An Overview of the Infectious Cycle of Bunyaviruses
Abstract
:1. The Order Bunyavirales
2. Virus Structure
3. Historical Perspective
4. The Infectious Cycle of Bunyaviridae
5. Host Cell Receptors Used by Bunyaviruses for Cell Entry
5.1. DC-SIGN
5.2. L-SIGN
5.3. Nucleolin
5.4. Heparin Sulfate
5.5. LRP1
6. Uncoating and Viral Entry
7. Bunyavirus Viral Replication
8. Factors Affecting Bunyavirus Replication-Viral Factors
8.1. NSm
8.2. NSs
9. Factors Affecting Bunyavirus Replication-Host Factors
9.1. Interferon-Stimulated Genes (ISGs)
9.2. Interferon Regulatory Factors (IRFs)
9.3. The 2′5′OAS
9.4. IFITM-1, IFITM-2 and IFITM-3
9.5. ISG20
9.6. PKR
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Horne, K.M.; Vanlandingham, D.L. Bunyavirus-Vector Interactions. Viruses 2014, 6, 4373–4397. [Google Scholar] [CrossRef] [PubMed]
- Laenen, L.; Vergote, V.; Calisher, C.H.; Klempa, B.; Klingstrom, J.; Kuhn, J.H.; Maes, P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Kohl, A.; Brennan, B.; Weber, F. Homage to Richard M. Elliott. Viruses 2016, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.; Weber, F.; Kormelink, R.; Schnettler, E.; Bouloy, M.; Failloux, A.B.; Weaver, S.C.; Fazakerley, J.K.; Fragkoudis, R.; Harris, M.; et al. In Memoriam—Richard M. Elliott (1954–2015). J. Gen. Virol. 2015, 96, 1975–1978. [Google Scholar] [CrossRef]
- Reguera, J.; Malet, H.; Weber, F.; Cusack, S. Structural Basis for Encapsidation of Genomic RNA by La Crosse Orthobunyavirus Nucleoprotein. Proc. Natl. Acad. Sci. USA 2013, 110, 7246–7251. [Google Scholar] [CrossRef]
- Gerlach, P.; Malet, H.; Cusack, S.; Reguera, J. Structural Insights into Bunyavirus Replication and its Regulation by the vRNA Promoter. Cell 2015, 161, 1267–1279. [Google Scholar] [CrossRef]
- Ter Horst, S.; Conceicao-Neto, N.; Neyts, J.; Rocha-Pereira, J. Structural and Functional Similarities in Bunyaviruses: Perspectives for Pan-Bunya Antivirals. Rev. Med. Virol. 2019, 29, e2039. [Google Scholar] [CrossRef]
- Hulswit, R.J.G.; Paesen, G.C.; Bowden, T.A.; Shi, X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021, 13, 353. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.M. Molecular Biology of the Bunyaviridae. J. Gen. Virol. 1990, 71 Pt 3, 501–522. [Google Scholar] [CrossRef]
- Wuerth, J.D.; Weber, F. Phleboviruses and the Type I Interferon Response. Viruses 2016, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Schoen, A.; Weber, F. Orthobunyaviruses and Innate Immunity Induction: AlieNSs Vs. PredatoRRs. Eur. J. Cell Biol. 2015, 94, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Ly, H.J.; Ikegami, T. Rift Valley Fever Virus NSs Protein Functions and the Similarity to Other Bunyavirus NSs Proteins. Virol. J. 2016, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Leventhal, S.S.; Wilson, D.; Feldmann, H.; Hawman, D.W. A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Smithburn, K.C.; Haddow, A.J.; Mahaffy, A.F. A Neurotropic Virus Isolated from Aedes Mosquitoes Caught in the Semliki Forest. Am. J. Trop. Med. Hyg. 1946, 26, 189–208. [Google Scholar] [CrossRef]
- Casals, J.; Whitman, L. A New Antigenic Group of Arthropod-Borne Viruses: The Bunyamwera Group. Am. J. Trop. Med. Hyg. 1960, 9, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, N.S.; Concha, J.O.; da Silva, L.L.P. Bunyavirus. In Encyclopedia of Infection and Immunity; Rezaei, N., Ed.; Elsevier: Oxford, UK, 2022; pp. 207–218. [Google Scholar]
- Casals, J. Chapter 9—Arboviruses: Incorporation in a General System of Virus Classification. In Comparative Virology; Maramorosch, K., Kurstak, E., Eds.; Academic Press: Cambridge, MA, USA, 1971; pp. 307–333. [Google Scholar]
- Murphy, F.A.; Harrison, A.K.; Whitfield, S.G. Bunyaviridae: Morphologic and Morphogenetic Similarities of Bunyamwera Serologic Supergroup Viruses and several Other Arthropod-Borne Viruses. Intervirology 1973, 1, 297–316. [Google Scholar] [CrossRef]
- Pettersson, R.; Kääriäinen, L.; Von Bonsdorff, C.; Oker-Blom, N. Structural Components of Uukuniemi Virus, a Noncubical Tick-Borne Arbovirus. Virology 1971, 46, 721–729. [Google Scholar] [CrossRef]
- Pettersson, R.F.; von Bonsdorff, C.H. Ribonucleoproteins of Uukuniemi Virus are Circular. J. Virol. 1975, 15, 386–392. [Google Scholar] [CrossRef]
- Gentsch, J.; Bishop, D.H.; Obijeski, J.F. The Virus Particle Nucleic Acids and Proteins of Four Bunyaviruses. J. Gen. Virol. 1977, 34, 257–268. [Google Scholar] [CrossRef]
- Obijeski, J.F.; Bishop, D.H.; Palmer, E.L.; Murphy, F.A. Segmented Genome and Nucleocapsid of La Crosse Virus. J. Virol. 1976, 20, 664–675. [Google Scholar] [CrossRef] [Green Version]
- Clewley, J.; Gentsch, J.; Bishop, D.H. Three Unique Viral RNA Species of Snowshoe Hare and La Crosse Bunyaviruses. J. Virol. 1977, 22, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Bouloy, M.; Krams-Ozden, S.; Horodniceanu, F.; Hannoun, C. Three-Segment RNA Genome of Lumbo Virus (Bunyavirus). Intervirology 1973, 2, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Bouloy, M.; Hannoun, C. Studies on Lumbo Virus Replication: II. Properties or Viral Ribonucleoproteins and Characterization of Messenger RNAs. Virology 1976, 71, 363–370. [Google Scholar] [PubMed]
- Bouloy, M.; Colbere, F.; Krams-Ozden, S.; Vialat, P.; Garapin, A.C.; Hannoun, C.; Lepine, P. RNA Polymerase Activity Associated with a Bunya Virus (Lumbo). C. R. Acad. Hebd. Seances Acad. Sci. D 1975, 280, 213–215. [Google Scholar]
- Bouloy, M.; Hannoun, C. Studies on Lumbo Virus Replication: I. RNA-Dependent RNA Polymerase Associated with Virions. Virology 1976, 69, 258–264. [Google Scholar]
- Ranki, M.; Pettersson, R.F. Uukuniemi Virus Contains an RNA Polymerase. J. Virol. 1975, 16, 1420–1425. [Google Scholar] [CrossRef]
- Obijeski, J.F.; Murphy, F.A. Bunyaviridae: Recent Biochemical Developments. J. Gen. Virol. 1977, 37, 1–14. [Google Scholar] [CrossRef]
- Elliott, R.M. Bunyaviruses and Climate Change. Clin. Microbiol. Infect. 2009, 15, 510–517. [Google Scholar] [CrossRef]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, E.; Blair, C.D.; et al. Taxonomy of the Order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef]
- Shi, X.; van Mierlo, J.T.; French, A.; Elliott, R.M. Visualizing the Replication Cycle of Bunyamwera Orthobunyavirus Expressing Fluorescent Protein-Tagged Gc Glycoprotein. J. Virol. 2010, 84, 8460–8469. [Google Scholar] [CrossRef]
- Wichgers Schreur, P.J.; Kortekaas, J. Single-Molecule FISH Reveals Non-Selective Packaging of Rift Valley Fever Virus Genome Segments. PLoS Pathog. 2016, 12, e1005800. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.; Sall, A.A.; Manuguerra, J.C.; Koivogui, L.; Adjami, A.; Traore, F.F.; Hedlund, K.O.; Lindegren, G.; Mirazimi, A. Quantitative Analysis of Particles, Genomes and Infectious Particles in Supernatants of Haemorrhagic Fever Virus Cell Cultures. Virol. J. 2011, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, H.; Li, X.; Zhang, X.; Liu, W.; Kuhl, A.; Kaup, F.; Soldan, S.S.; Gonzalez-Scarano, F.; Weber, F.; He, Y.; et al. Severe Fever with Thrombocytopenia Virus Glycoproteins are Targeted by Neutralizing Antibodies and can use DC-SIGN as a Receptor for pH-Dependent Entry into Human and Animal Cell Lines. J. Virol. 2013, 87, 4384–4394. [Google Scholar] [CrossRef] [PubMed]
- Lozach, P.Y.; Kuhbacher, A.; Meier, R.; Mancini, R.; Bitto, D.; Bouloy, M.; Helenius, A. DC-SIGN as a Receptor for Phleboviruses. Cell Host Microbe 2011, 10, 75–88. [Google Scholar] [CrossRef]
- Suda, Y.; Fukushi, S.; Tani, H.; Murakami, S.; Saijo, M.; Horimoto, T.; Shimojima, M. Analysis of the Entry Mechanism of Crimean-Congo Hemorrhagic Fever Virus, using a Vesicular Stomatitis Virus Pseudotyping System. Arch. Virol. 2016, 161, 1447–1454. [Google Scholar] [CrossRef]
- Leger, P.; Tetard, M.; Youness, B.; Cordes, N.; Rouxel, R.N.; Flamand, M.; Lozach, P.Y. Differential use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis. Traffic 2016, 17, 639–656. [Google Scholar] [CrossRef]
- Xiao, X.; Feng, Y.; Zhu, Z.; Dimitrov, D.S. Identification of a Putative Crimean-Congo Hemorrhagic Fever Virus Entry Factor. Biochem. Biophys. Res. Commun. 2011, 411, 253–258. [Google Scholar] [CrossRef]
- Cagno, V.; Tseligka, E.D.; Jones, S.T.; Tapparel, C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019, 11, 596. [Google Scholar] [CrossRef]
- Simon Davis, D.A.; Parish, C.R. Heparan Sulfate: A Ubiquitous Glycosaminoglycan with Multiple Roles in Immunity. Front. Immunol. 2013, 4, 470. [Google Scholar] [CrossRef]
- Shukla, D.; Spear, P.G. Herpesviruses and Heparan Sulfate: An Intimate Relationship in Aid of Viral Entry. J. Clin. Investig. 2001, 108, 503–510. [Google Scholar] [CrossRef]
- Liu, L.; Chopra, P.; Li, X.; Bouwman, K.M.; Tompkins, S.M.; Wolfert, M.A.; de Vries, R.P.; Boons, G.J. Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Takenaka-Uema, A.; Kobayashi, T.; Kato, K.; Shimojima, M.; Palmarini, M.; Horimoto, T. Heparan Sulfate Proteoglycan is an Important Attachment Factor for Cell Entry of Akabane and Schmallenberg Viruses. J. Virol. 2017, 91, e00503-17. [Google Scholar] [CrossRef] [Green Version]
- Pietrantoni, A.; Fortuna, C.; Remoli, M.E.; Ciufolini, M.G.; Superti, F. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate. Viruses 2015, 7, 480–495. [Google Scholar] [CrossRef] [PubMed]
- De Boer, S.M.; Kortekaas, J.; de Haan, C.A.; Rottier, P.J.; Moormann, R.J.; Bosch, B.J. Heparan Sulfate Facilitates Rift Valley Fever Virus Entry into the Cell. J. Virol. 2012, 86, 13767–13771. [Google Scholar] [CrossRef] [PubMed]
- Riblett, A.M.; Blomen, V.A.; Jae, L.T.; Altamura, L.A.; Doms, R.W.; Brummelkamp, T.R.; Wojcechowskyj, J.A. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. J. Virol. 2015, 90, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- May, P.; Woldt, E.; Matz, R.L.; Boucher, P. The LDL Receptor-Related Protein (LRP) Family: An Old Family of Proteins with New Physiological Functions. Ann. Med. 2007, 39, 219–228. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Schwarz, M.M.; McMillen, C.M.; Price, D.A.; Feng, A.X.; Albe, J.R.; Wang, W.; Miersch, S.; Orvedahl, A.; Cole, A.R.; et al. Lrp1 is a Host Entry Factor for Rift Valley Fever Virus. Cell 2021, 184, 5163–5178.e24. [Google Scholar] [CrossRef]
- Devignot, S.; Wai Sha, T.; Burkard, T.; Schmerer, P.; Hagelkruys, A.; Mirazimi, A.; Elling, U.; Penninger, J.; Weber, F. Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) is a Host Factor for RNA Viruses Including SARS-CoV-2. bioRxiv 2022. [Google Scholar] [CrossRef]
- Mittler, E.; Dieterle, M.E.; Kleinfelter, L.M.; Slough, M.M.; Chandran, K.; Jangra, R.K. Hantavirus Entry: Perspectives and Recent Advances. Adv. Virus Res. 2019, 104, 185–224. [Google Scholar]
- Gavrilovskaya, I.N.; Shepley, M.; Shaw, R.; Ginsberg, M.H.; Mackow, E.R. Beta3 Integrins Mediate the Cellular Entry of Hantaviruses that Cause Respiratory Failure. Proc. Natl. Acad. Sci. USA 1998, 95, 7074–7079. [Google Scholar] [CrossRef]
- Krautkramer, E.; Zeier, M. Hantavirus Causing Hemorrhagic Fever with Renal Syndrome Enters from the Apical Surface and Requires Decay-Accelerating Factor (DAF/CD55). J. Virol. 2008, 82, 4257–4264. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kwon, Y.; Kim, S.; Park, J.; Lee, K.; Ahn, B. A Hantavirus Causing Hemorrhagic Fever with Renal Syndrome Requires gC1qR/p32 for Efficient Cell Binding and Infection. Virology 2008, 381, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Jangra, R.K.; Herbert, A.S.; Li, R.; Jae, L.T.; Kleinfelter, L.M.; Slough, M.M.; Barker, S.L.; Guardado-Calvo, P.; Roman-Sosa, G.; Dieterle, M.E.; et al. Protocadherin-1 is Essential for Cell Entry by New World Hantaviruses. Nature 2018, 563, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.F.; Flint, M.; Lin, J.S.; Spiropoulou, C.F. Endocytic Pathways used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS ONE 2016, 11, e0164768. [Google Scholar] [CrossRef]
- Arikawa, J.; Takashima, I.; Hashimoto, N. Cell Fusion by Haemorrhagic Fever with Renal Syndrome (HFRS) Viruses and its Application for Titration of Virus Infectivity and Neutralizing Antibody. Arch. Virol. 1985, 86, 303–313. [Google Scholar] [CrossRef]
- Guu, T.S.; Zheng, W.; Tao, Y.J. Bunyavirus: Structure and Replication. Adv. Exp. Med. Biol. 2012, 726, 245–266. [Google Scholar]
- Jin, H.; Elliott, R.M. Characterization of Bunyamwera Virus S RNA that is Transcribed and Replicated by the L Protein Expressed from Recombinant Vaccinia Virus. J. Virol. 1993, 67, 1396–1404. [Google Scholar] [CrossRef]
- Bouloy, M.; Pardigon, N.; Vialat, P.; Gerbaud, S.; Girard, M. Characterization of the 5′ and 3′ Ends of Viral Messenger RNAs Isolated from BHK21 Cells Infected with Germiston Virus (Bunyavirus). Virology 1990, 175, 50–58. [Google Scholar] [CrossRef]
- Ferron, F.; Weber, F.; de la Torre, J.C.; Reguera, J. Transcription and Replication Mechanisms of Bunyaviridae and Arenaviridae L Proteins. Virus Res. 2017, 234, 118–134. [Google Scholar] [CrossRef]
- Pettersson, R.; Kääriäinen, L. The Ribonucleic Acids of Uukuniemi Virus, a Noncubical Tick-Borne Arbovirus. Virology 1973, 56, 608–619. [Google Scholar] [CrossRef]
- Rossier, C.; Raju, R.; Kolakofsky, D. LaCrosse Virus Gene Expression in Mammalian and Mosquito Cells. Virology 1988, 165, 539–548. [Google Scholar] [CrossRef]
- Barr, J.N.; Elliott, R.M.; Dunn, E.F.; Wertz, G.W. Segment-Specific Terminal Sequences of Bunyamwera Bunyavirus Regulate Genome Replication. Virology 2003, 311, 326–338. [Google Scholar] [CrossRef]
- Pollitt, E.; Zhao, J.; Muscat, P.; Elliott, R.M. Characterization of Maguari Orthobunyavirus Mutants Suggests the Nonstructural Protein NSm is Not Essential for Growth in Tissue Culture. Virology 2006, 348, 224–232. [Google Scholar] [CrossRef]
- Shi, X.; Kohl, A.; Leonard, V.H.; Li, P.; McLees, A.; Elliott, R.M. Requirement of the N-Terminal Region of Orthobunyavirus Nonstructural Protein NSm for Virus Assembly and Morphogenesis. J. Virol. 2006, 80, 8089–8099. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, Y.; Shioda, C.; Bangphoomi, N.; Sugiura, K.; Saeki, K.; Tsuda, S.; Iwanaga, T.; Takenaka-Uema, A.; Kato, K.; Murakami, S.; et al. Akabane Virus Nonstructural Protein NSm Regulates Viral Growth and Pathogenicity in a Mouse Model. J. Vet. Med. Sci. 2016, 78, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Kading, R.C.; Crabtree, M.B.; Bird, B.H.; Nichol, S.T.; Erickson, B.R.; Horiuchi, K.; Biggerstaff, B.J.; Miller, B.R. Deletion of the NSm Virulence Gene of Rift Valley Fever Virus Inhibits Virus Replication in and Dissemination from the Midgut of Aedes Aegypti Mosquitoes. PLoS Negl. Trop. Dis. 2014, 8, e2670. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Ikegami, T.; Peters, C.J.; Makino, S. NSm Protein of Rift Valley Fever Virus Suppresses Virus-Induced Apoptosis. J. Virol. 2007, 81, 13335–13345. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Ikegami, T.; Peters, C.J.; Makino, S. NSm and 78-Kilodalton Proteins of Rift Valley Fever Virus are Nonessential for Viral Replication in Cell Culture. J. Virol. 2006, 80, 8274–8278. [Google Scholar] [CrossRef]
- Gerrard, S.R.; Bird, B.H.; Albarino, C.G.; Nichol, S.T. The NSm Proteins of Rift Valley Fever Virus are Dispensable for Maturation, Replication and Infection. Virology 2007, 359, 459–465. [Google Scholar] [CrossRef]
- Bird, B.H.; Albarino, C.G.; Nichol, S.T. Rift Valley Fever Virus Lacking NSm Proteins Retains High Virulence in Vivo and may Provide a Model of Human Delayed Onset Neurologic Disease. Virology 2007, 362, 10–15. [Google Scholar] [CrossRef]
- Kraatz, F.; Wernike, K.; Hechinger, S.; Konig, P.; Granzow, H.; Reimann, I.; Beer, M. Deletion Mutants of Schmallenberg Virus are Avirulent and Protect from Virus Challenge. J. Virol. 2015, 89, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Tilston-Lunel, N.L.; Acrani, G.O.; Randall, R.E.; Elliott, R.M. Generation of Recombinant Oropouche Viruses Lacking the Nonstructural Protein NSm Or NSs. J. Virol. 2015, 90, 2616–2627. [Google Scholar] [CrossRef]
- East Africa High Commission. Annual Report of the East African Agricultural and Fisheries Research Council 1956–57; East Africa High Commission: Arusha, Tanzania, 1957; p. 47. [Google Scholar]
- Swanepoel, R.; Blackburn, N.K. Demonstration of Nuclear Immunofluorescence in Rift Valley Fever Infected Cells. J. Gen. Virol. 1977, 34, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Yadani, F.Z.; Kohl, A.; Prehaud, C.; Billecocq, A.; Bouloy, M. The Carboxy-Terminal Acidic Domain of Rift Valley Fever Virus NSs Protein is Essential for the Formation of Filamentous Structures but Not for the Nuclear Localization of the Protein. J. Virol. 1999, 73, 5018–5025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouzil, J.; Fablet, A.; Lara, E.; Caignard, G.; Cochet, M.; Kundlacz, C.; Palmarini, M.; Varela, M.; Breard, E.; Sailleau, C.; et al. Nonstructural Protein NSs of Schmallenberg Virus is Targeted to the Nucleolus and Induces Nucleolar Disorganization. J. Virol. 2016, 91, e01263-16. [Google Scholar] [CrossRef] [PubMed]
- Le May, N.; Dubaele, S.; Proietti De Santis, L.; Billecocq, A.; Bouloy, M.; Egly, J.M. TFIIH Transcription Factor, a Target for the Rift Valley Hemorrhagic Fever Virus. Cell 2004, 116, 541–550. [Google Scholar] [CrossRef]
- Bishop, D.H.; Gould, K.G.; Akashi, H.; Clerx-van Haaster, C.M. The Complete Sequence and Coding Content of Snowshoe Hare Bunyavirus Small (S) Viral RNA Species. Nucleic Acids Res. 1982, 10, 3703–3713. [Google Scholar] [CrossRef]
- Akashi, H.; Bishop, D.H. Comparison of the Sequences and Coding of La Crosse and Snowshoe Hare Bunyavirus S RNA Species. J. Virol. 1983, 45, 1155–1158. [Google Scholar] [CrossRef]
- Bridgen, A.; Weber, F.; Fazakerley, J.K.; Elliott, R.M. Bunyamwera Bunyavirus Nonstructural Protein NSs is a Nonessential Gene Product that Contributes to Viral Pathogenesis. Proc. Natl. Acad. Sci. USA 2001, 98, 664–669. [Google Scholar] [CrossRef]
- Weber, F.; Bridgen, A.; Fazakerley, J.K.; Streitenfeld, H.; Kessler, N.; Randall, R.E.; Elliott, R.M. Bunyamwera Bunyavirus Nonstructural Protein NSs Counteracts the Induction of Alpha/Beta Interferon. J. Virol. 2002, 76, 7949–7955. [Google Scholar] [CrossRef]
- Blakqori, G.; Delhaye, S.; Habjan, M.; Blair, C.D.; Sanchez-Vargas, I.; Olson, K.E.; Attarzadeh-Yazdi, G.; Fragkoudis, R.; Kohl, A.; Kalinke, U.; et al. La Crosse Bunyavirus Nonstructural Protein NSs Serves to Suppress the Type I Interferon System of Mammalian Hosts. J. Virol. 2007, 81, 4991–4999. [Google Scholar] [CrossRef] [PubMed]
- Schoen, A.; Lau, S.; Verbruggen, P.; Weber, F. Elongin C Contributes to RNA Polymerase II Degradation by the Interferon Antagonist NSs of La Crosse Orthobunyavirus. J. Virol. 2020, 94, e02134-19. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Blakqori, G.; Wagner, V.; Banholzer, M.; Kessler, N.; Elliott, R.M.; Haller, O.; Weber, F. Inhibition of RNA Polymerase II Phosphorylation by a Viral Interferon Antagonist. J. Biol. Chem. 2004, 279, 31471–31477. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, P.; Ruf, M.; Blakqori, G.; Overby, A.K.; Heidemann, M.; Eick, D.; Weber, F. Interferon Antagonist NSs of La Crosse Virus Triggers a DNA Damage Response-Like Degradation of Transcribing RNA Polymerase II. J. Biol. Chem. 2011, 286, 3681–3692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kainulainen, M.; Habjan, M.; Hubel, P.; Busch, L.; Lau, S.; Colinge, J.; Superti-Furga, G.; Pichlmair, A.; Weber, F. Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 to Degrade Subunit p62 of General Transcription Factor TFIIH. J. Virol. 2014, 88, 3464–3473. [Google Scholar] [CrossRef]
- Kalveram, B.; Lihoradova, O.; Ikegami, T. NSs Protein of Rift Valley Fever Virus Promotes Posttranslational Downregulation of the TFIIH Subunit p62. J. Virol. 2011, 85, 6234–6243. [Google Scholar] [CrossRef]
- Copeland, A.M.; Van Deusen, N.M.; Schmaljohn, C.S. Rift Valley Fever Virus NSS Gene Expression Correlates with a Defect in Nuclear mRNA Export. Virology 2015, 486, 88–93. [Google Scholar] [CrossRef]
- Bouloy, M.; Janzen, C.; Vialat, P.; Khun, H.; Pavlovic, J.; Huerre, M.; Haller, O. Genetic Evidence for an Interferon-Antagonistic Function of Rift Valley Fever Virus Nonstructural Protein NSs. J. Virol. 2001, 75, 1371–1377. [Google Scholar] [CrossRef]
- Varela, M.; Schnettler, E.; Caporale, M.; Murgia, C.; Barry, G.; McFarlane, M.; McGregor, E.; Piras, I.M.; Shaw, A.; Lamm, C.; et al. Schmallenberg Virus Pathogenesis, Tropism and Interaction with the Innate Immune System of the Host. PLoS Pathog. 2013, 9, e1003133. [Google Scholar] [CrossRef]
- Brennan, B.; Rezelj, V.V.; Elliott, R.M. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses. J. Virol. 2017, 91, e00743-17. [Google Scholar] [CrossRef]
- Wuerth, J.D.; Habjan, M.; Wulle, J.; Superti-Furga, G.; Pichlmair, A.; Weber, F. NSs Protein of Sandfly Fever Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN Regulatory Factor 3. J. Virol. 2018, 92, e01202-18. [Google Scholar] [CrossRef] [PubMed]
- Wuerth, J.D.; Habjan, M.; Kainulainen, M.; Berisha, B.; Bertheloot, D.; Superti-Furga, G.; Pichlmair, A.; Weber, F. eIF2B as a Target for Viral Evasion of PKR-Mediated Translation Inhibition. mBio 2020, 11, e00976-20. [Google Scholar] [CrossRef] [PubMed]
- Gori Savellini, G.; Weber, F.; Terrosi, C.; Habjan, M.; Martorelli, B.; Cusi, M.G. Toscana Virus Induces Interferon although its NSs Protein Reveals Antagonistic Activity. J. Gen. Virol. 2011, 92, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gori-Savellini, G.; Valentini, M.; Cusi, M.G. Toscana Virus NSs Protein Inhibits the Induction of Type I Interferon by Interacting with RIG-I. J. Virol. 2013, 87, 6660–6667. [Google Scholar] [CrossRef] [Green Version]
- Gori Savellini, G.; Anichini, G.; Gandolfo, C.; Prathyumnan, S.; Cusi, M.G. Toscana Virus Non-Structural Protein NSs Acts as E3 Ubiquitin Ligase Promoting RIG-I Degradation. PLoS Pathog. 2019, 15, e1008186. [Google Scholar] [CrossRef]
- Rezelj, V.V.; Overby, A.K.; Elliott, R.M. Generation of Mutant Uukuniemi Viruses Lacking the Nonstructural Protein NSs by Reverse Genetics Indicates that NSs is a Weak Interferon Antagonist. J. Virol. 2015, 89, 4849–4856. [Google Scholar] [CrossRef]
- Lerolle, S.; Freitas, N.; Cosset, F.L.; Legros, V. Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021, 13, 784. [Google Scholar] [CrossRef]
- Jefferies, C.A. Regulating IRFs in IFN Driven Disease. Front. Immunol. 2019, 10, 325. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, Y.B.; Gui, J.F.; Lemon, S.M.; Yamane, D. Interferon Regulatory Factor 1 (IRF1) and Anti-Pathogen Innate Immune Responses. PLoS Pathog. 2021, 17, e1009220. [Google Scholar] [CrossRef]
- Yan, J.M.; Zhang, W.K.; Li, F.; Zhou, C.M.; Yu, X.J. Integrated Transcriptome Profiling in THP-1 Macrophages Infected with Bunyavirus SFTSV. Virus Res. 2021, 306, 198594. [Google Scholar] [CrossRef]
- Wathelet, M.G.; Lin, C.H.; Parekh, B.S.; Ronco, L.V.; Howley, P.M.; Maniatis, T. Virus Infection Induces the Assembly of Coordinately Activated Transcription Factors on the IFN-Beta Enhancer in Vivo. Mol. Cell 1998, 1, 507–518. [Google Scholar] [CrossRef]
- Proenca-Modena, J.L.; Sesti-Costa, R.; Pinto, A.K.; Richner, J.M.; Lazear, H.M.; Lucas, T.; Hyde, J.L.; Diamond, M.S. Oropouche Virus Infection and Pathogenesis are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells. J. Virol. 2015, 89, 4720–4737. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.S.; Liu, H.M. The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses. Front. Immunol. 2019, 9, 3086. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Bai, M.; Qi, X.; Li, C.; Liang, M.; Li, D.; Cardona, C.J.; Xing, Z. Suppression of the IFN-Alpha and -Beta Induction through Sequestering IRF7 into Viral Inclusion Bodies by Nonstructural Protein NSs in Severe Fever with Thrombocytopenia Syndrome Bunyavirus Infection. J. Immunol. 2019, 202, 841–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.K.; Kusari, J.; Bandyopadhyay, S.K.; Samanta, H.; Kumar, R.; Sen, G.C. Cloning, Sequencing, and Expression of Two Murine 2′-5′-Oligoadenylate Synthetases. Structure-Function Relationships. J. Biol. Chem. 1991, 266, 15293–15299. [Google Scholar] [PubMed]
- Streitenfeld, H.; Boyd, A.; Fazakerley, J.K.; Bridgen, A.; Elliott, R.M.; Weber, F. Activation of PKR by Bunyamwera Virus is Independent of the Viral Interferon Antagonist NSs. J. Virol. 2003, 77, 5507–5511. [Google Scholar] [CrossRef]
- Almeida, G.M.; de Oliveira, D.B.; Magalhaes, C.L.; Bonjardim, C.A.; Ferreira, P.C.; Kroon, E.G. Antiviral Activity of Type I Interferons and Interleukins 29 and 28a (Type III Interferons) Against Apeu Virus. Antivir. Res. 2008, 80, 302–308. [Google Scholar] [CrossRef]
- Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; et al. The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 2009, 139, 1243–1254. [Google Scholar] [CrossRef]
- Huang, I.C.; Bailey, C.C.; Weyer, J.L.; Radoshitzky, S.R.; Becker, M.M.; Chiang, J.J.; Brass, A.L.; Ahmed, A.A.; Chi, X.; Dong, L.; et al. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog. 2011, 7, e1001258. [Google Scholar] [CrossRef]
- Lu, J.; Pan, Q.; Rong, L.; He, W.; Liu, S.L.; Liang, C. The IFITM Proteins Inhibit HIV-1 Infection. J. Virol. 2011, 85, 2126–2137. [Google Scholar] [CrossRef]
- Feeley, E.M.; Sims, J.S.; John, S.P.; Chin, C.R.; Pertel, T.; Chen, L.M.; Gaiha, G.D.; Ryan, B.J.; Donis, R.O.; Elledge, S.J.; et al. IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry. PLoS Pathog. 2011, 7, e1002337. [Google Scholar] [CrossRef]
- Mudhasani, R.; Tran, J.P.; Retterer, C.; Radoshitzky, S.R.; Kota, K.P.; Altamura, L.A.; Smith, J.M.; Packard, B.Z.; Kuhn, J.H.; Costantino, J.; et al. IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus. J. Virol. 2013, 87, 8451–8464. [Google Scholar] [CrossRef] [PubMed]
- Espert, L.; Degols, G.; Gongora, C.; Blondel, D.; Williams, B.R.; Silverman, R.H.; Mechti, N. ISG20, a New Interferon-Induced RNase Specific for Single-Stranded RNA, Defines an Alternative Antiviral Pathway Against RNA Genomic Viruses. J. Biol. Chem. 2003, 278, 16151–16158. [Google Scholar] [CrossRef]
- Feng, J.; Wickenhagen, A.; Turnbull, M.L.; Rezelj, V.V.; Kreher, F.; Tilston-Lunel, N.L.; Slack, G.S.; Brennan, B.; Koudriakova, E.; Shaw, A.E.; et al. Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20. J. Virol. 2018, 92, e02140-17. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.R. PKR, a Sentinel Kinase for Cellular Stress. Oncogene 1999, 18, 6112–6120. [Google Scholar] [CrossRef] [PubMed]
- Habjan, M.; Pichlmair, A.; Elliott, R.M.; Overby, A.K.; Glatter, T.; Gstaiger, M.; Superti-Furga, G.; Unger, H.; Weber, F. NSs Protein of Rift Valley Fever Virus Induces the Specific Degradation of the Double-Stranded RNA-Dependent Protein Kinase. J. Virol. 2009, 83, 4365–4375. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Narayanan, K.; Won, S.; Kamitani, W.; Peters, C.J.; Makino, S. Rift Valley Fever Virus NSs Protein Promotes Post-Transcriptional Downregulation of Protein Kinase PKR and Inhibits eIF2alpha Phosphorylation. PLoS Pathog. 2009, 5, e1000287. [Google Scholar] [CrossRef]
- Kalveram, B.; Ikegami, T. Toscana Virus NSs Protein Promotes Degradation of Double-Stranded RNA-Dependent Protein Kinase. J. Virol. 2013, 87, 3710–3718. [Google Scholar] [CrossRef]
- Kainulainen, M.; Lau, S.; Samuel, C.E.; Hornung, V.; Weber, F. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and Beta-TRCP1 to Degrade the Antiviral Protein Kinase PKR. J. Virol. 2016, 90, 6140–6147. [Google Scholar] [CrossRef]
- Mudhasani, R.; Tran, J.P.; Retterer, C.; Kota, K.P.; Whitehouse, C.A.; Bavari, S. Protein Kinase R Degradation is Essential for Rift Valley Fever Virus Infection and is Regulated by SKP1-CUL1-F-Box (SCF)FBXW11-NSs E3 Ligase. PLoS Pathog. 2016, 12, e1005437. [Google Scholar] [CrossRef] [Green Version]
Factor | Source (Virus/Host) | Bunyavirus Studied | Function | References |
---|---|---|---|---|
β3 integrins | -Host cells | -hantaviruses (NY-1 and SNV) | -viral attachment | [52] |
DAF/CD55 | -Host cells | -hantaviruses (Hantaan virus, PUUV) | -viral attachment | [53] |
gC1qR | -Host cells | -hantaviruses (Hantaan virus) | -viral attachment | [54] |
protocadherin-1 | -Host cells | -hantaviruses (ANDV, SNV) | -viral attachment | [55] |
DC-SIGN | -Host cells | -CCHFV | -viral attachment | [35,36] |
L-SIGN | -Host cells | -RVFV, UUKV, LACV | -viral attachment | [38] |
nucleolin | -Host cells | -CCHFV | -unclear | [39] |
Heparin Sulfate Proteoglycan (HSPG) | -Host cells | -SBV, AKAV, TOSV, RVFV | -viral attachment | [40,41,42,43,44,45] |
NSm | -Virus | -Maguari, AKAV, RVFV, SBV | -unclear (possible inhibition of viral-induced apoptosis) | [63,64,65,66,67,68,69,70,71,72] |
NSs | -Virus | -LACV, BUNV, RVFV, SBV | -inhibits transcription of IFN-activated genes | [72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boshra, H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022, 14, 2139. https://doi.org/10.3390/v14102139
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses. 2022; 14(10):2139. https://doi.org/10.3390/v14102139
Chicago/Turabian StyleBoshra, Hani. 2022. "An Overview of the Infectious Cycle of Bunyaviruses" Viruses 14, no. 10: 2139. https://doi.org/10.3390/v14102139
APA StyleBoshra, H. (2022). An Overview of the Infectious Cycle of Bunyaviruses. Viruses, 14(10), 2139. https://doi.org/10.3390/v14102139