In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFNγ Production by Circulating Vδ2 T Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort of Patients
2.2. Serological and Virological Assays
2.3. Peripheral Lymphocyte Isolation
2.4. Phenotypic and Intracellular Staining
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caron, J.; Ridgley, L.A.; Bodman-Smith, M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front. Immunol. 2021, 12, 666983. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Witherden, D.A.; Havran, W.L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 2017, 17, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.M.; Groh, V.; Band, H.; Porcelli, S.A.; Morita, C.; Fabbi, M.; Glass, D.J.; Strominger, J.L.; Brenner, M.B. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med. 1990, 171, 1597–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairallah, C.; Chu, T.H.; Sheridan, B.S. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front. Immunol. 2018, 9, 2636. [Google Scholar] [CrossRef] [PubMed]
- Cimini, E.; Sacchi, A.; De Minicis, S.; Bordoni, V.; Casetti, R.; Grassi, G.; Colavita, F.; Castilletti, C.; Capobianchi, M.R.; Ippolito, G.; et al. Vδ2 T-Cells Kill ZIKV-Infected Cells by NKG2D-Mediated Cytotoxicity. Microorganisms 2019, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Cimini, E.; Bordoni, V.; Sacchi, A.; Visco-Comandini, U.; Montalbano, M.; Taibi, C.; Casetti, R.; Lalle, E.; D’Offizi, G.; Capobianchi, M.; et al. Intrahepatic Vγ9Vδ2 T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication. Virus Res. 2018, 243, 31–35. [Google Scholar] [CrossRef]
- Agrati, C.; Castilletti, C.; Cimini, E.; Romanelli, A.; Lapa, D.; Quartu, S.; Martini, F.; Capobianchi, M.R. Antiviral activity of human Vδ2 T-cells against WNV includes both cytolytic and non-cytolytic mechanisms. New Microbiol. 2016, 39, 139–142. [Google Scholar]
- Bank, I. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells 2020, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Zarobkiewicz, M.K.; Kowalska, W.; Roliński, J.; Bojarska-Junak, A.A. γδ T lymphocytes in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2019, 330, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Shiromizu, C.M.; Jancic, C.C. γδ T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front. Immunol. 2018, 9, 2389. [Google Scholar] [CrossRef]
- Castillo-González, R.; Cibrian, D.; Sánchez-Madrid, F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J. Allergy Clin. Immunol. 2021, 147, 2030–2042. [Google Scholar] [CrossRef] [PubMed]
- Zarobkiewicz, M.K.; Wawryk-Gawda, E.; Kowalska, W.; Janiszewska, M.; Bojarska-Junak, A. γδ T Lymphocytes in Asthma: A Complicated Picture. Arch. Immunol. Ther. Exp. 2021, 69, 4. [Google Scholar] [CrossRef]
- Miyashita, M.; Shimizu, T.; Ashihara, E.; Ukimura, O. Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application. Int. J. Mol. Sci. 2021, 22, 8910. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Williams, A.P. Role of Innate T Cells in Anti-Bacterial Immunity. Front. Immunol. 2015, 6, 302. [Google Scholar] [CrossRef] [Green Version]
- Sabbaghi, A.; Miri, S.M.; Keshavarz, M.; Mahooti, M.; Zebardast, A.; Ghaemi, A. Role of gammadelta T cells in controlling viral infections with a focus on influenza virus: Implications for designing novel therapeutic approaches. Virol. J. 2020, 17, 174. [Google Scholar] [CrossRef]
- Poccia, F.; Agrati, C.; Martini, F.; Mejia, G.; Wallace, M.; Malkovsky, M. Vγ9Vδ2 T cell-mediated non-cytolytic antiviral mechanisms and their potential for cell-based therapy. Immunol. Lett. 2005, 100, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Agrati, C.; Castilletti, C.; De Santis, R.; Cimini, E.; Bordi, L.; Malkovsky, M.; Poccia, F.; Capobianchi, M.R. Interferon-γ–Mediated Antiviral Immunity against Orthopoxvirus Infection Is Provided by γδ T Cells. J. Infect. Dis. 2006, 193, 1606–1607. [Google Scholar] [CrossRef] [Green Version]
- Agrati, C.; Alonzi, T.; De Santis, R.; Castilletti, C.; Abbate, I.; Capobianchi, M.R.; D’Offizi, G.; Siepi, F.; Fimia, G.M.; Tripodi, M.; et al. Activation of Vγ9Vδ2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int. Immunol. 2005, 18, 11–18. [Google Scholar] [CrossRef]
- Poccia, F.; Agrati, C.; Castilletti, C.; Bordi, L.; Gioia, C.; Horejsh, D.; Ippolito, G.; Chan, P.; Hui, D.; Sung, J.J.Y.; et al. Anti–Severe Acute Respiratory Syndrome Coronavirus Immune Responses: The Role Played by Vγ9Vδ2 T Cells. J. Infect. Dis. 2006, 193, 1244–1249. [Google Scholar] [CrossRef]
- Agrati, C.; D’Offizi, G.; Gougeon, M.-L.; Malkovsky, M.; Sacchi, A.; Casetti, R.; Bordoni, V.; Cimini, E.; Martini, F. Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies? AIDS Rev. 2011, 13, 3–12. [Google Scholar] [PubMed]
- Jayachandran, B.; Chanda, K.; Balamurali, M.M. Overview of Pathogenesis, Diagnostics, and Therapeutics of Infectious Diseases: Dengue and Zika. ACS Omega 2021, 6, 22487–22496. [Google Scholar] [CrossRef]
- Guzman, M.; Gubler, D.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Primers 2016, 2, 16055. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Liong, K.H.; Gunalan, M.G.; Liang, L.D.S.; Lim, D.S.L.; Fisher, D.A.; Macary, P.A.; Leo, Y.S.; Wong, S.-C.; Puan, K.J.; et al. Type I IFNs and IL-18 Regulate the Antiviral Response of Primary Human γδ T Cells against Dendritic Cells Infected with Dengue Virus. J. Immunol. 2015, 194, 3890–3900. [Google Scholar] [CrossRef]
- CDC DENV-1-4 Real-Time RT-PCR Assay. Available online: https://www.cdc.gov/dengue/healthcare-providers/testing/molecular-tests/realtime.html (accessed on 7 April 2016).
- Faye, O.; Faye, O.; Diallo, D.; Diallo, M.; Weidmann, M.; Sall, A.A. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught Mosquitoes. Virol. J. 2013, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, B.; Bessaud, M.; Grandadam, M.; Murri, S.; Tolou, H.J.; Peyrefitte, C.N. Development of a TaqMan® RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J. Virol. Methods 2005, 124, 65–71. [Google Scholar] [CrossRef]
- Cimini, E.; Castilletti, C.; Sacchi, A.; Casetti, R.; Bordoni, V.; Romanelli, A.; Turchi, F.; Martini, F.; Tumino, N.; Nicastri, E.; et al. Human Zika infection induces a reduction of IFN-γ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Sci. Rep. 2017, 7, 6313. [Google Scholar] [CrossRef]
- Uno, N.; Ross, T.M. Dengue virus and the host innate immune response. Emerg. Microbes Infect. 2018, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epetitdemange, C.; Ewauquier, N.; Erey, J.; Ehervier, B.; Leroy, E.; Evieillard, V. Control of Acute Dengue Virus Infection by Natural Killer Cells. Front. Immunol. 2014, 5, 209. [Google Scholar] [CrossRef] [Green Version]
- Azeredo, E.L.; De Oliveira-Pinto, L.M.; Zagne, S.M.; Cerqueira, D.I.S.; Nogueira, R.M.R.; Kubelka, C.F. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin. Exp. Immunol. 2006, 143, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Mantri, C.K.; John, A.L.S. Immune synapses between mast cells and γδ T cells limit viral infection. J. Clin. Investig. 2019, 129, 1094–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrati, C.; Castilletti, C.; Casetti, R.; Sacchi, A.; Falasca, L.; Turchi, F.; Tumino, N.; Bordoni, V.; Cimini, E.; Viola, D.; et al. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death Dis. 2016, 7, e2164. [Google Scholar] [CrossRef] [Green Version]
- Cimini, E.; Viola, D.; Cabeza-Cabrerizo, M.; Romanelli, A.; Tumino, N.; Sacchi, A.; Bordoni, V.; Casetti, R.; Turchi, F.; Martini, F.; et al. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Negl. Trop. Dis. 2017, 11, e0005645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biasi, S.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Gozzi, L.; Iannone, A.; Tartaro, D.L.; Mattioli, M.; et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020, 11, 3434. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-T.; Ahmed, R.; Okazaki, T. Role of PD-1 in Regulating T-Cell Immunity. Curr. Top. Microbiol. Immunol. 2010, 350, 17–37. [Google Scholar] [CrossRef]
- He, X.; Xu, C. PD-1: A Driver or Passenger of T Cell Exhaustion? Mol. Cell 2020, 77, 930–931. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Tanaka, Y.; Kobayashi, H.; Murata-Hirai, K.; Miyabe, H.; Sugie, T.; Toi, M.; Minato, N. Expression and function of PD-1 in human γδ T cells that recognize phosphoantigens. Eur. J. Immunol. 2010, 41, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Avery, L.; Filderman, J.; Szymczak-Workman, A.L.; Kane, L.P. Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion. Proc. Natl. Acad. Sci. USA 2018, 115, 2455–2460. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Chen, G.; Shen, B.; Li, Y. Tim-3: An Activation Marker and Activation Limiter of Innate Immune Cells. Front. Immunol. 2013, 4, 449. [Google Scholar] [CrossRef] [Green Version]
- Catafal-Tardos, E.; Baglioni, M.V.; Bekiaris, V. Inhibiting the Unconventionals: Importance of Immune Checkpoint Receptors in γδ T, MAIT, and NKT Cells. Cancers 2021, 13, 4647. [Google Scholar] [CrossRef]
- Schofield, L.; Ioannidis, L.J.; Karl, S.; Robinson, L.J.; Tan, Q.Y.; Poole, D.P.; Betuela, I.; Hill, D.L.; Siba, P.M.; Hansen, D.S.; et al. Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδ T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Med. 2017, 15, 114. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Gu, Y.; Zhang, X.; Zhang, G.; Shi, T.; Chen, W. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp. Cell Res. 2020, 386, 111719. [Google Scholar] [CrossRef] [PubMed]
Age (Mean ± SD) (Years) | Gender (M/F) | Travel History (pts) | Symptom Onset (Range, Days) | Symptoms | DENV RT-PCR | DENV Serotype |
---|---|---|---|---|---|---|
42 ± 11 | 6/9 | India (2 pts) Thailand (2 pts) Philippines (2 pts) Singapore (1 pts) Maldives (3 pts) Brazil (1 pts) Indonesia (2 pts) Jamaica (1 pts) Cuba (1 pts) | 2–5 | Cutaneous rash: 8/15 Fever: 15/15 Headache: 11/15 Arthralgia: 11/15 | Positive: 15 Negative: 0 | Ser 1: 4 Ser 2: 3 Ser 3: 5 Ser 4: 0 ND: 3 |
Patient ID (Gender/DENV Serotype) | Flavivirus PCR | ZIKV RT-PCR | DENV RT-PCR | CHIKV RT-PCR | Anti-ZIKV IgG | Anti-ZIKV IgM | Anti-DENV IgG | Anti-DENV IgM | Anti-CHIKV IgG | Anti-CHIKV IgM |
---|---|---|---|---|---|---|---|---|---|---|
PT1 (F/DENV 1) | Positive | ND | Positive | ND | ND | ND | <1:20 | <1:20 | ND | ND |
PT2 (F/DENV ND) | Positive | ND | Positive | ND | ND | ND | 1:20 | 1:40 | ND | ND |
PT3 (F/DENV 3) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | 1:80 | 1:80 | <1:20 | <1:20 |
PT4 (F/DENV 3) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | 1:80 | 1:160 | <1:20 | <1:20 |
PT5 (M/DENV 1) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | 1:20 | 1:80 | <1:20 | <1:20 |
PT6 (M/DENV 3) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:20 | 1:20 | <1:20 | <1:20 |
PT7 (M/DENV ND) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | 1:40 | 1:80 | <1:20 | <1:20 |
PT8 (F/DENV ND) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | 1:160 | <1:20 | <1:20 | <1:20 |
PT9 (F/DENV 1) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 |
PT10 (F/DENV 3) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:80 | <1:40 | <1:20 | <1:20 |
PT11 (M/DENV 1) | Positive | ND | Positive | Negative | ND | ND | 1:320 | <1:20 | <1:20 | <1:20 |
PT12 (M/DENV 2) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:20 | <1:40 | <1:20 | <1:20 |
PT13 (F/DENV 3) | Positive | ND | Positive | Negative | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 |
PT14 (M/DENV 2) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 |
PT15 (F/DENV 2) | Positive | Negative | Positive | Negative | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 | <1:20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimini, E.; Grassi, G.; Beccacece, A.; Casetti, R.; Castilletti, C.; Capobianchi, M.R.; Nicastri, E.; Agrati, C. In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFNγ Production by Circulating Vδ2 T Cells. Viruses 2022, 14, 130. https://doi.org/10.3390/v14010130
Cimini E, Grassi G, Beccacece A, Casetti R, Castilletti C, Capobianchi MR, Nicastri E, Agrati C. In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFNγ Production by Circulating Vδ2 T Cells. Viruses. 2022; 14(1):130. https://doi.org/10.3390/v14010130
Chicago/Turabian StyleCimini, Eleonora, Germana Grassi, Alessia Beccacece, Rita Casetti, Concetta Castilletti, Maria Rosaria Capobianchi, Emanuele Nicastri, and Chiara Agrati. 2022. "In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFNγ Production by Circulating Vδ2 T Cells" Viruses 14, no. 1: 130. https://doi.org/10.3390/v14010130
APA StyleCimini, E., Grassi, G., Beccacece, A., Casetti, R., Castilletti, C., Capobianchi, M. R., Nicastri, E., & Agrati, C. (2022). In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFNγ Production by Circulating Vδ2 T Cells. Viruses, 14(1), 130. https://doi.org/10.3390/v14010130