Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Sample Collection
2.4. Dengue Diagnosis
2.4.1. Serological Assays
2.4.2. Molecular Assays
2.5. Classification of Cases
2.6. Hematological and Biochemical Parameters
2.7. Quantification of Cytokines and Chemokines
2.8. Quantification of Tissue Factor (TF), Tissue Factor Pathway Inhibitor (TFPI), Thrombomodulin (TM) and D-Dimer
2.9. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics of the Confirmed Dengue Cases
3.2. Type of Infection and Serotype
3.3. NS1 Antigen Levels
3.4. Hematological and Biochemical Parameters
3.5. Differential Immune Mediators Profiles in Dengue Patients
3.5.1. Cytokines and Chemokines
3.5.2. Coagulation Mediators
3.5.3. Principal Component Analysis (PCA) for Cytokines, Chemokines and Coagulation Mediators in Dengue Patients
3.6. Assessment of Severity Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Dengue and Severe Dengue. Geneva. Updated 19 May 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 12 June 2021).
- Pan American Health Organization (PAHO). Epidemiological Update: Dengue. 7 February 2020. 2020. Available online: https://www.paho.org/en/documents/epidemiological-update-dengue-7-february-2020 (accessed on 12 June 2021).
- Laserna, A.; Barahona-Correa, J.; Baquero, L.; Castaneda-Cardona, C.; Rosselli, D. Economic impact of dengue fever in Latin America and the Caribbean: A systematic review. Rev. Panam. Salud Pública 2018, 42, e111. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization (PAHO). Epidemiological Update. Dengue in the Context of COVID-19. 3 December 2020. 2020. Available online: https://iris.paho.org/handle/10665.2/53174 (accessed on 12 June 2021).
- Screaton, G.; Mongkolsapaya, J.; Yacoub, S.; Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 2015, 15, 745–759. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva 2009. Available online: https://apps.who.int/iris/handle/10665/44188 (accessed on 19 October 2020).
- Katzelnick, L.C.; Coloma, J.; Harris, E. Dengue: Knowledge gaps, unmet needs, and research priorities. Lancet Infect. Dis. 2017, 17, e88–e100. [Google Scholar] [CrossRef] [Green Version]
- Da Silveira, L.T.C.; Tura, B.; Santos, M. Systematic review of dengue vaccine efficacy. BMC Infect. Dis. 2019, 19, 750. [Google Scholar] [CrossRef]
- Nogueira, R.M.; de Araújo, J.M.; Schatzmayr, H.G. Dengue viruses in Brazil, 1986–2006. Rev. Panam. Salud Pública 2007, 22, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Heringer, M.; Souza, T.M.A.; Lima, M.; Nunes, P.C.G.; Faria, N.; de Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Nogueira, R.M.R.; Dos Santos, F.B. Dengue type 4 in Rio de Janeiro, Brazil: Case characterization following its introduction in an endemic region. BMC Infect. Dis. 2017, 17, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Baez, A.S.; Cunha, M.D.P.; Vedovello, D.; Colombo, T.E.; Nogueira, M.L.; Villabona-Arenas, C.J.; Zanotto, P.M.A. Origin, tempo, and mode of the spread of DENV-4 Genotype IIB across the state of Sao Paulo, Brazil during the 2012-2013 outbreak. Memórias Inst. Oswaldo Cruz 2019, 114, e180251. [Google Scholar] [CrossRef]
- Ministério da Saúde. Monitoramento dos Casos de Dengue e Febre de Chikungunya Até a Semana Epidemiológica (SE) 53 de 2014. Bol. Epidemiol. 2015, 46, 1–2. [Google Scholar]
- Ministério da Saúde. Óbito por Arboviroses no Brasil, 2008 a 2019. Bol. Epidemiol. 2020, 51, 2–3. [Google Scholar]
- Da Costa Faria, N.R.; Solorzano, V.E.F.; de Souza, L.J.; Nogueira, R.M.R.; de Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Santos Simões, J.B.; da Rocha Queiroz Lima, M.; de Oliveira Pinto, L.M.; Kubelka, C.F.; et al. Analysis of clinical and laboratory alterations related to dengue case severity: Comparison between Serotypes 2 and 4 in Brazil. Am. J. Trop. Med. Hyg. 2017, 97, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Nunes, P.C.G.; Rioja, L.D.S.; Coelho, J.; Salomão, N.G.; Rabelo, K.; José, C.C.; Rodrigues, F.d.C.C.; de Azeredo, E.L.; Basílio-de-Oliveira, C.A.; Basílio-de-Oliveira, R.; et al. Renal injury in DENV-4 fatal cases: Viremia, immune response and cytokine profile. Pathogens 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Primers 2016, 2, 16055. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, J.J.; Katzelnick, L.C.; Burger-Calderon, R.; Gallini, J.; Moore, R.H.; Kuan, G.; Balmaseda, A.; Pinsky, B.A.; Harris, E. Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric dengue virus infections. J. Infect. Dis. 2020, 221, 1846–1854. [Google Scholar] [CrossRef]
- Tran, L.; Radwan, I.; Minh, L.H.N.; Low, S.K.; Hashan, M.R.; Gomaa, M.D.; Abdelmongy, M.; Abdelaziz, A.I.; Mohamed, A.; Tawfik, G.M.; et al. Role of cytokines produced by T helper immune-modulators in dengue pathogenesis: A systematic review and meta-analysis. Acta Trop. 2021, 216, 105823. [Google Scholar] [CrossRef]
- Azeredo, E.L.; Zagne, S.M.; Alvarenga, A.R.; Nogueira, R.M.; Kubelka, C.F.; de Oliveira-Pinto, L.M. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease. Memórias Inst. Oswaldo Cruz 2006, 101, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Bozza, F.A.; Cruz, O.G.; Zagne, S.M.; Azeredo, E.L.; Nogueira, R.M.; Assis, E.F.; Bozza, P.T.; Kubelka, C.F. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect. Dis. 2008, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De-Oliveira-Pinto, L.M.; Gandini, M.; Freitas, L.P.; Siqueira, M.M.; Marinho, C.F.; Setúbal, S.; Kubelka, C.F.; Cruz, O.G.; Oliveira, S.A. Profile of circulating levels of IL-1Ra, CXCL10/IP-10, CCL4/MIP-1beta and CCL2/MCP-1 in dengue fever and parvovirosis. Memórias Inst. Oswaldo Cruz 2012, 107, 48–56. [Google Scholar] [CrossRef] [Green Version]
- De-Oliveira-Pinto, L.M.; Marinho, C.F.; Povoa, T.F.; de Azeredo, E.L.; de Souza, L.A.; Barbosa, L.D.; Motta-Castro, A.R.; Alves, A.M.; Avila, C.A.; de Souza, L.J.; et al. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. PLoS ONE 2012, 7, e38527. [Google Scholar] [CrossRef]
- Badolato-Corrêa, J.; Sánchez-Arcila, J.C.; Alves de Souza, T.M.; Santos Barbosa, L.; Conrado Guerra Nunes, P.; da Rocha Queiroz Lima, M.; Gandini, M.; Bispo de Filippis, A.M.; Venâncio da Cunha, R.; Leal de Azeredo, E.; et al. Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection. Immun. Inflamm. Dis. 2018, 6, 194–206. [Google Scholar] [CrossRef]
- Friberg, H.; Beaumier, C.M.; Park, S.; Pazoles, P.; Endy, T.P.; Mathew, A.; Currier, J.R.; Jarman, R.G.; Anderson, K.B.; Hatch, S.; et al. Protective versus pathologic pre-exposure cytokine profiles in dengue virus infection. PLoS Negl. Trop. Dis. 2018, 12, e0006975. [Google Scholar] [CrossRef]
- Huerta-Zepeda, A.; Cabello-Gutierrez, C.; Cime-Castillo, J.; Monroy-Martinez, V.; Manjarrez-Zavala, M.E.; Gutierrez-Rodriguez, M.; Izaguirre, R.; Ruiz-Ordaz, B.H. Crosstalk between coagulation and inflammation during Dengue virus infection. Thromb. Haemost. 2008, 99, 936–943. [Google Scholar] [CrossRef] [PubMed]
- De Azeredo, E.L.; Kubelka, C.F.; Alburquerque, L.M.; Barbosa, L.S.; Damasco, P.V.; Avila, C.A.; Motta-Castro, A.R.; da Cunha, R.V.; Monteiro, R.Q. Tissue factor expression on monocytes from patients with severe dengue fever. Blood Cells Mol. Dis. 2010, 45, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Goeijenbier, M.; van Wissen, M.; van de Weg, C.; Jong, E.; Gerdes, V.E.; Meijers, J.C.; Brandjes, D.P.; van Gorp, E.C. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012, 84, 1680–1696. [Google Scholar] [CrossRef]
- Ministério da Saúde. Dengue: Diagnóstico e Manejo Clínico: Adulto e Criança. Brasília—DF 2013. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/dengue_diagnostico_manejo_clinico_adulto.pdf (accessed on 19 October 2020).
- Lima, M.D.; Nogueira, R.M.; de Filippis, A.M.; Nunes, P.C.; de Sousa, C.S.; da Silva, M.H.; dos Santos, F.B. A simple heat dissociation method increases significantly the ELISA detection sensitivity of the nonstructural-1 glycoprotein in patients infected with DENV type-4. J. Virol. Methods 2014, 204, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Shu, P.Y.; Chen, L.K.; Chang, S.F.; Yueh, Y.Y.; Chow, L.; Chien, L.J.; Chin, C.; Lin, T.H.; Huang, J.H. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin. Diagn. Lab. Immunol. 2003, 10, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vorndam, A.V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Leal de Azeredo, E.; Solorzano, V.E.; de Oliveira, D.B.; Marinho, C.F.; de Souza, L.J.; da Cunha, R.V.; Damasco, P.V.; Kubelka, C.F.; de-Oliveira-Pinto, L.M. Increased circulating procoagulant and anticoagulant factors as TF and TFPI according to severity or infecting serotypes in human dengue infection. Microbes Infect. 2017, 19, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Barros, T.; Batista, D.O.; Torrentes de Carvalho, A.; Costa Faria, N.R.D.; Barreto-Vieira, D.F.; Jacome, F.C.; Barth, O.M.; Nogueira, R.M.R.; Neves, P.C.d.C.; Matos, D.C.S.; et al. Different aspects of platelet evaluation in dengue: Measurement of circulating mediators, ability to interact with the virus, the degree of activation and quantification of intraplatelet protein content. Virus Res. 2019, 260, 163–172. [Google Scholar] [CrossRef] [PubMed]
- John, D.V.; Lin, Y.-S.; Perng, G.C. Biomarkers of severe dengue disease—A review. J. Biomed. Sci. 2015, 22, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, B.A.M.; Guilarde, A.O.; Argolo, A.; Tassara, M.P.; da Silveira, L.A.; Junqueira, I.C.; Turchi, M.D.; Féres, V.C.R.; Martelli, C.M.T. Dengue-specific serotype related to clinical severity during the 2012/2013 epidemic in centre of Brazil. Infect. Dis. Poverty 2017, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Tricou, V.; Minh, N.N.; Farrar, J.; Tran, H.T.; Simmons, C.P. Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. PLoS Negl. Trop. Dis. 2011, 5, e1309. [Google Scholar] [CrossRef] [Green Version]
- Paranavitane, S.A.; Gomes, L.; Kamaladasa, A.; Adikari, T.N.; Wickramasinghe, N.; Jeewandara, C.; Shyamali, N.L.; Ogg, G.S.; Malavige, G.N. Dengue NS1 antigen as a marker of severe clinical disease. BMC Infect. Dis. 2014, 14, 570. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.W.; Tsai, H.P.; Hung, S.J.; Ko, W.C.; Wang, J.R. Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning. PLoS Negl. Trop. Dis. 2020, 14, e0008960. [Google Scholar] [CrossRef]
- Soe, H.J.; Manikam, R.; Raju, C.S.; Khan, M.A.; Sekaran, S.D. Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS ONE 2020, 15, e0237141. [Google Scholar] [CrossRef] [PubMed]
- Bodinayake, C.K.; Tillekeratne, L.G.; Nagahawatte, A.; Devasiri, V.; Kodikara Arachchi, W.; Strouse, J.J.; Sessions, O.M.; Kurukulasooriya, R.; Uehara, A.; Howe, S.; et al. Evaluation of the WHO 2009 classification for diagnosis of acute dengue in a large cohort of adults and children in Sri Lanka during a dengue-1 epidemic. PLoS Negl. Trop. Dis. 2018, 12, e0006258. [Google Scholar] [CrossRef]
- Rafi, A.; Mousumi, A.N.; Ahmed, R.; Chowdhury, R.H.; Wadood, A.; Hossain, G. Dengue epidemic in a non-endemic zone of Bangladesh: Clinical and laboratory profiles of patients. PLoS Negl. Trop. Dis. 2020, 14, e0008567. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.K.; Gan, V.C.; Lee, V.J.; Tan, A.S.; Leo, Y.S.; Lye, D.C. Clinical relevance and discriminatory value of elevated liver aminotransferase levels for dengue severity. PLoS Negl. Trop. Dis. 2012, 6, e1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangkaew, S.; Ming, D.; Boonyasiri, A.; Honeyford, K.; Kalayanarooj, S.; Yacoub, S.; Dorigatti, I.; Holmes, A. Risk predictors of progression to severe disease during the febrile phase of dengue: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1014–1026. [Google Scholar] [CrossRef]
- De Azeredo, E.L.; Monteiro, R.Q.; de-Oliveira Pinto, L.M. Thrombocytopenia in Dengue: Interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediat. Inflamm. 2015, 2015, 313842. [Google Scholar] [CrossRef] [Green Version]
- Hottz, E.D.; Medeiros-de-Moraes, I.M.; Vieira-de-Abreu, A.; de Assis, E.F.; Vals-de-Souza, R.; Castro-Faria-Neto, H.C.; Weyrich, A.S.; Zimmerman, G.A.; Bozza, F.A.; Bozza, P.T. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol. 2014, 193, 1864–1872. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Wei, H.X.; Jiang, S.C.; He, C.; Xu, X.J.; Peng, H.J. Evaluation of aminotransferase abnormality in dengue patients: A meta analysis. Acta Trop. 2016, 156, 130–136. [Google Scholar] [CrossRef]
- Chia, P.Y.; Thein, T.L.; Ong, S.W.X.; Lye, D.C.; Leo, Y.S. Severe dengue and liver involvement: An overview and review of the literature. Expert Rev. Anti Infect. Ther. 2020, 18, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, X.; Hong, W.; Qiu, S.; Wang, J.; Yu, L.; Zeng, Y.; Tan, X.; Zhang, F. Slow resolution of inflammation in severe adult dengue patients. BMC Infect. Dis. 2016, 16, 291. [Google Scholar] [CrossRef] [Green Version]
- Patro, A.R.K.; Mohanty, S.; Prusty, B.K.; Singh, D.K.; Gaikwad, S.; Saswat, T.; Chattopadhyay, S.; Das, B.K.; Tripathy, R.; Ravindran, B. Cytokine signature associated with disease severity in Dengue. Viruses 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Puc, I.; Ho, T.C.; Yen, K.L.; Vats, A.; Tsai, J.J.; Chen, P.L.; Chien, Y.W.; Lo, Y.C.; Perng, G.C. Cytokine signature of dengue patients at different severity of the disease. Int. J. Mol. Sci. 2021, 22, 2879. [Google Scholar] [CrossRef]
- Silveira, G.F.; Meyer, F.; Delfraro, A.; Mosimann, A.L.; Coluchi, N.; Vasquez, C.; Probst, C.M.; Báfica, A.; Bordignon, J.; Dos Santos, C.N. Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells. J. Virol. 2011, 85, 5374–5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, G.; Valenzuela Leon, P.C.; Calvo, E. Inflammasome fuels dengue severity. Front. Cell Infect. Microbiol. 2020, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Michels, M.; de Mast, Q.; Netea, M.G.; Joosten, L.A.; Dinarello, C.A.; Rudiman, P.I.; Sinarta, S.; Wisaksana, R.; Alisjahbana, B.; van der Ven, A.J. Normal free interleukin-18 (IL-18) plasma levels in dengue virus infection and the need to measure both total IL-18 and IL-18 binding protein levels. Clin. Vaccine Immunol. 2015, 22, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Pagliari, C.; Quaresma, J.A.; Fernandes, E.R.; Stegun, F.W.; Brasil, R.A.; de Andrade, H.F., Jr.; Barros, V.; Vasconcelos, P.F.; Duarte, M.I. Immunopathogenesis of dengue hemorrhagic fever: Contribution to the study of human liver lesions. J. Med. Virol. 2014, 86, 1193–1197. [Google Scholar] [CrossRef]
- Chen, J.P.; Lu, H.L.; Lai, S.L.; Campanella, G.S.; Sung, J.M.; Lu, M.Y.; Wu-Hsieh, B.A.; Lin, Y.L.; Lane, T.E.; Luster, A.D.; et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J. Immunol. 2006, 177, 3185–3192. [Google Scholar] [CrossRef] [Green Version]
- Gowri Sankar, S.; Alwin Prem Anand, A. Cytokine IP-10 and GM-CSF are prognostic biomarkers for severity in secondary dengue infection. Hum. Immunol. 2021, 82, 438–445. [Google Scholar] [CrossRef]
- Vasey, B.; Shankar, A.H.; Herrera, B.B.; Becerra, A.; Xhaja, K.; Echenagucia, M.; Machado, S.R.; Caicedo, D.; Miller, J.; Amedeo, P.; et al. Multivariate time-series analysis of biomarkers from a dengue cohort offers new approaches for diagnosis and prognosis. PLoS Negl. Trop. Dis. 2020, 14, e0008199. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.C.; Cia, C.T.; Lee, J.C.; Sung, J.M.; Lee, N.Y.; Chen, P.L.; Kuo, T.H.; Chao, J.Y.; Ko, W.C. A Cohort study of adult patients with severe dengue in Taiwanese intensive care units: The Elderly and APTT prolongation matter for prognosis. PLoS Negl. Trop. Dis. 2017, 11, e0005270. [Google Scholar] [CrossRef]
- Laoprasopwattana, K.; Binsaai, J.; Pruekprasert, P.; Geater, A. Prothrombin time prolongation was the most important indicator of severe bleeding in children with severe dengue viral infection. J. Trop. Pediatr. 2017, 63, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Rachman, A.; Rinaldi, I. Coagulopathy in dengue infection and the role of interleukin-6. Acta Med. Indones. 2006, 38, 105–108. [Google Scholar] [PubMed]
- Flores-Mendoza, L.K.; Estrada-Jiménez, T.; Sedeño-Monge, V.; Moreno, M.; Manjarrez, M.D.C.; González-Ochoa, G.; Millán-Pérez Peña, L.; Reyes-Leyva, J. IL-10 and socs3 are predictive biomarkers of dengue hemorrhagic fever. Mediat. Inflamm. 2017, 2017, 5197592. [Google Scholar] [CrossRef] [Green Version]
- Van den Boogaard, F.E.; Hofstra, J.J.; Brands, X.; Levi, M.M.; Roelofs, J.J.; Zaat, S.A.; Van’t Veer, C.; van der Poll, T.; Schultz, M.J. Nebulized recombinant human tissue factor pathway inhibitor attenuates coagulation and exerts modest anti-inflammatory effects in rat models of lung injury. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 91–99. [Google Scholar] [CrossRef]
- Cibor, D.; Szczeklik, K.; Mach, T.; Owczarek, D. Levels of tissue factor pathway inhibitor in patients with inflammatory bowel disease. Pol. Arch. Intern. Med. 2019, 129, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Shorr, A.F.; Thomas, S.J.; Alkins, S.A.; Fitzpatrick, T.M.; Ling, G.S. D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest 2002, 121, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.; Stirling, D.; Ludlam, C.A. Interleukin 6 and haemostasis. Br. J. Haematol. 2001, 115, 3–12. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, Z.; Xie, X.; Ou, Y.; Zeng, W.; Zhou, Y. A novel predictor of severe dengue: The aspartate aminotransferase/platelet count ratio index (APRI). J. Med. Virol. 2018, 90, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.E.; Dahman, B.; Altamimi, A.; McClish, D.K.; Al-Jahdali, H. The aspartate aminotransferase/platelet count ratio index as a marker of dengue virus infection: Course of illness. J. Infect. Public Health 2020, 13, 980–984. [Google Scholar] [CrossRef] [PubMed]
Variable | AUFI | DwoWS | DwWS/SD | p‡ |
---|---|---|---|---|
Total | 91 | 162 | 63 | |
Age (years) * | 38 (27–51) | 36 (26–49) | 36 (23–50) | 0.869 |
Gender | ||||
Female | 56 (62) | 92 (57) | 38 (60) | 0.737 |
Male | 35 (38) | 70 (43) | 25 (40) | |
Comorbidity | ||||
Hypertension | 43 (47) | 32 (20) | 11 (17) | 0.335 |
Diabetes mellitus | 3 (3) | 6 (4) | 2 (3) | 0.975 |
Others | 6 (7) | 8 (5) | 1 (2) | 0.352 |
Days with illness * | 3 (2–5) | 3 (2–5) | 5 (3–7) | <0.001 |
Hematological parameters | ||||
Hematocrit † (%) | 42.3 ± 3.7 | 41.9 ± 4.0 | 43.2 ± 4.6 | 0.203 |
WBC * (×mm3) | 6090 (3940–7400) | 3900 (2860–5300) | 3450 (2500–4950) | <0.001 |
Neutrophils * (×mm3) | 3098 (2184–4641) | 1950 (1305–3142) | 1476 (972–2250) | <0.001 |
Lymphocytes * (×mm3) | 1560 (1168–2112) | 1272 (861–1716) | 1123 (792–1650) | 0.001 |
Monocytes * (×mm3) | 460 (341–680) | 386 (301–546) | 304 (195–498) | 0.001 |
Platelets * (×103/mm3) | 190 (140–233) | 159 (127–211) | 93 (43–179) | <0.001 |
Biochemical parameters | ||||
AST * (IU/L) | 30 (23–50) | 41 (29–69) | 93 (40–260) | <0.001 |
ALT * (IU/L) | 41 (30–67) | 50 (37–80) | 75 (43–198) | 0.002 |
Coagulation parameters | ||||
Prolonged aPTT (>40 s) | ND | 33/68 (49) | 28/36 (78) | 0.004 |
Prolonged PT (>14 s) | ND | 34/69 (49) | 21/36 (58) | 0.378 |
Other biomarkers | ||||
APRI * | 0.5 (0.3–1.1) | 0.7 (0.4–1.2) | 2.5 (1.4–19.7) | <0.001 |
NLR * | 1.9 (1.4–2.9) | 1.7 (1.0–2.5) | 1.4 (0.9–2.8) | 0.120 |
MLR * | 0.3 (0.2–0.4) | 0.3 (0.2–0.4) | 0.3 (0.2–0.5) | 0.678 |
PLR * | 113.9 (77.8–183.6) | 120.7 (84.8–170.7) | 91.9 (41.3–164.3) | 0.018 |
Dengue diagnosis | ||||
AgNS1 positive | 0 (0) | 83 (51) | 31 (49) | |
IgM anti-dengue positive | 0 (0) | 73 (45) | 51 (81) | |
RT-PCR DENV positive | 0 (0) | 71 (44) | 14 (22) |
Healthy Controls | DwoWS | DwWS/SD | p‡ | |
---|---|---|---|---|
Cytokines/Chemokines | ||||
IFN-γ * (pg/mL) | 115.3 (80.5–133.7) | 306.0 (87.6–400.4) | 197.8 (120.8–290.3) | 0.383 |
TNF-α * (pg/mL) | 3.1 (2.6–4.4) | 7.9 (5.9–11.6) | 7.0 (5.0–9.6) | <0.001 |
IL-1β * (pg/mL) | 0.5 (0.3–1.2) | 0.6 (0.4–1.1) | 0.5 (0.4–0.7) | 0.109 |
IL-6 * (pg/mL) | 5.1 (3.3–7.7) | 8.6 (6.0–13.2) | 12.4 (8.7–20) | 0.005 |
IL-10 * (pg/mL) | 0.4 (0.4–0.6) | 2.0 (1.0–4.3) | 3.5 (2.1–8.2) | <0.001 |
IL-18 * (pg/mL) | 8.9 (8.1–10.3) | 17.4 (11.1–26.7) | 24.7 (16.1–31) | 0.001 |
CXCL8/IL-8 * (pg/mL) | 2.3 (1.6–3.5) | 9.3 (5.1–22.5) | 6.6 (3.5–11) | <0.001 |
CCL2/MCP-1 * (pg/mL) | 136.7 (42.9–226.1) | 668.9 (336.9–977.9) | 545.5 (362.8–979.6) | <0.001 |
CXCL10/IP-10 * (pg/mL) | 64.3 (40.8–104.1) | 558.7 (180.8–796.2) | 618.9 (309.2–779.3) | 0.001 |
Coagulation mediators | ||||
Fibrinogen * (mg/dL) | 296 (224–357) | 313 (266–367) | 265 (193–334) | 0.037 |
D-dimer * (ng/mL) | 317 (235–490) | 616 (507–852) | 620 (421–944) | 0.010 |
TF * (pg/mL) | 19.4 (15.1–26.7) | 10.1 (8.5–13.5) | 9.9 (9.4–11.3) | 0.005 |
TFPI * (pg/mL) | 14117 (10599–22478) | 20400 (17250–28225) | 20468 (17189–33215) | 0.042 |
TFPI/TF * | 719.5 (618.1–1720.3) | 1914.9 (1100.6–2487) | 1848 (1387.7–2671.7) | 0.199 |
TM † (pg/mL) | 3047 ± 763 | 3227 ± 702 | 3154 ± 888 | 0.786 |
AUC | IC 95% | Cut-Off | Sensitivity | Specificity | ||
---|---|---|---|---|---|---|
HCT > 50% | 0.533 | 0.494 | 0.571 | NA | 8.6% | 98% |
APRI | 0.775 | 0.681 | 0.869 | 1.4 | 76% | 79% |
IL-6 | 0.693 | 0.562 | 0.825 | 7.8 | 95% | 40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiestas Solórzano, V.E.; da Costa Faria, N.R.; dos Santos, C.F.; Corrêa, G.; Cipitelli, M.d.C.; Dornelas Ribeiro, M.; de Souza, L.J.; Damasco, P.V.; da Cunha, R.V.; dos Santos, F.B.; et al. Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus. Viruses 2021, 13, 1789. https://doi.org/10.3390/v13091789
Fiestas Solórzano VE, da Costa Faria NR, dos Santos CF, Corrêa G, Cipitelli MdC, Dornelas Ribeiro M, de Souza LJ, Damasco PV, da Cunha RV, dos Santos FB, et al. Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus. Viruses. 2021; 13(9):1789. https://doi.org/10.3390/v13091789
Chicago/Turabian StyleFiestas Solórzano, Victor Edgar, Nieli Rodrigues da Costa Faria, Caroline Fernandes dos Santos, Gladys Corrêa, Márcio da Costa Cipitelli, Marcos Dornelas Ribeiro, Luiz José de Souza, Paulo Vieira Damasco, Rivaldo Venâncio da Cunha, Flavia Barreto dos Santos, and et al. 2021. "Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus" Viruses 13, no. 9: 1789. https://doi.org/10.3390/v13091789
APA StyleFiestas Solórzano, V. E., da Costa Faria, N. R., dos Santos, C. F., Corrêa, G., Cipitelli, M. d. C., Dornelas Ribeiro, M., de Souza, L. J., Damasco, P. V., da Cunha, R. V., dos Santos, F. B., de Oliveira Pinto, L. M., & de Azeredo, E. L. (2021). Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus. Viruses, 13(9), 1789. https://doi.org/10.3390/v13091789