Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vector Competence Studies
2.1.1. Collection and Rearing of Mosquitoes
2.1.2. Infection of Mosquitoes
2.1.3. Infection Analysis
2.2. Detection and Genomic Characterization of a Novel Insect-Specific Virus
2.2.1. Metagenomic and Metatranscriptomic Analysis
2.2.2. RT-PCR for Detection of Novel Insect Specific Virus
2.2.3. Screening of Additional Mosquito Species for WBDV
2.2.4. Statistical Analysis of Coinfection
3. Results
3.1. Vector Competence Studies
3.2. Identification of a Novel Insect-Specific Virus
3.2.1. Correlation of Arbovirus = WBDV Coinfection
3.2.2. Screening of Different Mosquito Species for Wiesbaden Virus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, L.L.; Failloux, A.B.; Weaver, S.C. Chikungunya virus-vector interactions. Viruses 2014, 6, 4628–4663. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention (CDC). West Nile Virus: Final Cumulative Maps & Data for 1999–2019. Available online: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html#one (accessed on 16 April 2021).
- Reiter, P.; Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 1987, 3, 494–501. [Google Scholar] [PubMed]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; Van Bortel, W. A review of the invasive mosquitoes in Europe: Ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitmann, A.; Jansen, S.; Lühken, R.; Helms, M.; Pluskota, B.; Becker, N.; Kuhn, C.; Schmidt-Chanasit, J.; Tannich, E. Experimental risk assessment for chikungunya virus transmission based on vector competence, distribution and temperature suitability in Europe, 2018. Eurosurveillance 2018, 23, 1800033. [Google Scholar] [CrossRef]
- Miyagi, I. Notes on the Aedes (Finlaya) chrysolineatus Subgroup in Japan and Korea (Diptera: Culicidae). Trop. Med. 1971, 13, 141–151. [Google Scholar]
- Montarsi, F.; Martini, S.; Dal Pont, M.; Delai, N.; Ferro Milone, N.; Mazzucato, M.; Soppelsa, F.; Cazzola, L.; Cazzin, S.; Ravagnan, S.; et al. Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus (Hulecoeteomyia koreica), a new potential vector and pest in north-eastern Italy. Parasit. Vectors 2013, 6, 292. [Google Scholar] [CrossRef] [Green Version]
- Baldacchino, F.; Arnoldi, D.; Lapère, C.; Rosà, R.; Montarsi, F.; Capelli, G.; Rizzoli, A. Weak Larval Competition Between Two Invasive Mosquitoes Aedes koreicus and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2017, 54, 1266–1272. [Google Scholar] [CrossRef]
- Marcantonio, M.; Metz, M.; Baldacchino, F.; Arnoldi, D.; Montarsi, F.; Capelli, G.; Carlin, S.; Neteler, M.; Rizzoli, A. First assessment of potential distribution and dispersal capacity of the emerging invasive mosquito Aedes koreicus in Northeast Italy. Parasit. Vectors 2016, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Montarsi, F.; Drago, A.; Dal Pont, M.; Delai, N.; Carlin, S.; Cazzin, S.; Ciocchetta, S.; Arnoldi, D.; Baldacchino, F.; Rizzoli, A.; et al. Current knowledge on the distribution and biology of the recently introduced invasive mosquito Aedes koreicus (Diptera Culicidae). Atti. Accad. Naz. Ital. Entomologia. 2014, 62, 169–174. [Google Scholar]
- Versteirt, V.; De Clercq, E.M.; Fonseca, D.M.; Pecor, J.; Schaffner, F.; Coosemans, M.; Van Bortel, W. Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J. Med. Entomol. 2012, 49, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Capelia, G.; Drago, A.; Martini, S.; Montarsi, F.; Soppelsa, M.; Delai, N.; Ravagnan, S.; Mazzon, L.; Schaffner, F.; Mathis, A.; et al. First report in italy of the exotic mosquito species Aedes (Finlaya) koreicus, a potential vector of arboviruses and filariae. Parasit. Vectors 2011, 4, 188. [Google Scholar] [CrossRef] [Green Version]
- Montarsi, F.; Drago, A.; Martini, S.; Calzolari, M.; De Filippo, F.; Bianchi, A.; Mazzucato, M.; Ciocchetta, S.; Arnoldi, D.; Baldacchino, F.; et al. Current distribution of the invasive mosquito species, Aedes koreicus (Hulecoeteomyia koreica) in northern Italy. Parasit. Vectors 2015, 8, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, D.; Zielke, D.E.; Kampen, H. First record of Aedes koreicus (Diptera: Culicidae) in Germany. Parasitol. Res. 2016, 115, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Pfitzner, W.P.; Lehner, A.; Hoffmann, D.; Czajka, C.; Becker, N. First record and morphological characterization of an established population of Aedes (Hulecoeteomyia) koreicus (Dipter: Culicidae) in Germany. Parasit. Vectors 2018, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Ganushkina, L.A.; Patraman, I.V.; Rezza, G.; Miglorini, L.; Litvinov, S.K.; Sergiev, V.P. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia. Vector Borne Zoonotic Dis. 2016, 16, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, K.; Kiss, V.; Zana, B.; Schmieder, V.; Kepner, A.; Jakab, F.; Kemenesi, G. Emergence of Aedes koreicus (Diptera: Culicidae) in an urban area, Hungary, 2016. Parasitol. Res. 2016, 115, 4687–4689. [Google Scholar] [CrossRef]
- Kalan, K.; Susnjar, J.; Ivovic, V.; Buzan, E. First record of Aedes koreicus (Diptera, Culicidae) in Slovenia. Parasitol. Res. 2017, 116, 2355–2358. [Google Scholar] [CrossRef]
- Cherix, D. Invasive mosquitoes in Switzerland: Current situation. Rev. Med. Suisse 2019, 15, 905–910. (In French) [Google Scholar]
- Fuehrer, H.P.; Schoener, E.; Weiler, S.; Barogh, B.S.; Zittra, C.; Walder, G. Monitoring of alien mosquitoes in Western Austria (Tyrol, Austria, 2018). PLoS Negl. Dis. 2020, 14, e0008433. [Google Scholar] [CrossRef]
- Montarsi, F.; Ciocchetta, S.; Devine, G.; Ravagnan, S.; Mutinelli, F.; Frangipane di Regalbono, A.; Otranto, D.; Capelli, G. Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasit. Vectors 2015, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, J.A. Some Ecological Aspects of the Problem of Arthropod-Borne Animal Viruses in the Western Pacific and South-East Asia Regions. Bull. World Health Organ. 1964, 30, 197–210. [Google Scholar] [PubMed]
- Ciocchetta, S.; Prow, N.A.; Darbro, J.M.; Frentiu, F.D.; Savino, S.; Montarsi, F.; Capelli, G.; Aaskov, J.G.; Devine, G.J. The new European invader Aedes (Finlaya) koreicus: A potential vector of chikungunya virus. Pathog. Glob. Health 2018, 112, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Öhlund, P.; Lundén, H.; Blomström, A.L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019, 55, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent JRCrabtree, M.B.; Miller, B.R. Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal. PLoS Negl. Trop. Dis. 2010, 4, e671. [Google Scholar] [CrossRef]
- Hall-Mendelin, S.; McLean, B.J.; Bielefeldt-Ohmann, H.; Hobson-Peters, J.; Hall, R.A.; van den Hurk, A. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit. Vectors 2016, 9, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, U.; Santos, P.D.; Groschup, M.H.; Hattendorf, C.; Eiden, M.; Höper, D.; Eisermann, P.; Keller, M.; Michel, F.; Klopfleisch, R.; et al. West nile Virus epidemic in Germany triggered by epizootic emergence, 2019. Viruses 2020, 12, 448. [Google Scholar] [CrossRef] [Green Version]
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L´Ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika Virus in Europe, southern France, August 2019. Eurosurveillance 2019, 24, 1900655. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Heitmann, A.; Lühken, R.; Leggewie, M.; Helms, M.; Badusche, M.; Rossini, G.; Schmidt-Chanasit, J.; Tannich, E. Culex torrentium: A Potent Vector for the Transmission of West Nile Virus in Central Europe. Viruses 2019, 11, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Ashley Hill, D.; DeBiasi, R.L.; Vezina, G.; et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Rossini, G.; Carletti, F.; Bordi, L.; Cavrini, F.; Gaibani, P.; Landini, M.P.; Pierro, A.; Capobianchi, M.R.; Di Caro, A.; Sambri, V. Phylogenetic analysis of West Nile Virus isolates, Italy, 2008–2009. Emerg. Infect. Dis. 2011, 17, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, A.; Jansen, S.; Lühken, R.; Leggewie, M.; Schmidt-Chanasit, J.; Tannich, E. Forced salivation as a method to analyze vector competence of mosquitoes. J. Vis. Exp. 2018, 138, e57980. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: http://www.r-project.org/ (accessed on 17 November 2021).
- Wickham, H.; Bryan, J. Read Excel Files. R Package Version 1.3.1. 2019. Available online: https://CRAN.R-project.org/package=readxl (accessed on 17 November 2021).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R Package Version 1.4.0. 2019. Available online: https://CRAN.R-project.org/package=stringr (accessed on 17 November 2021).
- Wickham, H.; Francois, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R Package Version 0.8.5. 2020. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 17 November 2021).
- Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. J. Stat. Softw. 2011, 40, 1–29. Available online: http://www.jstatsoft.org/v40/i01 (accessed on 17 November 2021). [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Huson, D.; Beier, S.; Flade, I.; Gorska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.J.; Tappu, R. MEGAN Community Edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016, 12, e1004957. [Google Scholar] [CrossRef] [Green Version]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996, 12, 543–548. [Google Scholar] [CrossRef]
- Cameron, E.C.; Wilkerson, R.C.; Mogi, M.; Miyagi, I.; Toma, T.; Kim, H.C.; Fonseca, D.M. Molecular Phylogenetics of Aedes japonicus, a disease vector that recently invaded Western Europe, North America, and the Hawaiian Islands. J. Med. Entomol. 2010, 47, 527–535. [Google Scholar] [CrossRef]
- Abbo, S.R.; Visser, T.M.; Göertz, G.P.; Fros, J.J.; Abma-Henkens, M.H.C.; Geertsema, C.; Vogels, C.B.F.; Koopmans, M.P.G.; Reusken, C.B.; Hall-Mendelin, S.; et al. The invasive Asian bush mosquito Aedes japonicus found in the Netherland can experimentally transmit Zika virus and Usutu virus. PLoS Negl. Trop. Dis. 2020, 14, e0008217. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Heitmann, A.; Lühken, R.; Jöst, H.; Helms, M.; Vapalahti, O.; Schmidt-Chanasit, J.; Tannich, E. Experimental transmission of Zika virus by Aedes japonicus japonicus from southwestern Germany. Emerg. Microbes Infect. 2018, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Glavinic, U.; Varga, J.; Paslaru, A.I.; Torgerson, P.; Schaffner, F.; Veronesi, E. Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasit. Vectors 2020, 13, 479. [Google Scholar] [CrossRef]
- Sanchez-Vargas, I.; Olson, K.E.; Black, W.C. The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. Insects 2021, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.L.; Anderson, S.L.; Lord, C.C.; Smartt, C.T.; Tabachnick, W.J. Relationships between infection, dissemination, and transmission of West Nile virus RNA in Culex pipiens quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 132–142. [Google Scholar] [CrossRef]
- Veronesi, E.; Paslaru, A.; Silaghi, C.; Tobler, K.; Glavinic, U.; Togerson, P.; Mathis, A. Experimental evaluation of infection, dissemination, and transmission rates for two West Nile virus strains in European Aedes japonicus under a fluctuating temperature regime. Parasitol. Res. 2018, 117, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, K.; Jansen, S.; Leggewie, M.; Badusche, M.; Schmidt-Chanasit, J.; Becker, N.; Tannich, E.; Becker, S. Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol. Res. 2014, 113, 3195–3199. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.E.; Herzog, N.L.; Noval, M.G.; Zuzworsky, J.; Shah, Z.; Bajwa, W.I.; Stapleford, K.A. Distinct New York City Aedes albopictus Mosquito Populations Display Differences in Salivary Gland Protein D7 Diversity and Chikungunya Virus Replication. Viruses 2020, 12, 698. [Google Scholar] [CrossRef] [PubMed]
- Rosso, F.; Tagliapietra, V.; Albanese, D.; Pindo, M.; Baldacchino, F.; Arnoldi, D.; Donati, C.; Rizzoli, A. Reduced diversity of gut microbiota in two Aedes mosquito species in areas of recent invasion. Sci. Rep. 2018, 8, 16091. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Saiyasombat, R.; Bolling, B.G.; Brault, A.C.; Bartholomay, L.C.; Blitvich, B.J. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 2011, 48, 1031–1038. [Google Scholar] [CrossRef]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes, Identification, Ecology and Control; Springer: Heidelberg, Germany, 2020. [Google Scholar]
- Schultz, M.J.; Frydman, H.M.; Connor, J.H. Dual insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 2018, 518, 406–413. [Google Scholar] [CrossRef]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.M.; et al. Cell-Fusing Agent Virus reduces Arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J. Virol. 2019, 93, e00705-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Arbovirus | Temperature °C | IR Arbovirus | TR Arbovirus | TE Arbovirus | Mean (95% Confidence Interval) log10 RNA Copies/Specimen | IR WBDV | CR |
---|---|---|---|---|---|---|---|
CHIKV | 24 ± 5 | 17.6% (6/34) | 0% (0/6) | 0% (0/34) | 1.37 (0.29–2.45) | 8.8% (3/34) | 8.8% (3/34) |
CHIKV | 27 ± 5 | 68.2% (103/151) | 6.8% (7/103) | 4.6% (7/151) | 4.68 (4.15–5.22) | 6.6% (10/151) | 6.0% (9/151) |
WNV | 24 ± 5 | 90.6% (29/32) | 0% (0/29) | 0% (0/32) | 7.09 (6.15–8.03) | 3.1% (1/32) | 3.1% (1/32) |
WNV | 27 ± 5 | 85.4% (35/41) | 0% (0/35) | 0% (0/41) | 6.7 (5.72–7.68) | 0% (0/41) | 0% (0/41) |
ZIKV | 24 ± 5 | 78.9% (30/38) | 0% (0/30) | 0% (0/38) | 4.97 (4.02–5.92) | 0% (0/38) | 0% (0/38) |
ZIKV | 27 ± 5 | 81.4% (35/43) | 5.7% (2/35) | 4.7% (2/43) | 6.2 (5.19–7.21) | 20.9% (9/43) | 20.9% (9/43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, S.; Cadar, D.; Lühken, R.; Pfitzner, W.P.; Jöst, H.; Oerther, S.; Helms, M.; Zibrat, B.; Kliemke, K.; Becker, N.; et al. Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses 2021, 13, 2507. https://doi.org/10.3390/v13122507
Jansen S, Cadar D, Lühken R, Pfitzner WP, Jöst H, Oerther S, Helms M, Zibrat B, Kliemke K, Becker N, et al. Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses. 2021; 13(12):2507. https://doi.org/10.3390/v13122507
Chicago/Turabian StyleJansen, Stephanie, Dániel Cadar, Renke Lühken, Wolf Peter Pfitzner, Hanna Jöst, Sandra Oerther, Michelle Helms, Branka Zibrat, Konstantin Kliemke, Norbert Becker, and et al. 2021. "Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus" Viruses 13, no. 12: 2507. https://doi.org/10.3390/v13122507
APA StyleJansen, S., Cadar, D., Lühken, R., Pfitzner, W. P., Jöst, H., Oerther, S., Helms, M., Zibrat, B., Kliemke, K., Becker, N., Vapalahti, O., Rossini, G., & Heitmann, A. (2021). Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses, 13(12), 2507. https://doi.org/10.3390/v13122507