Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Phage Isolation
2.2. Bacterial Strains and Cultures
2.3. Phage DNA Isolation, Sequencing, and Genome Assembly
2.4. Annotation and Comparative Genomics
3. Results
3.1. Three Phages Share High Nucleotide Similarity with SPP1 and Form a New Cluster
3.2. What Our SPP1-like Phages Reveal about SPP1
3.3. Genome Conservation and Genes under Strong Purifying Selection
3.4. Genome Mosaicism
3.5. Identifying Genes or Gene Domains under Different Selection Pressures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wommack, A.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef] [PubMed]
- Hambly, E.; Suttle, C.A. The virosphere, diversity, and genetic exchange within phage communities. Curr. Opin. Microbiol. 2005, 8, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef]
- Breitbart, M.; Felts, B.; Kelley, S.; Mahaffy, J.M.; Nulton, J.; Salamon, P.; Rohwer, F. Diversity and population structure of a near-shore marine-sediment viral community. Proc. R. Soc. Lond. B 2004, 271, 565–574. [Google Scholar] [CrossRef]
- Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Karthikeyan, T.; Wadsworth, C.; Lewis, J.A.; Jacobs-Sera, D.; Falbo, J.; Gross, J.; Pannunzio, N.R.; et al. Origins of highly mosaic mycobacteriophage genomes. Cell 2003, 113, 171–182. [Google Scholar] [CrossRef]
- Hatfull, G.F.; Jacobs-Sera, D.; Lawrence, J.G.; Pope, W.H.; Russell, D.A.; Ko, C.C.; Weber, R.J.; Patel, M.C.; Germane, K.L.; Edgar, R.H.; et al. Comparative genomic analysis of 60 Mycobacteriophage genomes: Genome clustering, gene acquisition, and gene size. J. Mol. Biol. 2010, 397, 119–143. [Google Scholar] [CrossRef]
- Hatfull, G.F. Dark matter of the biosphere: The amazing world of bacteriophage diversity. J. Virol. 2015, 89, 8107–8110. [Google Scholar] [CrossRef]
- Brüssow, H.; Hendrix, R.W. Phage genomics: Small is beautiful. Cell 2002, 108, 13–16. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493, 429–432. [Google Scholar] [CrossRef]
- Samson, J.E.; Magadán, A.H.; Sabri, M.; Moineau, S. Revenge of the phages: Defeating bacterial defenses. Nat. Rev. Microbiol. 2013, 11, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Marraffini, L.A. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 2014, 54, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Dy, R.L.; Richter, C.; Salmond, G.P.C.; Fineran, P.C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 2014, 1, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Jacobs-Sera, D.; Bustamante, C.A.G.; Garlena, R.A.; Mavrich, T.N.; Pope, W.H.; Reyes, J.C.; Russell, D.A.; Adair, T.; Alvey, R.; et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2017, 2, 16251. [Google Scholar] [CrossRef]
- Obeng, N.; Pratama, A.A.; van Elsas, J.D. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 2016, 24, 440–449. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Suttle, C.A. Viruses in marine planktonic systems. Oceanography 1993, 6, 51–63. [Google Scholar] [CrossRef]
- Thingstad, E.; Skjoldal, E.; Bohne, R.A. Phosphorus cycling and algal-bacterial competition in Sandsfjord, Western Norway. Mar. Ecol. Prog. Ser. 1993, 99, 239–259. [Google Scholar] [CrossRef]
- Weinbauer, M.G.; Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 2004, 6, 1–11. [Google Scholar] [CrossRef]
- Weinbauer, M.G.; Hornak, K.; Jezbera, J.; Nedoma, J.; Dolan, J.R.; Simek, K. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ. Microbiol. 2007, 9, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Riva, S.; Polsinelli, M.; Falaschi, A. A New Phage of Bacillus subtilis with Infectious DNA Having Separable Strands. J. Mol. Biol. 1968, 35, 347–356. [Google Scholar] [CrossRef]
- Godinho, L.M.; El Sadek Fadel, M.; Monniot, C.; Jakutyte, L.; Auzat, I.; Labarde, A.; Djacem, K.; Oliveira, L.; Carballido-Lopez, R.; Ayora, S.; et al. The revisited genome of Bacillus subtilis bacteriophage SPP1. Viruses 2018, 10, 705. [Google Scholar] [CrossRef]
- Veesler, D.; Blangy, S.; Lichière, J.; Ortiz-Lombardía, M.; Tavares, P.; Campanacci, V.; Cambillau, C. Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone. Protein Sci. 2010, 19, 1812–1816. [Google Scholar] [CrossRef]
- Oliveira, L.; Tavares, P.; Alonso, J.C. Headful DNA Packaging: Bacteriophage SPP1 as a Model System. Virus Res. 2013, 173, 247–259. [Google Scholar] [CrossRef]
- Plisson-Chastang, C.; White, H.E.; Auzat, I.; Zafarani, A.; São-José, C.; Lhuillier, S.; Tavares, P.; Orlova, E.V. Structure of Bacteriophage SPP1 Tail Reveals Trigger for DNA Ejection. EMBO J. 2007, 26, 3720–3728. [Google Scholar] [CrossRef]
- Alonso, J.C.; Lüder, G.; Stiege, A.C.; Chai, S.; Weise, F.; Trautner, T.A. The Complete Nucleotide Sequence and Functional Organization of Bacillus subtilis Bacteriophage SPP1. Gene 1997, 204, 201–212. [Google Scholar] [CrossRef]
- Grose, J.H.; Jensen, G.L.; Burnett, S.H.; Breakwell, D.P. Erratum: Genomic comparison of 83 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genom. 2014, 15, 855. [Google Scholar] [CrossRef] [Green Version]
- Poxleitner, M.; Pope, W.; Jacobs-Sera, D.; Sivanathan, V.; Hatfull, G. Phage Discovery Guide; Howard Hughes Medical Institute: Chevy Chase, MD, USA, 2018; Available online: https://seaphagesphagediscoveryguide.helpdocsonline.com/home (accessed on 1 July 2019).
- Bacillus Genetics Stock Center. Available online: http://bgsc.org/ (accessed on 1 July 2019).
- Duncan, K.E.; Ferguson, N.; Kimura, K.; Zhou, X.; Istock, C. Fine-scale genetic and phenotypic structure in natural populations of Bacillus subtilis and Bacillus licheniformis: Implications for bacterial evolution and speciation. Evolution 1994, 48, 2002–2025. [Google Scholar] [CrossRef] [PubMed]
- Istock, C.A.; Ferguson, N.; Istock, N.L.; Duncan, K.E. Geographical diversity of genomic lineages in Bacillus subtilis. Org. Divers. Evol. 2001, 1, 179–191. [Google Scholar] [CrossRef]
- Sonenshein, A.L.; Cami, B.; Brevet, J.; Cote, R. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties. J. Bacteriol. 1974, 120, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.; Green, P. Consed: A graphical editor for next-generation sequencing. Bioinformatics 2013, 29, 2936–2937. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.A. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol. Biol. 2018, 1681, 109–135. [Google Scholar] [CrossRef] [PubMed]
- Pause3. Available online: https://cpt.tamu.edu/analysis-with-pause3-2016-edition/ (accessed on 1 July 2019).
- Garneau, J.R.; Depardieu, F.; Fortier, L.C.; Bikard, D.; Monot, M. PhageTerm: A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 2017, 7, 8292. [Google Scholar] [CrossRef] [PubMed]
- DNAMaster. Available online: http://cobamide2.bio.pitt.edu/computer.htm (accessed on 1 July 2019).
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Lukashin, A.V.; Borodovsky, M. GeneMark.hmm: New solutions for gene finding. Nucleic Acids Res. 1998, 26, 1107–1115. [Google Scholar] [CrossRef]
- Boratyn, G.M.; Schäffer, A.A.; Agarwala, R.; Altschul, S.F.; Lipman, D.J.; Madden, T.L. Domain enhanced lookup time accelerated BLAST. Biol. Direct. 2012, 7, 12. [Google Scholar] [CrossRef]
- Söding, J.; Biegert, A.; Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005, 33, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Hatfull, G.F. The secret lives of mycobacteriophages. Adv. Virus Res. 2012, 82, 179–288. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.M.; Konstantinidis, K.T. The enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016, 2016, 1900v1. [Google Scholar] [CrossRef]
- Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23, 1026–1028. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Cresawn, S.G.; Bogel, M.; Day, N.; Jacobs-Sera, D.; Hendrix, R.W.; Hatfull, G.F. Phamerator: A bioinformatic tool for comparative bacteriophage genomics. BMC Bioinform. 2011, 12, 395. [Google Scholar] [CrossRef]
- Mavrich, T.N.; Hatfull, G.F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2017, 2, 17112. [Google Scholar] [CrossRef]
- Pope, W.H.; Mavrich, T.N.; Garlena, R.A.; Guerrero-Bustamante, C.A.; Jacobs-Sera, D.; Montgomery, M.T.; Russell, D.A.; Warner, M.H.; Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES); Hatfull, G.F. Bacteriophages of Gordonia spp. display a spectrum of diversity and genetic relationships. Am. Soc. Microbiol. 2017, 8, e01069-17. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, R.W. Bacteriophages: Evolution of the majority. Theor. Popul. Biol. 2002, 61, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005, 13, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Bibby, K. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology. Microb. Ecol. 2014, 67, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Pope, W.H.; Bowman, C.A.; Russell, D.A.; Jacobs-Sera, D.; Asai, D.J.; Cresawn, S.G.; Jacobs, W.R., Jr.; Hendrix, R.W.; Lawrence, J.G.; Hatfull, G.H.; et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015, 4, e06416. [Google Scholar] [CrossRef]
- Actinobacteriophage Database at PhagesDB.org. Available online: https://phagesdb.org (accessed on 1 August 2022).
- Ceyssens, P.-J.; Brabban, A.; Rogge, L.; Lewis, M.S.; Pickard, D.; Goulding, D.; Dougan, G.; Noben, J.-P.; Kropinski, A.; Kutter, E.; et al. Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the “N4-like viruses”. Virology 2010, 405, 26–30. [Google Scholar] [CrossRef]
- Cresawn, S.G.; Pope, W.H.; Jacobs-Sera, D.; Bowman, C.A.; Russell, D.A.; Dedrick, R.M.; Adair, T.; Anders, K.R.; Ball, S.; Bollivar, D.; et al. Comparative Genomics of Cluster O Mycobacteriophages. PLoS ONE 2015, 10, e0118725. [Google Scholar] [CrossRef]
- McLoon, A.L.; Guttenplan, S.B.; Kearns, D.B.; Kolter, R.; Losick, R. Tracing the Domestication of a Biofilm-Forming Bacterium. J. Bacteriol. 2011, 193, 2027–2034. [Google Scholar] [CrossRef]
- Barreto, H.C.; Cordeiro, T.N.; Henriques, A.O.; Gordo, I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep. 2020, 10, 18886. [Google Scholar] [CrossRef]
- Abedon, S.T. Phage evolution and ecology. Adv. Appl. Microbiol. 2009, 67, 1–45. [Google Scholar] [CrossRef]
- Burrowes, B.H.; Molineux, I.J.; Fralick, J.A. Directed in Vitro Evolution of Therapeutic Bacteriophages: The Appelmans Protocol. Viruses 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, P.D.; Buckling, A.; Hall, A.R. Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage 2015, 5, e1050153. [Google Scholar] [CrossRef] [PubMed]
- Istock, C.A.; Duncan, K.E.; Ferguson, N.; Zhou, X. Sexuality in a natural population of bacteria—Bacillus subtilis challenges the clonal paradigm. Mol. Ecol. 1992, 1, 95–103. [Google Scholar] [CrossRef]
Phage | Isolation Strain | Genome Size (bp) | %GC | No of ORFs | Collection Site, Date | GPS Coordinates | Accession Number |
---|---|---|---|---|---|---|---|
000TH010 | T89-06 | 46,274 | 43.8 | 90 | Tumamoc Hill, AZ, September 2011 | 32°13′10.1″ N, 111°00′12.2″ W | MN176219 |
049ML001 | T89-19 | 45,238 | 43.7 | 82 | Mount Lemmon, AZ, May 2014 | 32°20′14.9″ N, 110°41′29.3″ W | MN176227 |
049ML003 | T89-19 | 44,817 | 43.7 | 81 | MN176228 | ||
SPP1 | 168 * | 44,016 | 43.7 | 79 † | Pavia, Italy 1968 * | N/A | X97918.3 |
SPP1 Gene | Function | % AA Alignment/Identity with SPP1 | ||
---|---|---|---|---|
049ML001 | 049ML003 | 000TH010 | ||
1 | Terminase, small subunit | 100/98.6 | 100/98.6 | 95.2/78.4 |
2 | Terminase, large subunit | 100/98.6 | 100/95.3 | 100/95.5 |
3 | - | - | - | |
4 | 100/32.3 | 100/32.3 | 94.0/37.0 | |
5 | - | - | - | |
6 | Portal protein | 100/96.6 | 100/96.6 | 94.0/92.2 |
7 | Head protein | 100/98.4 | 100/99.4 | 100/92.2 |
8 | 46.3/76.4 | 44.5/66.2 | 98.9/44.1 | |
9 | 20.8/98.2 | 20.3/98.2 | 100/89.4 | |
10 | - | - | - | |
11 | Scaffolding protein | 100/99.5 | 100/99.5 | 100/93.5 |
12 | Decoration protein | 100/100 | 100/100 | 98.0/82.5 |
13 | Major capsid protein | 100/85.3 | 100/85.3 | 100/80.5 |
14 | - | - | 82.0/91.7 | |
15 | Head-to-tail adaptor | 100/93.2 | 100/93.2 | 99.0/82.2 |
16 | Head-to-tail stopper | 100/97.3 | 100/97.3 | 100/87.2 |
16.1 | Putative tail protein | 100/99.3 | 100/99.3 | 100/90.1 |
17 | Head-to-tail joining | 100/98.5 | 100/98.5 | 97.0/73.5 |
17.1 | Major tail protein, tail tube | 100/99.4 | 100/99.4 | 100/70.4 |
17.1 * | Major tail protein, tail tube | 100/98.9 | 100/98.9 | 100/70.4 |
17.5 | Tail chaperone | 96.6/98.8 | 96.6/98.8 | 100/64.6 |
17.5 * | Tail chaperone | 98.8/97.0 | 98.8/97.0 | 100/60.9 |
18 | Tape measure | 100/98.3 | 100/98.4 | 100/78.0 |
19.1 | Minor/distal tail protein | 100/97.2 | 100/97.2 | 100/90.1 |
21 | Tail tip protein | 99.9/73.4 | 99.6/73.5 | 99.6/84.4 |
22 | Putative tail protein | 98.5/87.2 | 98.5/87.2 | 100/84.3 |
23 | 66.0/55.6 | 66.0/58.3 | 100/90.7 | |
23.1 | Putative chaperone † | 95.8/78.3 | 95.8/78.3 | 100/94.1 |
24 | 92.9/91.3 | 92.9/91.3 | 100/88.2 | |
24.1 | Component of holin | 100/87.1 | 100/87.1 | 100/93.5 |
24.1 * | Component of holin | 90.3/85.7 | 90.3/85.7 | 90.3/92.9 |
25 | Endolysin | 100/98.5 | 100/98.5 | 100/93.0 |
26 | Component of holin | 100/97.6 | 100/97.6 | 100/91.5 |
26 * | Component of holin | 97.6/97.5 | 97.6/97.5 | 97.6/91.3 |
26.1 | - | - | 91.5/86.1 | |
27 | 100/92.9 | 100/92.4 | 100/87.0 | |
28 | 100/87.4 | 100/86.3 | 98.9/86.2 | |
29 | DNA binding protein | 100/97.0 | 100/97.0 | 100/90.0 |
29.1 | 100/98.1 | 100/98.1 | 100/85.7 | |
30 | 55.7/97.4 | 54.9/97.4 | 47.0/89.7 | |
30.1 | 100/98.2 | 100/98.2 | 100/85.7 | |
31 | 100/100 | 100/100 | 100/90.4 | |
32 | ATP-ase | 100/99.2 | 100/98.9 | 100/95.1 |
32.5 | 100/94.6 | 100/94.6 | 100/83.9 | |
33 | Putative bacteria surface binding protein | 98.3/97.3 | 98.3/97.5 | 98.3/94.1 |
33.1 | 100/91.7 | 100/98.6 | 98.6/84.3 | |
34 | Transcriptional repressor | 100/96.2 | 100/96.2 | 100/94.2 |
34.1 | 5′-3′ Exonuclease | 100/95.8 | 100/96.1 | 100/94.5 |
34.2 | 100/50.8 | 100/50.8 | 100/44.3 | |
34.3 | 100/95.2 | 100/96.4 | - | |
34.4 | 100/70.1 | 100/70.1 | - | |
35 | RecT-like recombinase | 100/99.3 | 100/99.3 | 100/94.8 |
36 | ssDNA binding protein | 100/92.5 | 100/92.5 | 100/74.8 |
36.1 | HNH endonuclease | 100/98.2 | 100/98.2 | 100/96.9 |
37 | 100/49.6 | 100/50.4 | 100/88.4 | |
37.1 | Poly-gamma-glutamate hydrolase | 100/97.0 | 100/97.0 | 100/87.8 |
37.2 | 100/96.4 | 100/96.4 | 100/84.5 | |
37.3 | DNA binding domain | 100/70.2 | 100/70.2 | 100/61.4 |
38 | Replisome organizer (PriA-like) | 100/96.5 | 100/98.0 | 99.6/91.4 |
39 | Gp40 helicase loader | 100/95.2 | 100/95.2 | 100/91.3 |
40 | Replicative DNA helicase | 100/98.4 | 100/98.4 | 100/97.5 |
41 | 100/88.6 | 100/88.6 | 100/55.0 | |
42 | 87.8/85.2 | 87.8/85.2 | - | |
42.1 | DNA-binding protein | - | 96.4/94.4 | 91.2/59.6 |
42.2 | 100/98.0 | 100/98.0 | 98.0/87.6 | |
43 | HTH DNA binding | 100/90.6 | 100/90.6 | 99.1/61.7 |
44 | Endodeoxyribonuclease RusA | 88.0/92.3 | 88.0/92.3 | 87.0/78.3 |
46 | - | - | - | |
46.1 | 100/98.1 | 100/98.1 | 100/90.3 | |
46.2 | 100/100 | 100/100 | 97.1/97.0 | |
47 | 100/92.4 | 100/91.6 | 96.6/68.7 | |
48 | - | - | - | |
49 | - | - | - | |
50 | - | - | - | |
50.1 | - | - | - | |
51 | 100/97.0 | - | - | |
51.1 | - | - | - | |
52 | 100/50.7 | 100/48.8 | - | |
53 | 100/95.6 | 100/63.2 | 100/63.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delesalle, V.A.; Tomko, B.E.; Vill, A.C.; Lichty, K.B.; Krukonis, G.P. Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses 2022, 14, 2106. https://doi.org/10.3390/v14102106
Delesalle VA, Tomko BE, Vill AC, Lichty KB, Krukonis GP. Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses. 2022; 14(10):2106. https://doi.org/10.3390/v14102106
Chicago/Turabian StyleDelesalle, Véronique A., Brianne E. Tomko, Albert C. Vill, Katherine B. Lichty, and Greg P. Krukonis. 2022. "Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative" Viruses 14, no. 10: 2106. https://doi.org/10.3390/v14102106
APA StyleDelesalle, V. A., Tomko, B. E., Vill, A. C., Lichty, K. B., & Krukonis, G. P. (2022). Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses, 14(10), 2106. https://doi.org/10.3390/v14102106