First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. PCR Amplification and Sequencing of TMEM154, TLR9 and MYD88 Genes
2.3. Allelic Discrimination Assay by Real-Time PCR (qPCR) of CCR5 Gene
2.4. Serological Test
2.5. Statistical Analysis
3. Results
3.1. TMEM154, TLR9, MYD88 and CCR5 Genotyping
3.2. Relative Risk of TMEM154, TLR9, MYD88 and CCR5 Polymorphisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef]
- Minguijón, E.; Reina, R.; Pérez, M.; Polledo, L.; Villoria, M.; Ramírez, H.; Leginagoikoa, I.; Badiola, J.J.; García-Marín, F.J.; de Andrés, D.; et al. Small ruminant lentivirus infections and diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Gjerset, B.; Rimstad, E.; Teige, J.; Soetaert, K.; Jonassen, M.C. Impact of natural sheep–goat transmission on detection and control of small ruminant lentivirus group C infections. Vet. Microbiol. 2009, 135, 231–238. [Google Scholar] [CrossRef]
- Leroux, C.; Cruz, M.J.C.; Mornex, J.-F. SRLVs: A genetic continuum of lentiviral species in sheep and goats with cumulative evidence of cross species transmission. Curr. HIV Res. 2006, 8, 94–100. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Bossis, I.; Ekateriniadou, L.V.; Gelasakis, A.I. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals 2020, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- McNeilly, T.N.; Baker, A.; Brown, J.K.; Collie, D.; MacLachlan, G.; Rhind, S.M.; Harkiss, G.D. Role of Alveolar Macrophages in Respiratory Transmission of Visna/Maedi Virus. J. Virol. 2008, 82, 1526–1536. [Google Scholar] [CrossRef] [Green Version]
- Peterhans, E.; Greenland, T.; Badiola, J.; Harkiss, G.; Bertoni, G.; Amorena, B.; Eliaszewicz, M.; Juste, R.A.; Kraßnig, R.; Lafont, J.-P.; et al. Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet. Res. 2004, 35, 257–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organization for Animal Health. Terrestrial Animal Health Code, 28th ed.; World Organization for Animal Health: Paris, France, 2019; Volume 2, ISBN 978-92-95108-86-8. [Google Scholar]
- Alshanbari, F.A.; Mousel, M.R.; Reynolds, J.O.; Herrmann-Hoesing, L.M.; Highland, M.A.; Lewis, G.S.; White, S.N. Mutations in Ovis aries TMEM 154 are associated with lower small ruminant lentivirus proviral concentration in one sheep flock. Anim. Genet. 2014, 45, 565–571. [Google Scholar] [CrossRef]
- Molaee, V.; Otarod, V.; Abdollahi, D.; Lühken, G. Lentivirus Susceptibility in Iranian and German Sheep Assessed by Determination of TMEM154 E35K. Animals 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- White, S.; Knowles, D. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding. Viruses 2013, 5, 1466–1499. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, A.; Jugo, B. Retroviral Infections in Sheep and Goats: Small Ruminant Lentiviruses and Host Interaction. Viruses 2013, 5, 2043–2061. [Google Scholar] [CrossRef] [Green Version]
- Stonos, N.; Wootton, S.; Karrow, N. Immunogenetics of Small Ruminant Lentiviral Infections. Viruses 2014, 6, 3311–3333. [Google Scholar] [CrossRef]
- Heaton, M.P.; Clawson, M.L.; Chitko-Mckown, C.G.; Leymaster, K.A.; Smith, T.P.L.; Harhay, G.P.; White, S.N.; Herrmann-Hoesing, L.M.; Mousel, M.R.; Lewis, G.S.; et al. Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations. PLoS Genet. 2012, 8, e1002467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, M.P.; Kalbfleisch, T.S.; Petrik, D.T.; Simpson, B.; Kijas, J.W.; Clawson, M.L.; Chitko-McKown, C.G.; Harhay, G.P.; Leymaster, K.A. The International Sheep Genomics Consortium. Genetic Testing for TMEM154 Mutations Associated with Lentivirus Susceptibility in Sheep. PLoS ONE 2013, 8, e55490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leymaster, K.A.; Chitko-McKown, C.G.; Clawson, M.L.; Harhay, G.P.; Heaton, M.P. Effects of TMEM154 haplotypes 1 and 3 on susceptibility to ovine progressive pneumonia virus following natural exposure in sheep. J. Anim. Sci. 2013, 91, 5114–5121. [Google Scholar] [CrossRef]
- Ramírez, H.; Echeverría, I.; Benito, A.A.; Glaria, I.; Benavides, J.; Pérez, V.; de Andrés, D.; Reina, R. Accurate Diagnosis of Small Ruminant Lentivirus Infection Is Needed for Selection of Resistant Sheep through TMEM154 E35K Genotyping. Pathogens 2021, 10, 83. [Google Scholar] [CrossRef]
- Clawson, M.L.; Redden, R.; Schuller, G.; Heaton, M.P.; Workman, A.; Chitko-McKown, C.G.; Smith, T.P.; Leymaster, K.A. Genetic subgroup of small ruminant lentiviruses that infects sheep homozygous for TMEM154 frameshift deletion mutation A4Δ53. Vet. Res. 2015, 46, 22. [Google Scholar] [CrossRef] [Green Version]
- Molaee, V.; Eltanany, M.; Lühken, G. First survey on association of TMEM154 and CCR5 variants with serological maedi-visna status of sheep in German flocks. Vet. Res. 2018, 49, 36. [Google Scholar] [CrossRef] [Green Version]
- White, S.N.; Mousel, M.R.; Reynolds, J.O.; Lewis, G.S.; Herrmann-Hoesing, L.M. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus. Anim. Genet. 2009, 40, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Allers, K.; Schneider, T. CCR5Δ32 mutation and HIV infection: Basis for curative HIV therapy. Curr. Opin. Virol. 2015, 14, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Thio, C.L.; Astemborski, J.; Bashirova, A.; Mosbruger, T.; Greer, S.; Witt, M.D.; Goedert, J.J.; Hilgartner, M.; Majeske, A.; O’Brien, S.J.; et al. Genetic Protection against Hepatitis B Virus Conferred by CCR5Δ32: Evidence that CCR5 Contributes to Viral Persistence. J. Virol. 2007, 81, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.; Rowlands, K.; Lockhart, E.; Moore, C.; Sharland, M.; Kwiatkowski, D. Variants of the Chemokine Receptor CCR5 Are Associated with Severe Bronchiolitis Caused by Respiratory Syncytial Virus. J. Infect. Dis. 2003, 188, 904–907. [Google Scholar] [CrossRef]
- Lim, J.K.; Louie, C.Y.; Glaser, C.; Jean, C.; Johnson, B.; Johnson, H.; McDermott, D.H.; Murphy, P.M. Genetic Deficiency of Chemokine Receptor CCR5 Is a Strong Risk Factor for Symptomatic West Nile Virus Infection: A Meta-Analysis of 4 Cohorts in the US Epidemic. J. Infect. Dis. 2008, 197, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.C.; Beck, M.A.; Kuziel, W.A.; Henderson, F.; Maeda, N. Contrasting Effects of CCR5 and CCR2 Deficiency in the Pulmonary Inflammatory Response to Influenza, A. Virus. Am. J. Pathol. 2000, 156, 1951–1959. [Google Scholar] [CrossRef] [Green Version]
- Colussi, S.; Desiato, R.; Beltramo, C.; Peletto, S.; Modesto, P.; Maniaci, M.G.; Campia, V.; Quasso, A.; Rosati, S.; Bertolotti, L.; et al. A single nucleotide variant in the promoter region of the CCR5 gene increases susceptibility to arthritis encephalitis virus in goats. BMC Vet. Res. 2019, 15, 230. [Google Scholar] [CrossRef]
- Sarafidou, T.; Stamatis, C.; Kalozoumi, G.; Spyrou, V.; Fthenakis, G.C.; Billinis, C.; Mamuris, Z. Toll Like Receptor 9 (TLR9) Polymorphism G520R in Sheep Is Associated with Seropositivity for Small Ruminant Lentivirus. PLoS ONE 2013, 8, e63901. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Huda, S.; Sinha Babu, S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand. J. Immunol. 2019, 90, e12771. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Brinkmann, M.M.; Spooner, E.; Lee, C.C.; Kim, Y.-M.; Ploegh, H.L. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 2008, 9, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Stephens, M.; Donnelly, P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. Am. J. Hum. Genet. 2003, 73, 1162–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall/CRC: London, UK, 1990; ISBN 9780412276309. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- MedCalc Manual: Easy-to-Use Statistical Software by Frank Schoonjans, Revised in August 2019-Software Version 19. Available online: https://www.medcalc.org/ (accessed on 5 May 2021).
- Yaman, Y.; Keleş, M.; Aymaz, R.; Sevim, S.; Sezenler, T.; Önaldı, A.T.; Kaptan, C.; Başkurt, A.; Koncagül, S.; Öner, Y.; et al. Association of TMEM154 variants with visna/maedi virus infection in Turkish sheep. Small Rumin. Res. 2019, 177, 61–67. [Google Scholar] [CrossRef]
- Cirone, F.; Maggiolino, A.; Cirilli, M.; Sposato, A.; De Palo, P.; Ciappetta, G.; Pratelli, A. Small ruminant lentiviruses in goats in southern Italy: Serological evidence, risk factors and implementation of control programs. Vet. Microbiol. 2019, 228, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Gufler, H.; Moroni, P.; Casu, S.; Pisoni, G. Seroprevalence, clinical incidence, and molecular and epidemiological characterisation of small ruminant lentivirus in the indigenous Passirian goat in northern Italy. Arch. Virol. 2008, 153, 1581–1585. [Google Scholar] [CrossRef] [PubMed]
- Komar, A.A.; Lesnik, T.; Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 1999, 462, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.-W.; Sauna, Z.E.; Calcagno, A.M.; Ambudkar, S.V.; Gottesman, M.M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. The first study to provide evidence that synonymous changes that do not affect mRNA levels have clinical consequences. Science 2007, 315, 525–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nackley, A.G.; Shabalina, S.A.; Tchivileva, I.E.; Satterfield, K.; Korchynskyi, O.; Makarov, S.S.; Maixner, W.; Diatchenko, L. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. The first study to elucidate a detailed molecular mechanism based on mRNA structure for how synonymous mutations can have physiological consequences. Science 2006, 314, 1930–1933. [Google Scholar]
- Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef]
Target gene | Primers Sequence | PCR Product Size | References |
---|---|---|---|
TMEM154 | For 5′-GCGAGGCGTGCTAACTG-3′ Rev 5′-GCCCATTAAAGCCGGT-3′ | 589 bp | [14] |
For 5′-GAGGGTAAGTTTCAGATCATTG-3′ Rev 5′-TTATGTAGCTGCTTCACTTAAA-3′ | 554 bp | ||
TLR9 | For 5′-TTCGTGGACCTGTCGGAC-3′ Rev 5′-CTGGCTGTTGTAGCTGAG-3′ | 414 bp | [27] |
MYD88 | For 5′-AGCCTGAGTATTTTGATGCC-3′ Rev 5′-ACCTGGAGAGAGGCTGAGC-3′ | 441 bp |
Gene | Polymorphism | Genotype | RR | 95% CI | p-Value |
---|---|---|---|---|---|
TMEM154 | P7H | HH, PH vs. PP | 1.64 | 1.26–2.14 | 0.0002 |
PP vs. HH, PH | 0.61 | 0.47–0.79 | |||
E35K | EE, EK vs. KK | 1.24 | 0.99–1.56 | 0.055 # | |
KK vs. EE, EK | 0.80 | 0.64–1.01 | |||
I70N | NI, II vs. NN | 1.89 | 1.31–2.73 | 0.0006 | |
NN vs. NI, II | 0.53 | 0.37–0.76 | |||
I74V | II vs. VV | 2.61 | 1.47–4.64 | 0.0010 | |
VV vs. II | 0.38 | 0.22–0.68 | |||
I105V | II vs. VV | 3.06 | 1.47–4.64 | 0.0020 | |
VV vs. II | 0.31 | 0.16–0.65 | |||
TLR9 | R447Q | QQ vs. RQ, RR | 2.40 | 2.16–2.67 | <0.0001 |
RR, RQ vs. QQ | 0.42 | 0.37–0.46 | |||
A462S | AA, AS vs. SS | 1.96 | 1.22–3.14 | 0.0053 | |
SS vs. AA, AS | 0.51 | 0.32–0.82 | |||
G520R | RR, GR vs. GG | 1.72 | 1.14–2.59 | 0.0101 | |
GG vs. RR, GR | 0.58 | 0.39–0.88 | |||
MYD88 | H176H* | HH, HH* vs. H*H* | 1.33 | 1.09–1.64 | 0.0060 |
H*H* vs. HH, HH* | 0.75 | 0.61–0.92 | |||
K190K* | KK, KK* vs. K*K* | 1.33 | 1.09–1.64 | 0.0060 | |
K*K* vs. KK, KK* | 0.75 | 0.61–0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcangeli, C.; Lucarelli, D.; Torricelli, M.; Sebastiani, C.; Ciullo, M.; Pellegrini, C.; Felici, A.; Costarelli, S.; Giammarioli, M.; Feliziani, F.; et al. First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses 2021, 13, 1290. https://doi.org/10.3390/v13071290
Arcangeli C, Lucarelli D, Torricelli M, Sebastiani C, Ciullo M, Pellegrini C, Felici A, Costarelli S, Giammarioli M, Feliziani F, et al. First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses. 2021; 13(7):1290. https://doi.org/10.3390/v13071290
Chicago/Turabian StyleArcangeli, Chiara, Daniele Lucarelli, Martina Torricelli, Carla Sebastiani, Marcella Ciullo, Claudia Pellegrini, Andrea Felici, Silva Costarelli, Monica Giammarioli, Francesco Feliziani, and et al. 2021. "First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection" Viruses 13, no. 7: 1290. https://doi.org/10.3390/v13071290
APA StyleArcangeli, C., Lucarelli, D., Torricelli, M., Sebastiani, C., Ciullo, M., Pellegrini, C., Felici, A., Costarelli, S., Giammarioli, M., Feliziani, F., Passamonti, F., & Biagetti, M. (2021). First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses, 13(7), 1290. https://doi.org/10.3390/v13071290