D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Patients and Inclusion Criteria
2.3. Data Collection
2.4. Statistics
3. Results
3.1. Patients’ Characteristics
3.2. Clinical Manifestations
3.3. Treatment and Outcomes
3.4. Predictive Factors Associated with Pulmonary Embolism
3.5. Predictive Factors Associated with Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | disease due to novel coronavirus SARS-CoV-2; |
CTPA | CT pulmonary angiography; |
ED | Emergency department; |
NON-PE | group of patients without pulmonary embolism; |
PE | pulmonary embolism and group of patients with pulmonary embolism. |
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Porfidia, A.; Valeriani, E.; Pola, R.; Porreca, E.; Rutjes, A.W.; Di Nisio, M. Venous thromboembolism in patients with COVID-19: Systematic review and meta-analysis. Thromb. Res. 2020, 196, 67–74. [Google Scholar] [CrossRef]
- Hauguel-Moreau, M.; El Hajjam, M.; De Baynast, Q.; Vieillard-Baron, A.; Lot, A.-S.; Chinet, T.; Mustafic, H.; Bégué, C.; Carlier, R.Y.; Geri, G.; et al. Occurrence of pulmonary embolism related to COVID-19. J. Thromb. Thrombolysis 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Guervilly, C.; Burtey, S.; Sabatier, F.; Cauchois, R.; Lano, G.; Abdili, E.; Daviet, F.; Arnaud, L.; Brunet, P.; Hraiech, S.; et al. Circulating Endothelial Cells as a Marker of Endothelial Injury in Severe COVID-19. J. Infect. Dis. 2020, 222, 1789–1793. [Google Scholar] [CrossRef]
- Słomka, A.; Kowalewski, M.; Żekanowska, E. Hemostasis in Coronavirus Disease 2019—Lesson from Viscoelastic Methods: A Systematic Review. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Artifoni, M.; Danic, G.; Gautier, G.; Gicquel, P.; Boutoille, D.; Raffi, F.; Néel, A.; LeComte, R. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: Incidence and role of D-dimer as predictive factors. J. Thromb. Thrombolysis 2020, 50, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Fernández, A.; Toledo-Pons, N.; Cosío, B.G.; Millán, A.; Calvo, N.; Ramón, L.; De Mendoza, S.H.; Morell-García, D.; Bauça-Rossello, J.M.; Núñez, B.; et al. Prevalence of pulmonary embolism in patients with COVID-19 pneumonia and high D-dimer values: A prospective study. PLoS ONE 2020, 15, e0238216. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Díaz, S.; Quintana-Pérez, J.V.; Gil-Boronat, A.; Herrero-Huertas, M.; Gorospe-Sarasúa, L.; Montilla, J.; Acosta-Batlle, J.; Blázquez-Sánchez, J.; Vicente-Bártulos, A. A higher D-dimer threshold for predicting pulmonary embolism in patients with COVID-19: A retrospective study. Emerg. Radiol. 2020, 27, 679–689. [Google Scholar] [CrossRef]
- De Cobelli, F.; Palumbo, D.; Ciceri, F.; Landoni, G.; Ruggeri, A.; Rovere-Querini, P.; D’Angelo, A.; Steidler, S.; Galli, L.; Poli, A.; et al. Pulmonary Vascular Thrombosis in COVID-19 Pneumonia. J. Cardiothorac. Vasc. Anesth. 2021. [Google Scholar] [CrossRef] [PubMed]
- García-Ortega, A.; Oscullo, G.; Calvillo, P.; López-Reyes, R.; Méndez, R.; Gómez-Olivas, J.D.; Bekki, A.; Fonfría, C.; Trilles-Olaso, L.; Zaldívar, E.; et al. Incidence, risk factors, and thrombotic load of pulmonary embolism in patients hospitalized for COVID-19 infection. J. Infect. 2021, 82, 261–269. [Google Scholar] [CrossRef]
- Revel, M.-P.; Parkar, A.P.; Prosch, H.; Silva, M.; Sverzellati, N.; Gleeson, F.; Brady, A. Adrian COVID-19 patients and the radiology department—Advice from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI). Eur. Radiol. 2020, 30, 4903–4909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Ann. Intern. Med. 2007, 147, W-163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre-Gómez, B.; Infanta Leonor Thrombosis Research Group; Lorente-Ramos, R.M.; Rogado, J.; Franco-Moreno, A.; Obispo, B.; Salazar-Chiriboga, D.; Saez-Vaquero, T.; Torres-Macho, J.; Abad-Motos, A.; et al. Incidence of pulmonary embolism in non-critically ill COVID-19 patients. Predicting factors for a challenging diagnosis. J. Thromb. Thrombolysis 2021, 51, 40–46. [Google Scholar] [CrossRef] [PubMed]
- ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. Available online: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance (accessed on 13 February 2021).
- Ionescu, F.; Jaiyesimi, I.; Petrescu, I.; Lawler, P.R.; Castillo, E.; Munoz-Maldonado, Y.; Imam, Z.; Narasimhan, M.; Abbas, A.E.; Konde, A.; et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: A retrospective propensity score-weighted analysis. Eur. J. Haematol. 2021, 106, 165–174. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Catalano, M.; Colgan, M.-P.; Pecsvarady, Z.; Wautrecht, J.C.; Fazeli, B.; Olinic, D.-M.; Farkas, K.; Elalamy, I.; Falanga, A.; et al. Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb. Haemost. 2020, 120, 1597–1628. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Bertuzzi, A.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef]
- Choi, J.J.; Wehmeyer, G.T.; Li, H.A.; Alshak, M.N.; Nahid, M.; Rajan, M.; Liu, B.; Schatoff, E.M.; Elahjji, R.; Abdelghany, Y.; et al. D-dimer cut-off points and risk of venous thromboembolism in adult hospitalized patients with COVID-19. Thromb. Res. 2020, 196, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, S.; Coppens, M.; Van Haaps, T.F.; Foppen, M.; Vlaar, A.P.; Müller, M.C.A.; Bouman, C.C.S.; Beenen, L.F.M.; Kootte, R.S.; Heijmans, J.; et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1995–2002. [Google Scholar] [CrossRef]
- Trimaille, A.; Curtiaud, A.; Marchandot, B.; Matsushita, K.; Sato, C.; Leonard-Lorant, I.; Sattler, L.; Grunebaum, L.; Ohana, M.; Von Hunolstein, J.-J.; et al. Venous thromboembolism in non-critically ill patients with COVID-19 infection. Thromb. Res. 2020, 193, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, B.; Besutti, M.; Bouiller, K.; Grillet, F.; Monnin, C.; Ecarnot, F.; Behr, J.; Capellier, G.; Soumagne, T.; Pili-Floury, S.; et al. Elevated D-dimers and lack of anticoagulation predict PE in severe COVID-19 patients. Eur. Respir. J. 2020, 56, 2001811. [Google Scholar] [CrossRef]
- Khider, L.; Gendron, N.; Goudot, G.; Chocron, R.; Hauw-Berlemont, C.; Cheng, C.; Rivet, N.; Pere, H.; Roffe, A.; Clerc, S.; et al. Curative anticoagulation prevents endothelial lesion in COVID-19 patients. J. Thromb. Haemost. 2020, 18, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of venous thromboembolism: Nested case-control studies using the QResearch and CPRD databases. BMJ 2019, 364, k4810. [Google Scholar] [CrossRef] [Green Version]
- Fauvel, C.; Weizman, O.; Trimaille, A.; Mika, D.; Pommier, T.; Pace, N.; Douair, A.; Barbin, E.; Fraix, A.; Bouchot, O.; et al. Pulmonary embolism in COVID-19 patients: A French multicentre cohort study. Eur. Hear. J. 2020, 41, 3058–3068. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Filella, D.; Mateo, J.; Fortuna, A.M.; Gutierrez-Alliende, J.E.; Hernandez, N.; Gimenez, A.M.; Pomar, V.; Castellvi, I.; Corominas, H.; et al. Pulmonary Thrombosis or Embolism in a Large Cohort of Hospitalized Patients with Covid-19. Front. Med. 2020, 7. [Google Scholar] [CrossRef]
- Bompard, F.; Monnier, H.; Saab, I.; Tordjman, M.; Abdoul, H.; Fournier, L.; Sanchez, O.; Lorut, C.; Chassagnon, G.; Revel, M.-P. Pulmonary embolism in patients with COVID-19 pneumonia. Eur. Respir. J. 2020, 56, 2001365. [Google Scholar] [CrossRef]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Sridharan, G.K.; Vegunta, R.; Rokkam, V.R.P.; Aravamudan, V.M.; Vegunta, R.; Khan, S.R.; Ponnada, S.; Boregowda, U.; Prudhvi, K.; Chamarthi, G.; et al. Venous Thromboembolism in Hospitalized COVID-19 Patients. Am. J. Ther. 2020, 27, e599–e610. [Google Scholar] [CrossRef]
- Nadkarni, G.N.; Lala, A.; Bagiella, E.; Chang, H.L.; Moreno, P.R.; Pujadas, E.; Arvind, V.; Bose, S.; Charney, A.W.; Chen, M.D.; et al. Anticoagulation, Bleeding, Mortality, and Pathology in Hospitalized Patients with COVID-19. J. Am. Coll. Cardiol. 2020, 76, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Poterucha, T.J.; Libby, P.; Goldhaber, S.Z. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb. Haemost. 2017, 117, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, C.; Wang, H.; Yang, C.; Cai, F.; Zeng, F.; Cheng, F.; Liu, Y.; Zhou, T.; Deng, B.; et al. The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study. Clin. Transl. Sci. 2020, 13, 1087–1095. [Google Scholar] [CrossRef]
- Ooi, M.; Rajai, A.; Patel, R.; Gerova, N.; Godhamgaonkar, V.; Liong, S. Pulmonary thromboembolic disease in COVID-19 patients on CT pulmonary angiography—Prevalence, pattern of disease and relationship to D-dimer. Eur. J. Radiol. 2020, 132, 109336. [Google Scholar] [CrossRef]
- Léonard-Lorant, I.; Delabranche, X.; Séverac, F.; Helms, J.; Pauzet, C.; Collange, O.; Schneider, F.; Labani, A.; Bilbault, P.; Molière, S.; et al. Acute Pulmonary Embolism in Patients with COVID-19 at CT Angiography and Relationship to d-Dimer Levels. Radiology 2020, 296, E189–E191. [Google Scholar] [CrossRef] [Green Version]
- Middleton, E.A.; He, X.-Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Petito, E.; Falcinelli, E.; Paliani, U.; Cesari, E.; Vaudo, G.; Sebastiano, M.; Cerotto, V.; Guglielmini, G.; Gori, F.; Malvestiti, M.; et al. Association of Neutrophil Activation, More than Platelet Activation, with Thrombotic Complications in Coronavirus Disease 2019. J. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Brábek, J.; Jakubek, M.; Vellieux, F.; Novotný, J.; Kolář, M.; Lacina, L.; Szabo, P.; Strnadová, K.; Rösel, D.; Dvořánková, B.; et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020, 21, 7937. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, R.S.; Uruchurtu, A.S.S.; Siggins, M.K.; Liew, F.; Russell, C.D.; Moore, S.C.; Fairfield, C.; Carter, E.; Abrams, S.; Short, C.-E.; et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci. Immunol. 2021, 6, eabg9873. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Garg, J.; Houghton, D.E.; Murad, M.H.; Kondur, A.; Chaudhary, R.; Wysokinski, W.E.; McBane, R.D. Thrombo-inflammatory Biomarkers in COVID-19: Systematic Review and Meta-analysis of 17,052 patients. In Mayo Clinic Proceedings: Innovations, Quality & Outcomes; Elsevier BV: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Ayerbe, L.; Risco, C.; Ayis, S. The association between treatment with heparin and survival in patients with Covid-19. J. Thromb. Thrombolysis 2020, 50, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Jonmarker, S.; Hollenberg, J.; Dahlberg, M.; Stackelberg, O.; Litorell, J.; Everhov, Å.H.; Järnbert-Pettersson, H.; Söderberg, M.; Grip, J.; Schandl, A.; et al. Dosing of thromboprophylaxis and mortality in critically ill COVID-19 patients. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Rentsch, C.T.; Beckman, J.A.; Tomlinson, L.; Gellad, W.F.; Alcorn, C.; Kidwai-Khan, F.; Skanderson, M.; Brittain, E.; King, J.T.; Ho, Y.-L.; et al. Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: Cohort study. BMJ 2021, 372, n331. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Nie, L.; Wu, D.; Chen, J.; Yang, Z.; Zhang, L.; Li, D.; Zhou, X. Prognostic Value of a Clinical Biochemistry-Based Nomogram for Coronavirus Disease 2019. Front. Med. 2021, 7, 597791. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, R.; Gini, G.; Caiano, L.; Castelli, B.; Dotan, N.; Magni, F.; Virano, A.; Roveda, A.; Bertù, L.; Ageno, W. Coagulation parameters and venous thromboembolism in patients with and without COVID-19 admitted to the Emergency Department for acute respiratory insufficiency. Thromb. Res. 2020, 196, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensiv. Care 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Ye, W.; Chen, G.; Li, X.; Lan, X.; Ji, C.; Hou, M.; Zhang, D.; Zeng, G.; Wang, Y.; Xu, C.; et al. Dynamic changes of D-dimer and neutrophil-lymphocyte count ratio as prognostic biomarkers in COVID-19. Respir. Res. 2020, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
All N = 86 | PE N = 30 | NON-PE N = 56 | p-Value | |
---|---|---|---|---|
Baseline Characteristics | ||||
Age [years] | 66 [55–77] | 64 [56–74] | 68 [55–77] | 0.5990 |
Age ≥ 65 years, n(%) | 45 (52.3) | 12 (50.0) | 30 (53.6) | 0.7519 |
Sex gender [male], n(%) | 50 (58.1) | 23 (76.7) | 27 (48.2) | 0.0108 |
Body mass index [kg/m2] | 27.6 [24.2–21.2] | 25.9 [23.9–30.0] | 27.7 [25.0–32.1] | 0.2921 |
Comorbidities | ||||
Number of comorbidities by each patient | 1 [1,2] | 1 [0–2] | 1 [1–2] | 0.1431 |
Respiratory disease, n(%) | 12 (14.0) | 3 (10.0) | 9 (13.1) | 0.5292 |
Obesity (BMI > 30 kg/m2), n(%) | 19 (22.1) | 5 (16.7) | 14 (25.0) | 0.4267 |
Arterial hypertension, n(%) | 44 (51.2) | 12 (40.0) | 32 (57.1) | 0.1295 |
Diabetes mellitus, n(%) | 24 (27.9) | 10 (33.3) | 14 (25.0) | 0.4553 |
Cardiovascular disease, n(%) | 19 (22.1) | 7 (23.3) | 12 (21.4) | 1 |
Active smoking, n(%) | 5 (5.8) | 1 (3.3) | 4 (7.1) | 0.6537 |
Immunodeficiency, n(%) | 4 (4.7) | 0 | 4 (7.1) | 0.2929 |
CTD or systemic vasculitis, n(%) | 10 (11.6) | 2 (6.7) | 8 (14.3) | 0.4827 |
Thrombo-embolic risk factor: | ||||
Presence of at least one risk factor of venous thrombosis, n(%) | 11 (12.8) | 3 (10.0) | 8 (14.3) | 0.7402 |
Long term curative anticoagulant therapy, n(%) | 11 (12.8) | 3 (10.0) | 8 (14.3) | 0.7402 |
COVID-19 History | ||||
Time from first attributable symptoms to hospital admission (days) | 7 [5–10] | 7 [5–10] | 7 [5–10] | 0.8770 |
Symptoms at admission: | ||||
Fever > 38 °Celsius, n(%) | 80 (93.0) | 28 (93.3) | 52 (92.9) | 0.8204 |
Cough, n(%) | 52 (60.5) | 20 (66.7) | 32 (57.1) | 0.4430 |
Dyspnea, n(%) | 62 (72.1) | 24 (80.0) | 38 (67.9) | 0.2793 |
COVID-19 pneumonia HRTC: | ||||
Ground glass, n(%) | 75 (87.2) | 25 (83.3) | 50 (89.3) | 0.1627 |
Consolidation, n(%) | 53 (61.6) | 15 (50.0) | 38 (67.9) | 0.0993 |
Absence or minimal extension, n(%) | 17 (19.8) | 5 (16.7) | 12 (21.4) | 1 |
Moderate extension, n(%) | 36 (41.9) | 11 (36.7) | 25 (44.6) | 0.8128 |
Extensive and severe, n(%) | 27 (31.4) | 10 (33.3) | 17 (30.4) | 0.6164 |
Time from first attributable COVID-19 symptoms to CTPA [days] | 15 [10–18] | 15 [12–21] | 15 [10–17] | 0.3638 |
Vital parameters at the time of CTPA: | ||||
Heart rate/min | 93 [79–105] | 97 [81–105] | 90 [73–106] | 0.7994 |
Respiratory frequency [/min] | 29 [23–35] | 31 [23–39] | 29 [24–33] | 0.5150 |
Respiratory frequency > 22/min, n(%) | 41 (47.7) | 17 (56.7) | 24 (42.9) | 0.9272 |
SpO2 [%] | 96 [93–97] | 96 [93–97] | 95 [93–96] | 0.1720 |
SpO2 < 96%, n(%) | 32 (37.2) | 10 (33.3) | 22 (39.3) | 0.0943 |
Oxygen [Liter/min], mean ± SD | 7 ± 12 | 5 ± 5 | 8 ± 15 | 0.2585 |
Oxygen flow ≥ 6 L/min, n(%) | 35 (40.7) | 14 (46.7) | 21 (37.5) | 1 |
Laboratory parameters: | ||||
Platelets [G/L] | 307 [231–389] | 303 [253–331] | 313 [221–431] | 0.7106 |
WBC [G/L] | 7.4 [4.9–9.6] | 8.9 [6.7–11.9] | 6.7 [4.7–8.4] | 0.0021 |
WBC < 4 G/L, n(%) | 9 (10.5) | 0 | 9 (16.1) | 0.0249 |
WBC > 10 G/L, n(%) | 20 (23.3) | 11 (36.7) | 9 (16.1) | 0.0291 |
Lymphocytes [G/L] | 1.0 [0.7–1.4] | 1.1 [0.8–1.4] | 0.9 [0.7–1.4] | 0.2630 |
Neutrophils [G/L] | 5.6 [3.4–7.6] | 7.0 [4.4–9.5] | 5.4 [3.0–6.8] | 0.0369 |
Neutrophils/Lymphocytes count ratio | 5.6 [2.9–9.9] | 6.8 [3.6–10.7] | 4.8 [2.8–9.0] | 0.4274 |
C Reactive protein, [mg/L] | 96 [43–171] | 77 [43–137] | 102 [46–205] | 0.4083 |
Ferritin [µg/L] | 918 [524–1954] | 957 [618–2233] | 905 [524–1872] | 0.6306 |
BNP [pg/mL] | 77 [10–253] | 65 [23–463] | 86 [10–202] | 0.6800 |
BNP level > 1500 pg/mL, n(%) | 4 (4.7) | 2 (6.7) | 2 (3.6) | 1 |
Troponin [ng/L] | 9.0 [4.0–25.0] | 12.0 [4.5–34.0] | 8.0 [2.5–19.0] | 0.3258 |
Serum creatinine [µmol/L] | 70 [57–91] | 79 [59–101] | 68 [56–89] | 0.5750 |
Prothrombin time ratio [%] | 85 [75–91] | 83 [75–86] | 86 [75–94] | 0.3077 |
Fibrinogen [g/L] | 6.5 [4.9–7.9] | 6.2 [4.7–7.5] | 6.6 [5.1–7.9] | 0.4774 |
D-dimer [ng/mL] | 2678 [1460–8450] | 9710 [3310–20,000] | 1580 [863–2972] | <0.0001 |
D-dimer level ≥ 2000 ng/mL, n(%) | 40 (46.5) | 23 (76.2) | 17 (30.4) | <0.0001 |
All N = 86 | PE N = 30 | NON-PE N = 56 | p-Value | |
---|---|---|---|---|
Treatment | ||||
Standard of Care | ||||
Oxygenotherapy, n(%) | 170 (81.4) | 21 (70.0) | 49 (87.5) | 0.0785 |
Ventilation: | ||||
Invasive mechanical ventilation, n(%) | 2 (2.3) | 2 (6.7) | 0 | 0.1190 |
Optiflow, n(%) | 4 (4.7) | 1 (3.3) | 3 (5.4) | 1 |
CPAP, n(%) | 3 (3.5) | 3 (10.0) | 0 | 0.0396 |
Specific therapies | ||||
Antiviral therapy, n(%) | 24 (27.9) | 7 (23.3) | 17 (30.4) | 0.2663 |
Immunomodulatory molecule, n(%) | 25 (29.1) | 9 (30.0) | 16 (28.6) | 1 |
Anti-IL6 receptor antibody, n(%) | 8 (9.3) | 2 (6.7) | 6 (10.7) | 0.7065 |
Steroids, n(%) | 16 (18.6) | 7 (23.3) | 9 (16.1) | 0.5625 |
Anticoagulation | ||||
All anticoagulant agents, n(%) | 78 (90.7) | 24 (80.0) | 54 (96.4) | 0.0194 |
Previous long-term anticoagulation, n(%) | 11 (12.8) | 3 (10.0) | 8 (14.3) | 0.7402 |
Presence of thromboprophylaxis a, n(%) | 71 (82.6) | 24 (80.0) | 47 (83.9) | 0.7670 |
Standard prophylactic dose, n(%) * | 58 (81.7) | 20 (83.3) | 38 (80.9) | 1 |
High prophylactic dose, n(%) * | 13 (18.3) | 4 (16.7) | 9 (19.1) | 1 |
No thromboprophylaxis, n(%) | 8 (9.3) | 6 (20.0) | 2 (3.6) | 0.0194 |
PE Treatment at Acute Phase | ||||
Anticoagulation at therapeutic dose, n(%) | 30 (34.8) | 30 (100) | - | NA |
LMWH, n(%) | 22 (25.6) | 22 (73.3) | - | - |
Unfractionated heparin, n(%) | 6 (7.0) | 6 (20.0) | - | - |
Direct oral anticoagulant, n(%) | 2 (2.4) | 2 (6.7) | - | - |
Outcome | ||||
Follow-up period [days] | 20 [16–26] | 20 [16–30] | 19 [17–24] | 0.3594 |
Length of hospital stay [days] | 13 [10–18] | 15 [10–20] | 12 [10–42] | 0.2746 |
Death or ICU transfer, n(%) | 12 (14.0) | 7 (23.3) | 5 (8.9) | 0.1007 |
ICU transfer, n(%) | 7 (8.1) | 6 (20.0) | 1 (1.8) | 0.0065 |
Death, n(%) | 7 (8.1) | 3 (10.0) | 4 (7.1) | 0.6907 |
Hospital discharge, n(%) | 52 (60.5) | 14 (46.7) | 38 (67.9) | 0.0554 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95%CI | p-Value | Adjusted OR | 95%CI | p-Value | |
Male gender | 3.5 | 1.4–10.1 | 0.0130 | - | - | - |
No anticoagulant agent | 6.8 | 1.4–48.4 | 0.0251 | 72.3 | 3.6–4384.8 | 0.0143 |
D-dimer ≥ 2000 ng/mL | 15.6 | 3.9–105.5 | 0.0006 | 26.3 | 4.1–537.8 | 0.0041 |
Neutrophil count ≥ 7 G/L | 3.7 | 1.4–10.2 | 0.0100 | 5.8 | 1.4–29.5 | 0.0214 |
Parameters | Cut-Off Point | Cut-Off Point | |
---|---|---|---|
Threshold | D-Dimer Level 2000 ng/mL | Neutrophils Count 7 G/L | Wells’ Score Binary |
Subject reached value of cut-off point, n(%) | 40 (46.5) | 26 (30.2) | 13 (15.1) |
Area under curve (95%CI) | 0.87 (0.78–0.95) | 0.64 (0.51–0.78) | 0.53 (0.42–0.64) |
Sensitivity (95%CI) | 0.92 (0.74–0.99) | 0.52 (0.32–0.71) | 0.13 (0.04–0.31) |
Specificity (95%CI) | 0.57 (0.41–0.73) | 0.77 (0.64–0.88) | 0.84 (0.72–0.92) |
Positive predictive value (95%CI) | 0.57 (0.41–0.73) | 0.54 (0.33–0.73) | 0.31 (0.09–0.61) |
Negative predictive value (95%CI) | 0.92 (0.74–0.99) | 0.76 (0.62–0.87) | 0.64 (0.52–0.75) |
Positive likelihood ratio (95%CI) | 2.16 (1.48–3.16) | 2.29 (1.24–4.24) | 0.83 (0.28–2.47) |
Negative likelihood ratio (95%CI) | 0.14 (0.04–0.54) | 0.62 (0.41–0.95) | 1.03 (0.86–1.24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoreau, B.; Galland, J.; Delrue, M.; Neuwirth, M.; Stepanian, A.; Chauvin, A.; Dellal, A.; Nallet, O.; Roriz, M.; Devaux, M.; et al. D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients. Viruses 2021, 13, 758. https://doi.org/10.3390/v13050758
Thoreau B, Galland J, Delrue M, Neuwirth M, Stepanian A, Chauvin A, Dellal A, Nallet O, Roriz M, Devaux M, et al. D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients. Viruses. 2021; 13(5):758. https://doi.org/10.3390/v13050758
Chicago/Turabian StyleThoreau, Benjamin, Joris Galland, Maxime Delrue, Marie Neuwirth, Alain Stepanian, Anthony Chauvin, Azeddine Dellal, Olivier Nallet, Melanie Roriz, Mathilde Devaux, and et al. 2021. "D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients" Viruses 13, no. 5: 758. https://doi.org/10.3390/v13050758
APA StyleThoreau, B., Galland, J., Delrue, M., Neuwirth, M., Stepanian, A., Chauvin, A., Dellal, A., Nallet, O., Roriz, M., Devaux, M., London, J., Martin-Lecamp, G., Froissart, A., Arab, N., Ferron, B., Groff, M. -H., Queyrel, V., Lorut, C., Regard, L., ... Sene, D. (2021). D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients. Viruses, 13(5), 758. https://doi.org/10.3390/v13050758