti Mosquitoes. Microscop. Microanal. 2020, 26, 267–274. [Google Scholar] [CrossRef]
- Weaver, S.C.; Scott, T.W.; Lorenz, L.H.; Lerdthusnee, K.; Romoser, W.S. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J. Virol. 1988, 62, 2083–2090. [Google Scholar] [CrossRef] [Green Version]
- Vo, M.; Linser, P.J.; Bowers, D.F. Organ-Associated Muscles in Aedes albopictus (Diptera: Culicidae) Respond Differentially to Sindbis Virus. J. Med. Entomol. 2010, 47, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; Raikhel, A.S.; Lea, A.O. Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti. Tissue Cell 1985, 17, 709–721. [Google Scholar] [CrossRef]
- Walsh, J.H. Gastrointestinal Hormones and Peptides. In Physiology of the Gastrointestinal Tract; Raven Press: New York, NY, USA, 1981; Volume 1, pp. 59–144. [Google Scholar]
- Dockray, G.J.; Vaillant, C.; Williams, R.G. New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature 1981, 293, 656–657. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, M.J.; Price, D.A. Invertebrate neuropeptides: Native and naturalized. Ann. Rev. Physiol. 1983, 45, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Crim, J.W.; Lea, A.O. FMRFamide and pancreatic polypeptide-like immunoreactivity of endocrine cells in the midgut of a mosquito. Tissue Cell 1986, 18, 419–428. [Google Scholar] [CrossRef]
- Brown, M.R.; Lea, A.O. Neuroendocrine and Midgut endocrine systems in the adult mosquito. In Advances in Disease Vector Research; Spinger: New York, NY, USA, 1989; pp. 29–58. [Google Scholar] [CrossRef]
- Sun, C.; Gardner, C.L.; Watson, A.M.; Ryman, K.D.; Klimstra, W.B. Stable, high-level expression of reporter proteins from improved Alphavirus expression vectors to track replication and dissemination during encephalitis and arthritogenic disease. J. Virol. 2014, 88, 2035–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Li, C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 2004, 475, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Ringstad, N.; Horvitz, H.R. FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat. Neurosci. 2008, 11, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Vancini, R.; Wang, G.; Ferreira, D.; Hernandez, R.; Brown, D.T. Alphavirus genome delivery occurs directly at the plasma membrane in a time-and temperature-dependent process. J. Virol. 2013, 87, 4352–4359. [Google Scholar] [CrossRef] [Green Version]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vozeille, M.; Failloux, A.-B. Chikungunya virus and Aedes mosquitoes saliva is infectious as soon as two days after oral infection. PLoS ONE 2009, 4, 5895. [Google Scholar] [CrossRef]
- Ciano, K.A.; Saredy, J.J.; Bowers, D.F. Heparan Sulfate Proteoglycan: An Arbovirus Attachment Factor Integral to Mosquito Salivary Gland Ducts. Viruses 2014, 6, 5182–5197. [Google Scholar] [CrossRef] [Green Version]
- Lyski, Z.; Saredy, J.; Ciano, K.; Stem, J.; Bowers, D. Blood feeding position increases success of recalcitrant mosquitoes. Vector-Borne Zoonotic. Dis. 2011, 11, 1165–1171. [Google Scholar] [CrossRef]
- Luft, J.H. Improvements in Epoxy Resin Embedding Methods. J. Biophys. Biochem. Cytol. 1961, 9, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Sinodis, C.; Brown, D.T. Sindbis virus: Propagation, quantification, and storage. Curr. Protoc. Microbiol 2010, 16, 15B-1. [Google Scholar] [CrossRef] [PubMed]
Mosquito Infected | PMG-f | PMG-m | PMG-c | |
---|---|---|---|---|
Trial 1 | 36/76 = 47% | 14/67 = 21% | 42/67 = 63% | 11/67 = 16% |
Trial 2 | 11/20 = 55% | 5/15 = 33% | 7/15 = 47% | 3/15 = 20% |
Trial 3 | 6/41 = 15% | 4/9 = 44% | 2/9 = 22% | 3/9 = 33% |
Trial 4 | 22/78 = 28% | 9/21 = 42% | 6/21 = 29% | 6/21 = 29% |
Total | 75/215 = 35% | 32/112 = 29% | 57/112 = 51% | 23/112 = 21% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahearn, Y.P.; Saredy, J.J.; Bowers, D.F. The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses 2020, 12, 848. https://doi.org/10.3390/v12080848
Ahearn YP, Saredy JJ, Bowers DF. The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses. 2020; 12(8):848. https://doi.org/10.3390/v12080848
Chicago/Turabian StyleAhearn, Yani P., Jason J. Saredy, and Doria F. Bowers. 2020. "The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti" Viruses 12, no. 8: 848. https://doi.org/10.3390/v12080848
APA StyleAhearn, Y. P., Saredy, J. J., & Bowers, D. F. (2020). The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses, 12(8), 848. https://doi.org/10.3390/v12080848