Serum Neutralizing Activity against B.1.1.7, B.1.351, and P.1 SARS-CoV-2 Variants of Concern in Hospitalized COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cell Culture and Viral Growth
2.3. SARS-CoV-2 Viruses
2.4. Virus Neutralization Assay
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 4 May 2021).
- Algaissi, A.; Alfaleh, M.A.; Hala, S.; Abujamel, T.S.; Alamri, S.S.; Almahboub, S.A.; Alluhaybi, K.A.; Hobani, H.I.; Alsulaiman, R.M.; AlHarbi, R.H.; et al. SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients. Sci. Rep. 2020, 10, 16561. [Google Scholar] [CrossRef]
- CDC. SARS-CoV-2 Variant Classifications and Definitions. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html#Concern (accessed on 6 April 2021).
- WHO. SARS-CoV-2 Variant—United Kingdom of Great Britain and Northern Ireland. 2020. Available online: https://www.who.int/csr/don/21-december-2020-sars-cov2-variant-united-kingdom/en/ (accessed on 6 April 2021).
- Burki, T. Understanding variants of SARS-CoV-2. Lancet 2021, 397, 462. [Google Scholar] [CrossRef]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- CDC. Science Brief: Emerging SARS-CoV-2 Variants. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html (accessed on 6 April 2021).
- Wu, K.; Werner, A.P.; Moliva, J.I.; Koch, M.; Choi, A.; Stewart-Jones, G.B.E.; Bennett, H.; Boyoglu-Barnum, S.; Shi, W.; Graham, B.S.; et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021. [Google Scholar] [CrossRef]
- Davies, N.G.; Jarvis, C.I.; CMMID COVID-19 Working Group; Edmunds, J.W.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef] [PubMed]
- eCDC. Rapid Increase of a SARS-CoV-2 Variant with Multiple Spike Protein Mutations Observed in the United Kingdom. 2020, pp. 1–13. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/SARS-CoV-2-variant-multiple-spike-protein-mutations-United-Kingdom.pdf (accessed on 12 July 2021).
- Muik, A.; Wallisch, A.K.; Sanger, B.; Swanson, K.A.; Muhl, J.; Chen, W.; Cai, H.; Maurus, D.; Sarkar, R.; Tureci, O.; et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 2021, 371, 1152–1153. [Google Scholar] [CrossRef]
- Zuckerman, N.S.; Fleishon, S.; Bucris, E.; Bar-Ilan, D.; Linial, M.; Bar-Or, I.; Mor, O. A unique SARS-CoV-2 spike protein P681H strain detected in Israel. medRxiv 2021. [Google Scholar] [CrossRef]
- Toovey, O.T.R.; Harvey, K.N.; Bird, P.W.; Tang, J.W.W. Introduction of Brazilian SARS-CoV-2 484K.V2 related variants into the UK. J. Infect. 2021. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, C.K.V.; Franco, M.M.; Graf, T.; de Lorenzo Barcia, C.A.; de Avila Mendonca, R.N.; de Sousa, K.A.F.; Neiva, L.M.C.; Fosenca, V.; Mendes, A.V.A.; de Aguiar, R.S. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg. Infect. Dis. 2021, 27, 1522–1524. [Google Scholar] [CrossRef]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A., Jr.; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef]
- Naveca, F.; da Costa, C.; Nascimento, V.; Souza, V.; Corado, A.; Nascimento, F.; Costa, A.; Duarte, D.; Silva, G.; Mejía, M.; et al. SARS-CoV-2 Reinfection by the New Variant of Concern (VOC) P.1 in Amazonas, Brazil. 2021. Available online: https://virological.org/t/sars-cov-2-reinfection-by-the-new-variant-of-concern-voc-p-1-in-amazonas-brazil/596 (accessed on 12 July 2021).
- Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet 2021, 397, 952–954. [Google Scholar] [CrossRef]
- ISS. CS N° 14/2021—In Italia il 54% Delle Infezioni Dovute a ‘Variante Inglese’, il 4,3% a Quella ‘Brasiliana’ e lo 0,4% a Quella ‘Sudafricana’. 2021. Available online: https://www.iss.it/comunicati-stampa/-/asset_publisher/fjTKmjJgSgdK/content/id/5647546?_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_fjTKmjJgSgdK_redirect=https%3A%2F%2Fwww.iss.it%2Fcomunicatistampa%3Fp_p_id%3Dcom_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_fjTKmjJgSgdK%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_fjTKmjJgSgdK_cur%3D0%26p_r_p_resetCur%3Dfalse%26_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_fjTKmjJgSgdK_assetEntryId%3D5647546 (accessed on 6 April 2021).
- Torjesen, I. Covid-19: Delta variant is now UK’s most dominant strain and spreading through schools. BMJ 2021, 373, n1445. [Google Scholar] [CrossRef]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Bauer, D.L. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 2021, 397, 2331–2332. [Google Scholar] [CrossRef]
- eCDC. ECDC Statement on the SARS-CoV-2 Delta Variant in the EU/EEA. Available online: https://www.ecdc.europa.eu/en/news-events/ecdc-statement-sars-cov-2-delta-variant-eueea (accessed on 24 June 2021).
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Ramsay, M. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. medRxiv 2021. [Google Scholar] [CrossRef]
- Marchi, S.; Simonetta, V.; Remarque, E.; Ruello, A.; Bombardieri, E.; Bollati, V.; Trombetta, C. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV-2 infection. PLoS ONE 2021. [Google Scholar] [CrossRef]
- Manenti, A.; Maggetti, M.; Casa, E.; Martinuzzi, D.; Torelli, A.; Trombetta, C.M.; Marchi, S.; Montomoli, E. Evaluation of SARS-CoV-2 neutralizing antibodies using a CPE-based colorimetric live virus micro-neutralization assay in human serum samples. J. Med. Virol. 2020, 92, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- GraphPad Software. Available online: http://www.graphpad.com (accessed on 17 June 2021).
- Supasa, P.; Zhou, D.; Dejnirattisai, W.; Liu, C.; Mentzer, A.J.; Ginn, H.M.; Screaton, G.R. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell 2021, 184, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Dcosta, B.M.; Samanovic-Golden, M.; Herati, R.S.; Cornelius, A.; Mulligan, M.J.; Landau, N.R. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef]
- Rees-Spear, C.; Muir, L.; Griffith, S.A. The impact of Spike mutations on SARS-CoV-2 neutralization. bioRxiv 2021, 1–26. [Google Scholar] [CrossRef]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Stamatatos, L.; Czartoski, J.; Wan, Y.H.; Homad, L.J.; Rubin, V.; Glantz, H.; Neradilek, M.; Seydoux, E.; Jennewein, M.F.; MacCamy, A.J.; et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021. [Google Scholar] [CrossRef] [PubMed]
- Ebinger, J.E.; Fert-Bober, J.; Printsev, I.; Wu, M.; Sun, N.; Prostko, J.C.; Frias, E.C.; Stewart, J.L.; van Eyk, J.E.; Braun, J.G.; et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ministero Della SALUTE. OGGETTO: Vaccinazione dei Soggetti che Hanno Avuto Un’infezione da SARS-CoV-2. 2021. Available online: http://www.regioni.it/sanita/2021/03/04/ministero-della-salute-circolare-vaccinazione-dei-soggetti-che-hanno-avuto-uninfezione-da-sars-cov-2-03-03-2021-630251/ (accessed on 1 April 2021).
- He, Z.Y.; Ren, L.L.; Yang, J.T.; Guo, L.; Feng, L.Z.; Ma, C.; Wang, X.; Leng, Z.W.; Tong, X.L.; Zhou, W.; et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: A longitudinal, population-level, cross-sectional study. Lancet 2021, 397, 1075–1084. [Google Scholar] [CrossRef]
- Naveca, F.; da Costa, C.; Nascimento, V.; Souza, V.; Corado, A.; Nascimento, F.; Resende, P.C. Three SARS-CoV-2 reinfection cases by the new Variant of Concern (VOC) P.1/501Y.V3. Res. Sq. 2021, 1–13. [Google Scholar] [CrossRef]
- Stowe, J.; Andrews, N.; Gower, C.; Gallagher, E.; Utsi, L.; Simmons, R. Effectiveness of COVID-19 Vaccines against Hospital Admission with the Delta (B.1.617.2) Variant. Available online: https://media.tghn.org/articles/Effectiveness_of_COVID-19_vaccines_against_hospital_admission_with_the_Delta_B._G6gnnqJ.pdf (accessed on 23 June 2021).
(a) B.1.1.7 Variant | ||||||
---|---|---|---|---|---|---|
Baseline | Peak | Discharge/Decease | ||||
N | % | N | % | N | % | |
- | 19 | 45.2% | 16 | 38.1% | 17 | 40.5% |
2-fold | 12 | 28.6% | 14 | 33.3% | 16 | 38.1% |
4-fold | 7 | 16.7% | 8 | 19.0% | 9 | 21.4% |
>4-fold | 4 | 9.5% | 4 | 9.5% | 0 | 0.0% |
Total | 42 | 100% | 42 | 100% | 42 | 100% |
Mean fold | 3.0 | 3.5 | 2.3 | |||
(SD) | (3.1) | (5.0) | (1.4) | |||
(b) P.1 Variant | ||||||
Baseline | Peak | Discharge/Decease | ||||
N | % | N | % | N | % | |
- | 12 | 28.6% | 5 | 11.9% | 7 | 16.7% |
2-fold | 15 | 35.7% | 10 | 23.8% | 14 | 33.3% |
4-fold | 6 | 14.3% | 12 | 28.6% | 14 | 33.3% |
>4-fold | 9 | 21.4% | 15 | 35.7% | 7 | 16.7% |
Total | 42 | 100% | 42 | 100% | 42 | 100% |
Mean fold | 4.3 | 6.0 | 4.4 | |||
(SD) | (4.5) | (4.3) | (3.4) | |||
(c) B.1.351 Variant | ||||||
Baseline | Peak | Discharge/Decease | ||||
N | % | N | % | N | % | |
- | 10 | 23.8% | 4 | 9.5% | 4 | 9.5% |
2-fold | 10 | 23.8% | 5 | 11.9% | 9 | 21.4% |
4-fold | 2 | 4.8% | 5 | 11.9% | 6 | 14.3% |
>4-fold | 20 | 47.6% | 28 | 66.7% | 23 | 54.8% |
Total | 42 | 100% | 42 | 100% | 42 | 100% |
Mean fold | 10.2 | 18.5 | 11.0 | |||
(SD) | (14.9) | (18.9) | (12.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombetta, C.M.; Marchi, S.; Viviani, S.; Manenti, A.; Benincasa, L.; Ruello, A.; Bombardieri, E.; Vicenti, I.; Zazzi, M.; Montomoli, E. Serum Neutralizing Activity against B.1.1.7, B.1.351, and P.1 SARS-CoV-2 Variants of Concern in Hospitalized COVID-19 Patients. Viruses 2021, 13, 1347. https://doi.org/10.3390/v13071347
Trombetta CM, Marchi S, Viviani S, Manenti A, Benincasa L, Ruello A, Bombardieri E, Vicenti I, Zazzi M, Montomoli E. Serum Neutralizing Activity against B.1.1.7, B.1.351, and P.1 SARS-CoV-2 Variants of Concern in Hospitalized COVID-19 Patients. Viruses. 2021; 13(7):1347. https://doi.org/10.3390/v13071347
Chicago/Turabian StyleTrombetta, Claudia Maria, Serena Marchi, Simonetta Viviani, Alessandro Manenti, Linda Benincasa, Antonella Ruello, Emilio Bombardieri, Ilaria Vicenti, Maurizio Zazzi, and Emanuele Montomoli. 2021. "Serum Neutralizing Activity against B.1.1.7, B.1.351, and P.1 SARS-CoV-2 Variants of Concern in Hospitalized COVID-19 Patients" Viruses 13, no. 7: 1347. https://doi.org/10.3390/v13071347
APA StyleTrombetta, C. M., Marchi, S., Viviani, S., Manenti, A., Benincasa, L., Ruello, A., Bombardieri, E., Vicenti, I., Zazzi, M., & Montomoli, E. (2021). Serum Neutralizing Activity against B.1.1.7, B.1.351, and P.1 SARS-CoV-2 Variants of Concern in Hospitalized COVID-19 Patients. Viruses, 13(7), 1347. https://doi.org/10.3390/v13071347