Identification of Risk Factors for African Swine Fever: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Protocol and Objective
- Primary objective: Identify and summarise available information on ASF risk factors for which predefined observations have been reported in relation to ASFV infection in domestic or wild pigs (observation-based risk factors).
- Secondary objective: Identify and summarise hypothesised risk factors that have been mentioned in the literature for ASFV infection in wild or domestic pigs, but for which observations have not necessarily been made or reported (potential risk factors).
2.2. Eligibility Criteria
- Population (P): the study describes domestic or wild pigs exposed to ASFV
- Exposure (E): the examined study population is exposed to a defined risk factor
- Comparator (C): the study describes pigs that are exposed to ASFV but not to the examined risk factor, or a suitable reference scenario is described
- Outcome (O): the studied pig population is infected with ASFV as determined by some form of measurement
2.3. Information Sources
- MEDLINE via PubMed (1946 and selected coverage from 1781, https://pubmed.ncbi.nlm.nih.gov/, accessed on 30 September 2020)
- MEDLINE via Web of Science (1945, https://apps.webofknowledge.com/, accessed on 30 September 2020)
- Scopus (1970 and selected coverage from 1788, https://www.scopus.com/, accessed on 30 September 2020)
- EFSA Journal (2003, https://efsa.onlinelibrary.wiley.com/, accessed on 30 September 2020)
- AGRIS (1965, https://agris.fao.org/agris-search/, accessed on 30 September 2020)
- Open Theses and Dissertation (annotations from 1971, https://oatd.org/, accessed on 30 September 2020)
- Networked Digital Library of Theses and Dissertation (annotations from 1971, http://search.ndltd.org/, accessed on 30 September 2020)
- DART-Europe (1999, http://www.dart-europe.eu/, accessed on 30 September 2020)
2.4. Search Strategy
2.5. Study Selection
2.6. Data Collection
2.7. Post-Review Analysis of Risk Factors
2.7.1. Categorisation of Risk Factors
2.7.2. Quantification of Risk Factors by Risk Category
2.7.3. Rake Keyword Identification
2.7.4. Co-Occurrence Word Networks
2.7.5. Temporal Pattern Analysis of Risk Factor Reporting
3. Results
3.1. Observation-Based Risk Factors Found by Systematic Review
3.2. Potential Risk Factors Found by Systematic Review
3.3. Categories Applied to Risk Factors
3.4. Quantification of Risk Factors Found
3.5. Keyword Risk Terms Identified
3.6. Risk Term Co-Occurrence Links between Categories
3.7. The Temporal Pattern of Risk Factor Reporting
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Cordon, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Plowright, W.; Parker, J.; Peirce, M.A. African swine fever virus in ticks (Ornithodoros moubata, murray) collected from animal burrows in Tanzania. Nature 1969, 221, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef]
- Montgomery, R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191+243–262. [Google Scholar] [CrossRef]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African swine fever virus. Virus Res. 2013, 173, 191–197. [Google Scholar] [CrossRef]
- Chenais, E.; Depner, K.; Guberti, V.; Dietze, K.; Viltrop, A.; Stahl, K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 2019, 5, 6. [Google Scholar] [CrossRef]
- Beltran-Alcrudo, D.; Falco, J.R.; Raizman, E.; Dietze, K. Transboundary spread of pig diseases: The role of international trade and travel. BMC Veter. Res. 2019, 15, 64. [Google Scholar] [CrossRef]
- Mebus, C.; Arias, M.; Pineda, J.M.; Tapiador, J.; House, C.; SanchezVizcaino, J.M. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem. 1997, 59, 555–559. [Google Scholar] [CrossRef]
- Petrini, S.; Feliziani, F.; Casciari, C.; Giammarioli, M.; Torresi, C.; De Mia, G.M. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Veter. Med. 2019, 162, 126–130. [Google Scholar] [CrossRef]
- Fischer, M.; Huhr, J.; Blome, S.; Conraths, F.J.; Probst, C. Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV “Estonia 2014” Isolate. Viruses 2020, 12, 1118. [Google Scholar] [CrossRef]
- Zani, L.; Masiulis, M.; Busauskas, P.; Dietze, K.; Pridotkas, G.; Globig, A.; Blome, S.; Mettenleiter, T.; Depner, K.; Karveliene, B. African swine fever virus survival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020, 67, 2086–2092. [Google Scholar] [CrossRef]
- Lange, M.; Thulke, H.H. Elucidating transmission parameters of African swine fever through wild boar carcasses by combining spatio-temporal notification data and agent-based modelling. Stoch. Environ. Res. Risk Assess. 2017, 31, 379–391. [Google Scholar] [CrossRef]
- Probst, C.; Globig, A.; Knoll, B.; Conraths, F.J.; Depner, K. Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. R. Soc. Open Sci. 2017, 4, 170054. [Google Scholar] [CrossRef]
- Depner, K.; Blome, S.; Staubach, C.; Probst, C.; Globig, A.; Dietze, K.; Sauter-Louis, C.; Conraths, F. Die Afrikanische Schweinepest –eine Habitatseuche mit häufig niedriger Kontagiosität. Prakt. Tierarzt 2016, 97, 536–544. [Google Scholar]
- Chenais, E.; Stahl, K.; Guberti, V.; Depner, K. Identification of Wild Boar-Habitat Epidemiologic Cycle in African Swine Fever Epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef]
- Arias, M.; Sánchez-Vizcaíno, J. African Swine Fever Eradication: The Spanish Model; Wiley Online Books: Hoboken, NJ, USA, 2002; pp. 133–139. [Google Scholar] [CrossRef]
- Penrith, M.L.; Vosloo, W. Review of African swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2009, 80, 58–62. [Google Scholar] [CrossRef]
- Cwynar, P.; Stojkov, J.; Wlazlak, K. African Swine Fever Status in Europe. Viruses 2019, 11, 310. [Google Scholar] [CrossRef]
- Mannelli, A.; Sotgia, S.; Patta, C.; Sarria, A.; Madrau, P.; Sanna, L.; Firinu, A.; Laddomada, A. Effect of husbandry methods on seropositivity to African swine fever virus in Sardinian swine herds. Prev. Veter. Med. 1997, 32, 235–241. [Google Scholar] [CrossRef]
- Perez, J.; Fernandez, A.I.; Sierra, M.A.; Herraez, P.; Fernandez, A.; Martin de las Mulas, J. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Veter. Rec. 1998, 143, 136–139. [Google Scholar] [CrossRef]
- Jori, F.; Bastos, A.D.S. Role of Wild Suids in the Epidemiology of African Swine Fever. EcoHealth 2009, 6, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African Swine Fever Virus Isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African Swine Fever Epidemiology and Control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef]
- Khomenko, S.; Beltrán-Alcrudo, D.; Rozstanlnyy, A.; Gogin, A.; Kolbasov, D.; Pinto, J.; Lubroth, J.; Martin, J.; Food and Agriculture Organization of the United Nations (FAO); All-Russian Scientific Research Institute of Veterinary Virology and Microbiology (Pokrov, Russian Federation). African swine fever in the Russian Federation: Risk factors for Europe and beyond. Empres. Watch. 2013, 28, 1–14. [Google Scholar]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African Swine Fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef]
- Penrith, M.L.; Lopes Pereira, C.; da Silva, M.M.L.; Quembo, C.; Nhamusso, A.; Banze, J. African swine fever in Mozambique: Review, risk factors and considerations for control. Onderstepoort J. Vet. Res. 2007, 74, 149–160. [Google Scholar]
- De la Torre, A.; Bosch, J.; Iglesias, I.; Munoz, M.J.; Mur, L.; Martinez-Lopez, B.; Martinez, M.; Sanchez-Vizcaino, J.M. Assessing the Risk of African Swine Fever Introduction into the European Union by Wild Boar. Transbound. Emerg. Dis. 2015, 62, 272–279. [Google Scholar] [CrossRef]
- Guinat, C.; Relun, A.; Wall, B.; Morris, A.; Dixon, L.; Pfeiffer, D.U. Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies. Sci. Rep. 2016, 6, 28249. [Google Scholar] [CrossRef]
- Jurado, C.; Fernandez-Carrion, E.; Mur, L.; Rolesu, S.; Laddomada, A.; Sanchez-Vizcaino, J.M. Why is African swine fever still present in Sardinia? Transbound. Emerg. Dis. 2018, 65, 557–566. [Google Scholar] [CrossRef]
- Bellini, S.; Casadei, G.; De Lorenzi, G.; Tamba, M. A Review of Risk Factors of African Swine Fever Incursion in Pig Farming within the European Union Scenario. Pathogens 2021, 10, 84. [Google Scholar] [CrossRef]
- Kabuuka, T.; Kasaija, P.D.; Mulindwa, H.; Shittu, A.; Bastos, A.D.S.; Fasina, F.O. Drivers and risk factors for circulating African swine fever virus in Uganda, 2012–2013. Res. Vet. Sci. 2014, 97, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Dione, M.M.; Akol, J.; Roesel, K.; Kungu, J.; Ouma, E.A.; Wieland, B.; Pezo, D. Risk Factors for African Swine Fever in Smallholder Pig Production Systems in Uganda. Transbound. Emerg. Dis. 2017, 64, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Chenais, E.; Boqvist, S.; Sternberg-Lewerin, S.; Emanuelson, U.; Ouma, E.; Dione, M.; Aliro, T.; Crafoord, F.; Masembe, C.; Stahl, K. Knowledge, Attitudes and Practices Related to African Swine Fever Within Smallholder Pig Production in Northern Uganda. Transbound. Emerg. Dis. 2017, 64, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Asambe, A.; Sackey, A.K.B.; Tekdek, L.B. Sanitary measures in piggeries, awareness, and risk factors of African swine fever in Benue State, Nigeria. Trop. Anim. Health Prod. 2019, 51, 997–1001. [Google Scholar] [CrossRef]
- Gulenkin, V.M.; Korennoy, F.I.; Karaulov, A.K.; Dudnikov, S.A. Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic reproduction ratio. Prev. Vet. Med. 2011, 102, 167–174. [Google Scholar] [CrossRef]
- Nurmoja, I.; Schulz, K.; Staubach, C.; Sauter-Louis, C.; Depner, K.; Conraths, F.J.; Viltrop, A. Development of African swine fever epidemic among wild boar in Estonia-two different areas in the epidemiological focus. Sci. Rep. 2017, 7, 12562. [Google Scholar] [CrossRef]
- Jurado, C.; Martinez-Aviles, M.; De la Torre, A.; Stukelj, M.; Cardoso de Carvalho Ferreira, H.; Cerioli, M.; Sanchez-Vizcaino, J.M.; Bellini, S. Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig Sector. Front. Vet. Sci. 2018, 5, 77. [Google Scholar] [CrossRef]
- Boklund, A.; Dhollander, S.; Chesnoiu Vasile, T.; Abrahantes, J.C.; Botner, A.; Gogin, A.; Gonzalez Villeta, L.C.; Gortazar, C.; More, S.J.; Papanikolaou, A.; et al. Risk factors for African swine fever incursion in Romanian domestic farms during 2019. Sci. Rep. 2020, 10, 10215. [Google Scholar] [CrossRef]
- EFSA. Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J. 2017, 15, e05068. [Google Scholar] [CrossRef]
- Podgorski, T.; Smietanka, K. Do wild boar movements drive the spread of African Swine Fever? Transbound. Emerg. Dis. 2018, 65, 1588–1596. [Google Scholar] [CrossRef]
- Schulz, K.; Oļševskis, E.; Staubach, C.; Lamberga, K.; Seržants, M.; Cvetkova, S.; Conraths, F.J.; Sauter-Louis, C. Epidemiological evaluation of Latvian control measures for African swine fever in wild boar on the basis of surveillance data. Sci. Rep. 2019, 9, 4189. [Google Scholar] [CrossRef]
- GARA. Global African Swine Fever Research Alliance Gap Analysis Report. 2018. Available online: https://go.usa.gov/xPfWr (accessed on 23 August 2022).
- EFSA. Research gap analysis on African swine fever. EFSA J. 2019, 17, e05811. [Google Scholar] [CrossRef] [Green Version]
- Wieland, B.; Dhollander, S.; Salman, M.; Koenen, F. Qualitative risk assessment in a data-scarce environment: A model to assess the impact of control measures on spread of African Swine Fever. Prev. Vet. Med. 2011, 99, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA J. 2010, 8, 1637. [Google Scholar] [CrossRef]
- Thrusfield, M. Veterinary Epidemiology; John Wiley & Sons Ltd.: Edinburgh, UK, 2018; Volume 4. [Google Scholar]
- Westgate, M.J. Revtools: An R package to support article screening for evidence synthesis. Res. Synth. Methods 2019, 10, 606–614. [Google Scholar] [CrossRef]
- Rothman, K.J. Causes. Am. J. Epidemiol. 1976, 104, 587–592. [Google Scholar] [CrossRef]
- Mur, L.; Martinez-Lopez, B.; Costard, S.; de la Torre, A.; Jones, B.A.; Martinez, M.; Sanchez-Vizcaino, F.; Munoz, M.J.; Pfeiffer, D.U.; Sanchez Vizcaino, J.M.; et al. Modular framework to assess the risk of African swine fever virus entry into the European Union. BMC Veter. Res. 2014, 10, 145. [Google Scholar] [CrossRef]
- Rose, S.; Engel, D.; Cramer, N.; Cowley, W. Automatic Keyword Extraction from Individual Documents; Wiley: Hoboken, NJ, USA, 2010; pp. 1–20. [Google Scholar] [CrossRef]
- Wijffels, J. Udpipe: Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the ‘UDPipe’ ‘NLP’ Toolkit 2021, R package version 0.8.5; The R Project for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- De Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal Dependencies. Comput. Linguist. 2021, 47, 255–308. [Google Scholar] [CrossRef]
- Pedersen, T.L. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. R Package Version 2.0.3. 2020. Available online: https://github.com/thomasp85/ggraph (accessed on 28 March 2022).
- Walker, J. East African Swine Fever: Thesis Presented to the Veterinary Faculty of the University of Zurich for the Degrees of Doctor of Veterinary Medicine. Ph.D. Thesis, Bailliere, Tindall and Cox, London, UK, 1933. [Google Scholar]
- Costard, S.; Wieland, B.; de Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.U.; Dixon, L.K. African swine fever: How can global spread be prevented? Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2683–2696. [Google Scholar] [CrossRef]
- Danzetta, M.L.; Marenzoni, M.L.; Iannetti, S.; Tizzani, P.; Calistri, P.; Feliziani, F. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Front. Veter. Sci. 2020, 7, 296. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (formerly OIE). World Animal Health Information System (WAHIS). Available online: https://wahis.woah.org/ (accessed on 23 May 2022).
- Thomson, G.R. The epidemiology of African swine fever: The role of free-living hosts in Africa. Onderstepoort J. Vet. Res. 1985, 52, 201–209. [Google Scholar] [PubMed]
- Bosch, J.; Rodriguez, A.; Iglesias, I.; Munoz, M.J.; Jurado, C.; Sanchez-Vizcaino, J.M.; de la Torre, A. Update on the Risk of Introduction of African Swine Fever by Wild Boar into Disease-Free European Union Countries. Transbound. Emerg. Dis. 2017, 64, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Panasiuk, N.; Zmudzki, J.; Wozniakowski, G. African Swine Fever Virus—Persistence in Different Environmental Conditions and the Possibility of its Indirect Transmission. J. Veter. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Conraths, F.J.; Blome, S.; Staubach, C.; Sauter-Louis, C. African Swine Fever: Fast and Furious or Slow and Steady? Viruses 2019, 11, 866. [Google Scholar] [CrossRef]
- Costard, S.; Jones, B.A.; Martinez-Lopez, B.; Mur, L.; de la Torre, A.; Martinez, M.; Sanchez-Vizcaino, F.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U.; Wieland, B. Introduction of African Swine Fever into the European Union through Illegal Importation of Pork and Pork Products. PLoS ONE 2013, 8, e61104. [Google Scholar] [CrossRef]
- Arias, M.; Jurado, C.; Gallardo, C.; Fernandez-Pinero, J.; Sanchez-Vizcaino, J.M. Gaps in African swine fever: Analysis and priorities. Transbound. Emerg. Dis. 2018, 65, 235–247. [Google Scholar] [CrossRef]
- Forth, J.H.; Forth, L.F.; Blome, S.; Hoper, D.; Beer, M. African swine fever whole-genome sequencing-Quantity wanted but quality needed. PLoS Pathog. 2020, 16, e1008779. [Google Scholar] [CrossRef]
- Bing, L.; Akintoye, A.; Edwards, P.J.; Hardcastle, C. The allocation of risk in PPP/PFI construction projects in the UK. Int. J. Proj. Manag. 2005, 23, 25–35. [Google Scholar] [CrossRef]
- Li, F.; Li, M.; Guan, P.; Ma, S.; Cui, L. Mapping Publication Trends and Identifying Hot Spots of Research on Internet Health Information Seeking Behavior: A Quantitative and Co-Word Biclustering Analysis. J. Med. Internet Res. 2015, 17, e81. [Google Scholar] [CrossRef]
Selection Question | Selection | Ineligible |
---|---|---|
Q0: Are there no other records with matching title and authors in the total pool of retrieved records? | Yes = proceed to Q1 | No = exclude |
Q1: Does the record title likely describe a study about ASFV infection in suids and appears relevant to the review objective? | Yes or Not determinable = proceed to Q2 | No = exclude |
Q2: Is an abstract available for this record AND is it in English, German, Italian or Spanish language? | Yes = proceed to Q3 | No = search abstract, may proceed to Q3 or Q5 |
Q3: Is the record likely peer-reviewed, published, or a doctoral thesis and is NOT a review or editorial-type letter without data? | Yes or Not determinable = proceed to Q4 | No = exclude |
Q4: Does the record likely describe a study where suids are infected with ASFV? (Population and Outcome) | Yes or Not determinable = proceed to Q5 | No = exclude |
Q5: Is a full text available for this record before 20 November 2020 AND is it in English, German, Italian or Spanish language? | Yes = proceed to Q6 | No = exclude |
Q6: From cross-reading through the publication, does the study seem possibly relevant for the review objective? | Yes = proceed to Q7 | No = exclude |
Q7: Does the record NOT present entirely duplicate data from another original study? | Yes = proceed to Q8 | No = exclude |
Q8: Is the record peer-reviewed, published, or a doctoral thesis and is NOT a review or editorial-type letter without data? | Yes = proceed to Q9 | No = exclude |
Q9: Does the record likely describe a study where suids are infected with ASFV? (Population and Outcome) | Yes = proceed to Q10 | No = exclude |
Q10: Does the record likely describe a study where suids are exposed to possible risk factors? (Exposure) | Yes = proceed to Q11 | No = exclude |
Q11: Does the record likely describe a study where a comparison group of suids is included or can be deducted from the study design or reference scenario? (Comparator) | Yes = include for extraction attempt | No = exclude |
ASF Risk Category | Description |
---|---|
ASFV (virus properties) | Pathogen-related risk factors such as virulence, genotype, strain, dosage, exposure route, tenacity |
Biosecurity | Biosecurity-related practices and circumstances such as management of cleaning, disinfection, clothing, food items, pig materials, sick or dead animals, control of feed, water, vehicles, parasites, pests, farm access, fencing, quarantine, and auditing or assessment of biosecurity |
Disease control | Disease control measure preparation, implementation, and regulation, or demonstrated compliance, monitoring, and enforcement |
Environment | Environmental disease status, such as nearness of ASF cases and factors present or influencing the environment of wild or domestic pigs, including pig density, farm density, human density, presence of vectors or carrier items, land use and coverage (such as forest, farmland, water sites, altitude level, and nearness to pig-related facilities and events such as slaughter units, roads, dumps, parks, agriculture, hunting grounds, and boundaries), as well as climate factors such as precipitation, temperature, humidity, and seasonality-related factors |
Husbandry | Factors describing domestic pig husbandry and general farm husbandry characteristics and practices, such as housing type, operation type and size, other species kept, trade type, workers, management of reproduction, slaughter, feeding, records, equipment, and veterinary services |
Movement | Factors that relate to potential movement of ASFV in conjunction with animals, any animal materials or products, fomites, farm inputs, persons, trade movements, travel, or vehicle movement |
Network | Factors that describe connections between epidemiological units of swine, e.g., trade networks, social networks, farm relations, producer networks, local networks |
Pig | Pig-related risk factors such as age, behaviour, breed, sex, habitus of exposure, and lifestyle |
Society | Societal factors that may influence ASF spread, such as socio-economic hardship, cultural relevance of swine, population dynamics, education, crisis, standard of living, available services, tourism, wealth, education |
Surveillance | Factors influencing the detection of ASF outbreaks, including awareness, surveillance activities and programs, their implementation, testing capacity, testing strategies, veterinary controls, reporting |
Vaccination status | Any ASF-related immunomodulatory activities and effects, including ASFV antibody titres, availability of vaccines, testing of vaccine candidates, or activities to induce ASFV immunity |
Wildlife management | Management activities or factors related to wildlife and in particular to wild pigs, such as hunting activity and methods, feeding, fencing, personnel numbers involved, understanding of wildlife biology, habitat disturbance, hunting efficiency and pressure, wildlife dispersion, control, recording and reporting of wildlife status and numbers monitoring, and control of feral and pest swine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, H.; Dups-Bergmann, J.; Schulz, K.; Probst, C.; Zani, L.; Fischer, M.; Gethmann, J.; Denzin, N.; Blome, S.; Conraths, F.J.; et al. Identification of Risk Factors for African Swine Fever: A Systematic Review. Viruses 2022, 14, 2107. https://doi.org/10.3390/v14102107
Bergmann H, Dups-Bergmann J, Schulz K, Probst C, Zani L, Fischer M, Gethmann J, Denzin N, Blome S, Conraths FJ, et al. Identification of Risk Factors for African Swine Fever: A Systematic Review. Viruses. 2022; 14(10):2107. https://doi.org/10.3390/v14102107
Chicago/Turabian StyleBergmann, Hannes, Johanna Dups-Bergmann, Katja Schulz, Carolina Probst, Laura Zani, Melina Fischer, Jörn Gethmann, Nicolai Denzin, Sandra Blome, Franz J. Conraths, and et al. 2022. "Identification of Risk Factors for African Swine Fever: A Systematic Review" Viruses 14, no. 10: 2107. https://doi.org/10.3390/v14102107
APA StyleBergmann, H., Dups-Bergmann, J., Schulz, K., Probst, C., Zani, L., Fischer, M., Gethmann, J., Denzin, N., Blome, S., Conraths, F. J., & Sauter-Louis, C. (2022). Identification of Risk Factors for African Swine Fever: A Systematic Review. Viruses, 14(10), 2107. https://doi.org/10.3390/v14102107