Chikungunya virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mosquitoes Collection and Identification
2.3. Mosquitoes Preparation
2.4. Virus Isolation
2.5. Indirect Immunofluorescence Test
2.6. Viral RNA Extraction and Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR)
2.7. Genome Sequencing and Phylogenetic Analysis
3. Results
3.1. Collection and Identification
3.2. Virus Isolation and Molecular Detection
3.3. Phylogenetic Analysis
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griffin, D.E. Alphaviruses. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, pp. 651–686. [Google Scholar]
- Zeller, H.; Van Bortel, W.; Sudre, B. Chikungunya: Its history in Africa and Asia and its spread to new regions in 2013–2014. J. Infect. Dis. 2016, 214, S436–S440. [Google Scholar] [CrossRef]
- Pan American Health Organization Factsheet Chikungunya. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=8303:2013-hoja-informativa-chikungunya&Itemid=40023&lang=en (accessed on 16 May 2020).
- Cleton, N.B.; Reusken, C.B.; van Gorp, E.C. De chikungunya-epidemie in de Cariben. Ned. Tijdschr. Geneeskd. 2014, 158, A7918. [Google Scholar] [PubMed]
- Brasil, Ministério da Saúde and Secretaria de Vigilância em Saúde. Monitoramento dos casos de dengue até a Semana Epidemiológica (SE) 37 e febre de chikungunya até a SE 38 de 2014. Bol. Epidemiol. 2014, 45, 1–6. [Google Scholar]
- Brasil, Ministério da Saúde and Secretaria de Vigilância e Saúde. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2016. Bol. Epidemiol. 2017, 48, 1–9. [Google Scholar]
- Brasil, Ministério da Saúde and Secretaria de Vigilância em Saúde. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2017. Bol. Epidemiol. 2018, 49, 1–13. [Google Scholar]
- Wahid, B.; Ali, A.; Rafique, S.; Idrees, M. Global expansion of chikungunya virus: Mapping the 64-year history. Int. J. Infect. Dis. 2017, 58, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.R.T.; Faria, N.R.; De Vasconcelos, J.M.; Golding, N.; Kraemer, M.U.G.; De Oliveira, L.F.; Azevedo, R.S.; Da Silva, D.E.A.; Silva, E.V.; Da Silva, S.P.; et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kotsakiozi, P.; Gloria-Soria, A.; Caccone, A.; Evans, B.; Schama, R.; Martins, A.J.; Powell, J.R. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, Chikungunya and Zika viruses. PLoS Negl. Trop. Dis. 2017, 11, e0005653. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Lima-Camara, T.N. Emerging arboviruses and public health challenges in Brazil. Rev. Saude Publica 2016, 50, 36. [Google Scholar] [CrossRef] [Green Version]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, M.; Dia, I.; Diallo, D.; Diagne, C.T.; Ba, Y.; Yactayo, S. Perspectives and challenges in entomological risk assessment and vector control of Chikungunya. J. Infect. Dis. 2016, 214, S459–S465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowy, I. Leaking containers: Success and failure in controlling the mosquito Aedes aegypti in Brazil. Am. J. Public Health 2017, 107, 517–524. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Xinguara. Available online: https://cidades.ibge.gov.br/brasil/pa/xinguara/panorama (accessed on 16 May 2020).
- Prefeitura Municipal de Xinguara Sobre Xinguara: Clima e Vegetação. Available online: https://www.xinguara.pa.gov.br/ (accessed on 16 May 2020).
- Lane, J. Neotropical Culicidae; Edusp: São Paulo, SP, Brasil, 1953; Volume 1. [Google Scholar]
- Lane, J. Neotropical Culicidae; Edusp: São Paulo, SP, Brasil, 1953; Volume 2. [Google Scholar]
- Forattini, O.P. Entomologia Médica. Parte Geral, Diptera, Anophelini; Faculdade de Higiene e Saúde Pública: São Paulo, SP, Brasil, 1962; Volume 1. [Google Scholar]
- Forattini, O.P. Entomologia Médica. Culicini: Culex, Aedes e Psorophora; Editora da Universidade de São Paulo: São Paulo, SP, Brasil, 1965; Volume 2. [Google Scholar]
- Forattini, O.P. Entomologia Médica. Culicini: Haemagogus, Mansonia, Culiseta, Sabethini, Toxorhynchitini, Arboviroses, Filariose Bancroftiana, Genética; Editora da Universidade de São Paulo: São Paulo, SP, Brasil, 1965; Volume 3. [Google Scholar]
- Forattini, O.P. Culicidologia Médica; Universidade de São Paulo: São Paulo, SP, Brasil, 2002; Volume 2, ISBN 85-314-0699-4. [Google Scholar]
- Consoli, R.A.G.B.; Lourenço-de-Oliveira, R. Principais Mosquitos de Importância Sanitária no Brasil; Editora Fiocruz: Rio de Janeiro, RJ, Brasil, 1994; ISBN 85-85676-03-5. [Google Scholar]
- Tesh, R.B. A method for the isolation and identification of dengue viruses, using mosquito cell cultures. Am. J. Trop. Med. Hyg. 1979, 28, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Beaty, B.J.; Calisher, C.H.; Shope, R.E. Arboviruses. In Diagnostic Procedures for Viral Rickettsial and Chlamydial Infections; Lennette, E.H., Lunette, D.A., Lenette, E.T., Eds.; American Public Health Association: Washington, DC, USA, 1995; pp. 189–212. [Google Scholar]
- Gubler, D.J.; Kuno, G.; Sather, G.E.; Velez, M.; Oliver, A. mosquito cell cultures and specific monoclonal antibodies in surveillance for dengue viruses. Am. J. Trop. Med. Hyg. 1984, 33, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Menting, S.; Thai, K.T.D.; Nga, T.T.T.; Phuong, H.L.; Klatser, P.; Wolthers, K.C.; Binh, T.Q.; de Vries, P.J.; Beld, M. Internally controlled, generic real-time PCR for quantification and multiplex real-time PCR with serotype-specific probes for serotyping of dengue virus infections. Adv. Virol. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya virus in US travelers returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Abascal, F.; Zardoya, R.; Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 2005, 21, 2104–2105. [Google Scholar] [CrossRef] [Green Version]
- Myung, I.J. Tutorial on maximum likelihood estimation. J. Math. Psychol. 2003, 47, 90–100. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Costa-da-Silva, A.L.; Ioshino, R.S.; Petersen, V.; Lima, A.F.; Cunha, M.d.P.; Wiley, M.R.; Ladner, J.T.; Prieto, K.; Palacios, G.; Costa, D.D.; et al. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005630. [Google Scholar] [CrossRef]
- Aragão, C.F.; Cruz, A.C.R.; Neto, J.P.N.; de Oliveira Monteiro, H.A.; da Silva, E.V.P.; da Silva, S.P.; Andrade, A.T.d.S.; Tadei, W.P.; Pinheiro, V.C.S. Circulation of Chikungunya virus in Aedes aegypti in Maranhão, Northeast Brazil. Acta Trop. 2018, 186, 1–4. [Google Scholar]
- Aragão, C.F.; Pinheiro, V.C.S.; Nunes-Neto, J.P.; Silva, E.V.P.; Pereira, G.J.G.; Nascimento, B.L.S.; Castro, K.D.S.; Maia, A.M.; Catete, C.P.; Martins, L.C.; et al. Natural infection of Aedes aegypti by Chikungunya and Dengue type 2 virus in a transition area of North-Northeast Brazil. Viruses 2019, 11, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Melo-Ximenes, M.d.F.F.; Galvão, J.M.d.A.; Inacio, C.L.S.; Macêdo-e-Silva, V.P.; Pereira, R.L.d.N.; Pinheiro, M.P.G.; Siva, M.M.d.M.; Gomes, C.E.S. Arbovirus expansion: New species of culicids infected by the Chikungunya virus in an urban park of Brazil. Acta Trop. 2020, 209, 105538. [Google Scholar] [CrossRef]
- Ponce-García, G.; Flores-Suarez, A.E.; Villanueva-Segura, K.; Lopez-Rodriguez, M.; Dzul, F.; Lopez-Monroy, B.; Rodriguez-Sanchez, I. Report of Chikungunya virus in wild populations of Aedes aegypti in Guerrero State, Mexico. J. Am. Mosq. Control Assoc. 2018, 34, 147–150. [Google Scholar] [CrossRef]
- Intayot, P.; Phumee, A.; Boonserm, R.; Sor-suwan, S.; Buathong, R.; Wacharapluesadee, S.; Brownell, N.; Poovorawan, Y.; Siriyasatien, P. Genetic characterization of Chikungunya virus in field-caught Aedes aegypti mosquitoes collected during the recent outbreaks in 2019, Thailand. Pathogens 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega-Rua, A.; Zouache, K.; Girod, R.; Failloux, A.-B.; Lourenco-de-Oliveira, R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, S.I.; Somasekar, S.; Naccache, S.N.; Bandeira, A.C.; Tauro, L.B.; Campos, G.S.; Chiu, C.Y. Coinfections of zika and Chikungunya viruses in bahia, Brazil, identified by metagenomic next-generation sequencing. J. Clin. Microbiol. 2016, 54, 2348–2353. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, A.C.; Thézé, J.; Komninakis, S.C.V.; Sanz-Duro, R.L.; Felinto, M.R.L.; Moura, L.C.C.; Barroso, I.M.d.O.; Santos, L.E.C.; Nunes, M.A.d.L.; Moura, A.A.; et al. Spread of Chikungunya virus East/Central/South African genotype in Northeast Brazil. Emerg. Infect. Dis. 2017, 23, 1742–1744. [Google Scholar] [CrossRef] [Green Version]
- Naveca, F.G.; Claro, I.; Giovanetti, M.; De Jesus, J.G.; Xavier, J.; Iani, F.C.d.M.; Nascimento, V.A.; Souza, V.C.; Silveira, P.P.; Lourenço, J.; et al. Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS Negl. Trop. Dis. 2019, 13, e0007065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauro, L.B.; Cardoso, C.W.; Souza, R.L.; Nascimento, L.C.J.; Santos, D.R.; Campos, G.S.; Sardi, S.; Reis, O.B.; Reis, M.G.; Kitron, U.; et al. A localized outbreak of Chikungunya virus in Salvador, Bahia, Brazil. Mem. Inst. Oswaldo Cruz 2019, 114, e180597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de-Jesus, J.G.; da Luz Wallau, G.; Lima-Maia, M.; Xavier, J.; Oliveira Lima, M.A.; Fonseca, V.; de Abreu, A.S.; Tosta, S.F.O.; Do Amaral, H.R.; Lima, I.A.B.; et al. Persistence of Chikungunya ECSA genotype and local outbreak in an upper medium class neighborhood in Northeast Brazil. PLoS ONE 2020, 15, e0226098. [Google Scholar]
- Tanabe, E.L.d.L.; Tanabe, I.S.B.; Santos, E.C.d.; Marques, J.P.d.S.; Borges, A.A.; Lima, M.C.d.; Anderson, L.; Bassi, Ê.J. Report of East-Central South African Chikungunya virus genotype during the 2016 outbreak in the Alagoas State, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e19. [Google Scholar] [CrossRef]
- Cardoso, F.D.; Rezende, I.M.d.R.; Barros, E.L.T.; Sacchetto, L.; Garcês, T.C.d.C.S.; Silva, N.I.O.; Alves, P.A.; Soares, J.O.; Kroon, E.G.; Pereira, A.C.T.d.C.; et al. Circulation of Chikungunya virus East-Central-South Africa genotype during an outbreak in 2016–17 in Piaui State, Northeast Brazil. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e57. [Google Scholar] [CrossRef]
- Souza, T.M.A.; Azeredo, E.L.; Badolato-Corrêa, J.; Damasco, P.V.; Santos, C.; Petitinga-Paiva, F.; Nunes, P.C.G.; Barbosa, L.S.; Cipitelli, M.C.; Chouin-Carneiro, T.; et al. First report of the East-Central South African genotype of Chikungunya virus in Rio de Janeiro, Brazil. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Xavier, J.; Giovanetti, M.; Fonseca, V.; Thézé, J.; Gräf, T.; Fabri, A.; de Jesus, J.G.; de Mendonça, M.C.L.; dos Santos Rodrigues, C.D.; Mares-Guia, M.A.; et al. Circulation of Chikungunya virus East/Central/South African lineage in Rio de Janeiro, Brazil. PLoS ONE 2019, 14, e0217871. [Google Scholar] [CrossRef] [PubMed]
- Lessa-Aquino, C.; Trinta, K.S.; Pestana, C.P.; Ribeiro, M.O.; Sucupira, M.V.F.; Boia, M.N.; Baptista, P.A.; Cunha, R.V.; Medeiros, M.A. Detection of East/Central/South African genotype Chikungunya virus during an outbreak in a southeastern state of Brazil. Epidemiol. Infect. 2018, 146, 2056–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, L.C.; de Morais-Sobral, M.C.; Campos, T.d.L.; Pereira, M.R.; de Albuquerque, M.d.F.P.M.; Gilbert, C.; Franca, R.F.O.; Wallau, G.L. Genome sequencing reveals coinfection by multiple Chikungunya virus genotypes in a recent outbreak in Brazil. PLoS Negl. Trop. Dis. 2019, 13, e0007332. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.M.L.; Vieira, Y.R.; Delatorre, E.; Barbosa-Lima, G.; Luiz, R.L.F.; Vizzoni, A.; Jain, K.; Miranda, M.M.; Bhuva, N.; Gogarten, J.F.; et al. Emergence of the East-Central-South-African genotype of Chikungunya virus in Brazil and the city of Rio de Janeiro may have occurred years before surveillance detection. Sci. Rep. 2019, 9, 2760. [Google Scholar] [CrossRef]
Species (♀ or ♂) | Collection Sites | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Centro | Itamarati | Tanaka II | Frei Henry | Novo Horizonte | |||||||||
N 1 | P 2 | N | P | N | P | N | P | N | P | N | P | % | |
Ae. aegypti ♀ | 84 | 5 | 5 | 1 | 4 | 1 | 5 | 1 | 7 | 1 | 105 | 9 | 21.3 |
Ae. aegypti ♂ | 28 | 2 | 3 | 1 | 4 | 1 | 0 | 0 | 1 | 1 | 36 | 5 | 7.3 |
Ae. albopictus ♀ | 2 | 1 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 7 | 2 | 1.4 |
Ae. albopictus ♂ | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 3 | 1 | 0.6 |
Ae. scapularis ♀ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.2 |
Ae. serratus ♀ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.2 |
Cx. quinquefasciatus ♀ | 152 | 6 | 11 | 1 | 34 | 1 | 29 | 1 | 8 | 1 | 234 | 10 | 47.6 |
Cx. quinquefasciatus ♂ | 50 | 2 | 6 | 1 | 36 | 1 | 10 | 1 | 2 | 1 | 104 | 6 | 21.1 |
Mansonia (Mansonia) sp. 3 ♀ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.2 |
Total | 319 | 19 | 25 | 4 | 78 | 4 | 52 | 5 | 18 | 4 | 492 | 36 | 100 |
Pool Number | N. 1 | Species (♀ or ♂) | Collection Date | Collection Site | Virus Isolation | RT-qPCR | |||
---|---|---|---|---|---|---|---|---|---|
Pool | Ct 2 | Cell Supernatant | Ct 2 | ||||||
AR843521 | 15 | Ae. Aegypti ♀ | 24 January 2017 | Centro | CHIKV 3 | CHIKV | 21.3 | CHIKV | 13.9 |
AR843522 | 21 | Ae. aegypti ♀ | 25 January 2017 | Centro | CHIKV | CHIKV | 21.3 | CHIKV | 12.1 |
AR843523 | 21 | Ae. aegypti ♀ | 25 January 2017 | Centro | CHIKV | CHIKV | 23.3 | CHIKV | 13 |
AR843524 | 23 | Ae. aegypti ♀ | 26 January 2017 | Centro | CHIKV | CHIKV | 21 | CHIKV | 13.9 |
AR843525 | 26 | Ae. aegypti ♂ | 24 January 25 | Centro | CHIKV | ND 4 | - | ND 4 | - |
AR843528 | 35 | Cx. quinquefasciatus ♀ | 25 January 2017 | Centro | CHIKV | CHIKV | 28.2 | CHIKV | 13.4 |
AR843529 | 27 | Cx. quinquefasciatus ♀ | 26 January 2017 | Centro | CHIKV | CHIKV | 33.7 | CHIKV | 18.9 |
AR843544 | 4 | Ae. aegypti ♀ | 25 January and | Tanaka II | CHIKV | CHIKV | 20.2 | CHIKV | 12.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro Cruz, A.C.; Pinto Nunes Neto, J.; Patroca da Silva, S.; Vieira Pinto da Silva, E.; Juscely Galvão Pereira, G.; Maia Santos, M.; Antônio de Oliveira Monteiro, H.; Barreto dos Santos, F.; José de Paula Souza e Guimarães, R.; Fortes Aragão, C.; et al. Chikungunya virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region. Viruses 2020, 12, 853. https://doi.org/10.3390/v12080853
Ribeiro Cruz AC, Pinto Nunes Neto J, Patroca da Silva S, Vieira Pinto da Silva E, Juscely Galvão Pereira G, Maia Santos M, Antônio de Oliveira Monteiro H, Barreto dos Santos F, José de Paula Souza e Guimarães R, Fortes Aragão C, et al. Chikungunya virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region. Viruses. 2020; 12(8):853. https://doi.org/10.3390/v12080853
Chicago/Turabian StyleRibeiro Cruz, Ana Cecília, Joaquim Pinto Nunes Neto, Sandro Patroca da Silva, Eliana Vieira Pinto da Silva, Glennda Juscely Galvão Pereira, Maissa Maia Santos, Hamilton Antônio de Oliveira Monteiro, Flavia Barreto dos Santos, Ricardo José de Paula Souza e Guimarães, Carine Fortes Aragão, and et al. 2020. "Chikungunya virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region" Viruses 12, no. 8: 853. https://doi.org/10.3390/v12080853
APA StyleRibeiro Cruz, A. C., Pinto Nunes Neto, J., Patroca da Silva, S., Vieira Pinto da Silva, E., Juscely Galvão Pereira, G., Maia Santos, M., Antônio de Oliveira Monteiro, H., Barreto dos Santos, F., José de Paula Souza e Guimarães, R., Fortes Aragão, C., & Carício Martins, L. (2020). Chikungunya virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region. Viruses, 12(8), 853. https://doi.org/10.3390/v12080853