Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Infection of Ducks and Chickens with ABBV-1 and Extraction of RNA from Collected Samples
2.2. Library Preparation and RNA Sequencing
2.3. Quality Control, Annotation to Reference Genomes, and Quantification of Counts
2.4. Principal Component and Differential Gene-Expression Analysis
2.5. Functional Analysis of DEG using Gene Ontology (GO) Terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment
3. Results
3.1. Microscopic Pathology and Magnitude of Virus Replication in the Brains of Chickens and Ducks Infected with ABBV-1 upon Intracranial Administration
3.2. Overview of Sequencing, Trimming, and Alignment Analysis of Duck- and Chicken-Brain Tissues Infected with ABBV-1 or Mock Infected
3.3. Inflammation Is the Main Driver of Altered Transcriptional Profiles in ABBV-1-Infected Duck and Chicken Brains, as Shown by PCA and DGE Analyses
3.3.1. PCA Analysis
3.3.2. DGE Analysis
3.4. Highest-Ranking hDEGs (|log2FC| > 2) in Duck and Chicken Brains in Response to ABBV-1 Infection Are Associated with Immune Functions, Regulation of Gene Expression, and the Cell-Membrane Location
3.4.1. Ducks
3.4.2. Chickens
3.5. ABBV-1 Differentially Regulates Long Non-Coding RNA (lncRNA) Expression in Both Duck and Chicken Brains
3.6. Gene Ontology (GO) Analysis of hDEGs Demonstrates Enrichment of GO Terms Broadly Associated with Immune Functions
3.6.1. Ducks
3.6.2. Chickens
3.7. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis of hDEG Demonstrates Enrichment of Pathways Associated with Immune Functions or Viral Infections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubbenstroth, D.; Briese, T.; Dürrwald, R.; Horie, M.; Hyndman, T.H.; Kuhn, J.H.; Nowotny, N.; Payne, S.; Stenglein, M.D.; Tomonaga, K.; et al. ICTV Virus Taxonomy Profile: Bornaviridae. J. Gen. Virol. 2021, 102, 001613. [Google Scholar] [CrossRef] [PubMed]
- Nobach, D.; Müller, J.; Tappe, D.; Herden, C. Update on immunopathology of bornavirus infections in humans and animals. Adv. Virus Res. 2020, 107, 159–222. [Google Scholar] [CrossRef]
- Tizard, I.; Ball, J.; Stoica, G.; Payne, S. The pathogenesis of bornaviral diseases in mammals. Anim. Health Res. Rev. 2016, 17, 92–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richt, J.A.; Grabner, A.; Herzog, S. Borna disease in horses. Vet. Clin. N. Am. Equine Pract. 2000, 16, 579–595. [Google Scholar] [CrossRef]
- Delnatte, P.; Ojkic, D.; DeLay, J.; Campbell, D.; Crawshaw, G.; Smith, D.A. Pathology and diagnosis of avian bornavirus infection in wild Canada geese (Branta canadensis), trumpeter swans (Cygnus buccinator) and mute swans (Cygnus olor) in Canada: A retrospective study. Avian Pathol. 2013, 42, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Delnatte, P.; Nagy, É.; Ojkic, D.; Leishman, D.; Crawshaw, G.; Elias, K.; Smith, D.A. Avian bornavirus in free-ranging waterfowl: Prevalence of antibodies and cloacal shedding of viral RNA. J. Wildl. Dis. 2014, 50, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Guo, J.; Tizard, I.; Jennings, S.; Shivaprasad, H.L.; Payne, S.; Ellis, J.C.; Van Wettere, A.J.; O’Brien, K.M. Aquatic Bird Bornavirus-Associated Disease in Free-Living Canada Geese (Branta canadensis) in the Northeastern USA. J. Wildl. Dis. 2017, 53, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.F.; Nielsen, J.B.; Hjulsager, C.K.; Chriél, M.; Smith, D.A.; Bertelsen, M.F. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerg. Infect. Dis. 2015, 21, 2201–2203. [Google Scholar] [CrossRef] [Green Version]
- Świętoń, E.; Dziadek, K.; Śmietanka, K. Avian Bornaviruses in Wild Aquatic Birds of the Anseriformes Order in Poland. Pathogens 2022, 11, 98. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Schmidt, V.; Rinder, M.; Legler, M.; Twietmeyer, S.; Schwemmer, P.; Corman, V.M. Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. PLoS ONE 2016, 11, e0160936. [Google Scholar] [CrossRef]
- Payne, S.L.; Delnatte, P.; Guo, J.; Heatley, J.J.; Tizard, I.; Smith, D.A. Birds and bornaviruses. Anim. Health Res. Rev. 2012, 13, 145–156. [Google Scholar] [CrossRef]
- Nielsen, A.M.W.; Ojkic, D.; Dutton, C.J.; Smith, D.A. Aquatic bird bornavirus 1 infection in a captive Emu (Dromaius novaehollandiae): Presumed natural transmission from free-ranging wild waterfowl. Avian Pathol. 2018, 47, 58–62. [Google Scholar] [CrossRef]
- Guo, J.; Tizard, I.; Baroch, J.; Shivaprasad, H.L.; Payne, S.L. Avian Bornaviruses in North American Gulls. J. Wildl. Dis. 2015, 51, 754–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubbenstroth, D. Avian Bornavirus Research-A Comprehensive Review. Viruses 2022, 14, 1513. [Google Scholar] [CrossRef]
- Iverson, M.; Leacy, A.; Pham, P.H.; Che, S.; Brouwer, E.; Nagy, E.; Lillie, B.N.; Susta, L. Experimental infection of aquatic bird bornavirus in Muscovy ducks. Sci. Rep. 2022, 12, 16398. [Google Scholar] [CrossRef] [PubMed]
- Iverson, M.; Leacy, A.; Pham, P.H.; Brouwer, E.; Nagy, E.; Lillie, B.N.; Susta, L. Pathogenesis of Aquatic Bird Bornavirus 1 in Domestic Chickens. Res. Sq. 2022. preprint (Version 1). [Google Scholar] [CrossRef]
- Pham, P.H.; Leacy, A.; Deng, L.; Nagy, É.; Susta, L. Isolation of Ontario aquatic bird bornavirus 1 and characterization of its replication in immortalized avian cell lines. Virol. J. 2020, 17, 16. [Google Scholar] [CrossRef]
- Jehle, C.; Herpfer, I.; Rauer, M.; Schwemmle, M.; Sauder, C. Identification of differentially expressed genes in brains of newborn Borna disease virus-infected rats in the absence of inflammation. Arch. Virol. 2003, 148, 45–63. [Google Scholar] [CrossRef]
- Williams, B.L.; Lipkin, W.I. Endoplasmic reticulum stress and neurodegeneration in rats neonatally infected with borna disease virus. J. Virol. 2006, 80, 8613–8626. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Wu, Y.J.; Heimrich, B.; Schwemmle, M. Absence of a robust innate immune response in rat neurons facilitates persistent infection of Borna disease virus in neuronal tissue. Cell. Mol. Life Sci. 2013, 70, 4399–4410. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Zhao, M.; Bode, L.; Zhang, L.; Pan, J.; Lv, L.; Zhan, Y.; Liu, S.; Zhang, L.; et al. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience 2014, 268, 284–296. [Google Scholar] [CrossRef]
- Suberbielle, E.; Stella, A.; Pont, F.; Monnet, C.; Mouton, E.; Lamouroux, L.; Monsarrat, B.; Gonzalez-Dunia, D. Proteomic analysis reveals selective impediment of neuronal remodeling upon Borna disease virus infection. J. Virol. 2008, 82, 12265–12279. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Guo, Y.; Xu, X.; Zhao, L.; Shen, X.; Sun, L.; Xie, P. BoDV-1 infection induces neuroinflammation by activating the TLR4/MyD88/IRF5 signaling pathway, leading to learning and memory impairment in rats. J. Med. Virol. 2021, 93, 6163–6171. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; He, P.; Xu, X.; Zhang, X.; Wang, H.; Tang, T.; Zhou, W.; Xu, P.; Xie, P. Genome-wide profiling of long noncoding RNA expression patterns and CeRNA analysis in mouse cortical neurons infected with different strains of borna disease virus. Genes Dis. 2019, 6, 147–158. [Google Scholar] [CrossRef]
- Bourgey, M.; Dali, R.; Eveleigh, R.; Chen, K.C.; Letourneau, L.; Fillon, J.; Michaud, M.; Caron, M.; Sandoval, J.; Lefebvre, F.; et al. GenPipes: An open-source framework for distributed and scalable genomic analyses. Gigascience 2019, 8, giz037. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.; Lim, N.; Ballouz, S.; Pavlidis, P.; Gillis, J. Predictability of human differential gene expression. Proc. Natl. Acad. Sci. USA 2019, 116, 6491–6500. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.E.; Haynes, W.A.; Vallania, F.; Ioannidis, J.P.; Khatri, P. Methods to increase reproducibility in differential gene expression via meta-analysis. Nucleic Acids Res. 2017, 45, e1. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Schurch, N.J.; Schofield, P.; Gierliński, M.; Cole, C.; Sherstnev, A.; Singh, V.; Wrobel, N.; Gharbi, K.; Simpson, G.G.; Owen-Hughes, T.; et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 2016, 22, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Leacy, A.; Nagy, É.; Pham, P.H.; Susta, L. In Vitro and In Ovo Host Restriction of Aquatic Bird Bornavirus 1 in Different Avian Hosts. Viruses 2020, 12, 1272. [Google Scholar] [CrossRef]
- Volmer, R.; Prat, C.M.A.; Le Masson, G.; Garenne, A.; Gonzalez-Dunia, D. Borna disease virus infection impairs synaptic plasticity. J. Virol. 2007, 81, 8833–8837. [Google Scholar] [CrossRef]
- Long, L.; Zhang, X.; Chen, F.; Pan, Q.; Phiphatwatchara, P.; Zeng, Y.; Chen, H. The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy. Genes Cancer 2018, 9, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, N.; Tardiel-Cyril, D.R.; Davtyan, A.; Generali, D.; Roudi, R.; Li, Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers 2021, 13, 1440. [Google Scholar] [CrossRef]
- Tappe, D.; Schmidt-Chanasit, J.; Rauch, J.; Allartz, P.; Herden, C. Immunopathology of Fatal Human Variegated Squirrel Bornavirus 1 Encephalitis, Germany, 2011–2013. Emerg. Infect. Dis. 2019, 25, 1058. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.S.; Guo, J.; Tizard, I.; Shivaprasad, H.L.; Payne, S. Studies on immunity and immunopathogenesis of parrot bornaviral disease in cockatiels. Virology 2018, 515, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Leal de Araújo, J.; Rech, R.R.; Rodrigues-Hoffmann, A.; Giaretta, P.R.; Cirqueira, C.; Wenceslau, R.R.; Tizard, I.; Diaz-Delgado, J. Immunophenotype of the inflammatory response in the central and enteric nervous systems of cockatiels (Nymphicus hollandicus) experimentally infected with parrot bornavirus 2. Vet. Pathol. 2022, 59, 493–497. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Feng, H.-P.; Huang, L.-R.; Yi, K.; Rong, E.-G.; Chen, X.-Y.; Li, J.-W.; Wang, Z.; Zhu, P.-Y.; Liu, X.-J.; et al. Transcriptomic analyses reveal new genes and networks response to H5N1 influenza viruses in duck (Anas platyrhynchos). J. Integr. Agric. 2019, 18, 1460–1472. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef]
- Satpathy, A.T.; Chang, H.Y. Long noncoding RNA in hematopoiesis and immunity. Immunity 2015, 42, 792–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, K.; Schulte, L.N. The role of lncRNAs in innate immunity and inflammation. RNA Biol. 2021, 18, 587–603. [Google Scholar] [CrossRef]
- Mathy, N.W.; Chen, X.M. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 2017, 292, 12375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buwitt-Beckmann, U.; Heine, H.; Wiesmüller, K.H.; Jung, G.; Brock, R.; Akira, S.; Ulmer, A.J. TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem. 2006, 281, 9049–9057. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 2005, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchikawa, E.; Lethier, M.; Malet, H.; Brunel, J.; Gerlier, D.; Cusack, S. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5. Mol. Cell 2016, 62, 586–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, T.; Kato, H.; Kumagai, Y.; Yoneyama, M.; Sato, S.; Matsushita, K.; Tsujimura, T.; Fujita, T.; Akira, S.; Takeuchi, O. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. USA 2010, 107, 1512–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maringer, K.; Fernandez-Sesma, A. Message in a bottle: Lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev. 2014, 25, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, J.; Hume, A.J.; Mühlberger, E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog. 2018, 14, e1007390. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Oshiumi, H.; Matsumoto, M.; Seya, T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 2011, 31, 3802–3819. [Google Scholar] [CrossRef] [Green Version]
- Gack, M.U.; Shin, Y.C.; Joo, C.H.; Urano, T.; Liang, C.; Sun, L.; Takeuchi, O.; Akira, S.; Chen, Z.; Inoue, S.; et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446, 916–920. [Google Scholar] [CrossRef]
- Lian, H.; Zang, R.; Wei, J.; Ye, W.; Hu, M.M.; Chen, Y.-D.; Zhang, X.N.; Guo, Y.; Lei, C.Q.; Yang, Q.; et al. The Zinc-Finger Protein ZCCHC3 Binds RNA and Facilitates Viral RNA Sensing and Activation of the RIG-I-like Receptors. Immunity 2018, 49, 438–448.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Jia, X.; Xue, Q.; Dou, Z.; Ma, Y.; Zhao, Z.; Jiang, Z.; He, B.; Jin, Q.; Wang, J. TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response. Proc. Natl. Acad. Sci. USA 2014, 111, E245–E254. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.; Pagano, J.S.; Barber, G.N. IRF7: Activation, regulation, modification and function. Genes Immun. 2011, 12, 399–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au-Yeung, N.; Mandhana, R.; Horvath, C.M. Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. JAK-STAT 2013, 2, e23931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [Green Version]
- Staeheli, P.; Sentandreu, M.; Pagenstecher, A.; Hausmann, J. Alpha/beta interferon promotes transcription and inhibits replication of borna disease virus in persistently infected cells. J. Virol. 2001, 75, 8216–8223. [Google Scholar] [CrossRef] [Green Version]
- Nailwal, H.; Chan, F.K.M. Necroptosis in anti-viral inflammation. Cell Death Differ. 2019, 26, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschl, U.; Stitz, L.; Herzog, S.; Frese, K.; Rott, R. Determination of immune cells and expression of major histocompatibility complex class II antigen in encephalitic lesions of experimental Borna disease. Acta Neuropathol. 1990, 81, 41–50. [Google Scholar] [CrossRef]
- Bilzer, T.; Stitz, L. Immune-mediated brain atrophy. CD8+ T cells contribute to tissue destruction during borna disease. J. Immunol. 1994, 153, 818–823. [Google Scholar]
- Planz, O.; Bilzer, T.; Stitz, L. Immunopathogenic role of T-cell subsets in Borna disease virus-induced progressive encephalitis. J. Virol. 1995, 69, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Planz, O.; Stitz, L. Borna disease virus nucleoprotein (p40) is a major target for CD8+-T-cell-mediated immune response. J. Virol. 1999, 73, 1715–1718. [Google Scholar] [CrossRef]
- Chen, D.; Yu, J.; Zhang, L. Necroptosis: An alternative cell death program defending against cancer. Biochim. Biophys. Acta-Rev. Cancer 2016, 1865, 228–236. [Google Scholar] [CrossRef] [PubMed]
Muscovy Ducks 1 | White Leghorn Chickens 2 | |||
---|---|---|---|---|
4 wpi | 12 wpi | 4 wpi | 12 wpi | |
ABBV-1 RNA copy number 3 | 6.87 ± 0.45 | 7.15 ± 0.08 | 4.97 ± 1.28 | 6.56 ± 0.55 |
Histology score 4 | 3 ± 0.6 | 2 ± 0.6 | 0 | 3.75 ± 1.07 |
Species, Time Point | tDEG * (Absolute log2FC ** > 0) | hDEG (Absolute log2FC > 2) | ||||
---|---|---|---|---|---|---|
tDEG | Upregulated (%) ^ | Downregulated (%) | hDEG # | Upregulated (%) ^ | Downregulated (%) | |
Ducks, 4 wpi | 2283 | 1791 (78.4%) | 492 (21.6%) | 797 (34.9%) | 784 (98.4%) | 13 (1.6%) |
Ducks, 12 wpi | 979 | 773 (79.0%) | 206 (21.0%) | 228 (23.5%) | 228 (100%) | 0 (0%) |
Chickens, 4 wpi | 4328 | 1794 (41.5%) | 2534 (58.5%) | 153 (3.5%) | 8 (5.2%) | 145 (94.8%) |
Chickens, 12 wpi | 4718 | 2781 (58.9%) | 1937 (41.1%) | 997 (21.1%) | 979 (98.2%) | 18 (1.8%) |
Highly Upregulated DEGs at 4 wpi | Highly Upregulated DEGs at 12 wpi | ||||
---|---|---|---|---|---|
Gene | log2FC | Description (as Provided on Ensembl) | Gene | log2FC | Description (as Provided on Ensembl) |
LAG3 | 11.62 | Lymphocyteactivating 3 | CTLA4 | 8.16 | Cytotoxic T-lymphocyte associated protein 4 |
SPIC | 11.14 | Spi-C transcription factor | JCHAIN | 7.41 | Joining chain of multimeric IgA and IgM |
HOXA4 | 10.59 | Homeobox A4 | OASL | 6.64 | 2,-5,-oligoadenylate synthetase like |
CXCR5 | 10.28 | C-X-C motif chemokine receptor 5 | SERPING1 | 6.33 | Serpin family G member 1 |
JCHAIN | 10.25 | Joining chain of multimeric IgA and IgM | LAG3 | 5.70 | Lymphocyte-activating 3 |
CTLA4 | 9.40 | Cytotoxic T-lymphocyte associated protein 4 | EPSTI1 | 5.53 | Epithelial stromal interaction 1 |
PLAC8 | 9.05 | Placenta-associated 8 | RSAD2 | 5.25 | Radical S-adenosyl methionine domain containing 2 |
AICDA | 9.01 | Activation induced cytidine deaminase | CALHM6 | 5.00 | Calcium-homeostasis-modulator family member 6 |
TRAT1 | 8.90 | T-cell receptor-associated transmembrane adaptor 1 | PLAC8 | 4.90 | Placenta-associated 8 |
SERPING1 | 8.80 | Serpin family G member 1 | CD6 | 4.67 | CD6 molecule |
IFNG | 7.97 | Interferon gamma | DHX58 | 4.31 | DExH-BOX HELICASE 58 |
XCR1 | 7.75 | X-C motif chemokine receptor 1 | MX1 | 4.31 | MX dynamin like GTPase 1 |
ZAP70 | 7.54 | Zeta chain of T-cell receptor associated protein kinase 70 | ZAP70 | 4.18 | Zeta chain of T-cell receptor-associated protein kinase 70 |
IL22RA2 | 7.51 | Interleukin 22 receptor subunit alpha 2 | IRF7 | 3.91 | Interferon regulatory factor 7 |
VPREB3 | 7.48 | V-set pre-B-cell surrogate light chain 3 | DDX60 | 3.69 | DExD/H-box helicase 60 |
PAX5 | 7.15 | Paired box 5 | EFCAB3 | 3.64 | EF-hand calcium binding domain 3 |
NMU | 7.03 | Neuromedin U | 7SK | 3.57 | 7SK RNA |
APOBEC1 | 6.76 | Apolipoprotein B mRNA editing Enzyme catalytic subunit 1 | DTX3L | 3.53 | Deltex E3 ubiquitin ligase 3L |
CD79B | 6.74 | CD79b molecule | B2M | 3.37 | Beta-2-microglobulin |
GPR65 | 6.61 | G-protein-coupled receptor 65 | PARP10 | 3.31 | Poly(ADP-ribose) polymerase family member 10 |
Highly Downregulated DEGs at 4 wpi | |||||
Gene | log2FC | Description (as Provided on Ensembl) | |||
CDH15 | −5.87 | Cadherin 15 | |||
TMEM233 | −3.19 | Transmembrane protein 233 | |||
ATP6V0D2 | −2.42 | ATPase H+ transporting V0 subunit d2 | |||
ZIC1 | −2.38 | Zic family member 1 | |||
ZIC4 | −2.14 | Zic family member 4 |
Highly Upregulated DEG at 4 wpi | Highly Upregulated DEG at 12 wpi | ||||
---|---|---|---|---|---|
Gene | log2FC | Description (as Provided on Ensembl) | Gene | log2FC | Description (as Provided on Ensembl) |
IRF4 | 3.12 | Interferon regulatory factor 4 | IFNG | 11.01 | Interferon gamma |
GUCA1C | 2.50 | Guanylate cyclase activator 1C | IL18RAP | 10.23 | Interleukin 18 receptor accessory protein |
IFIT5 | 2.43 | Interferon induced protein with tetratricopeptide repeats 5 | JCHAIN | 9.55 | Joining chain of multimeric IgA and IgM |
RSAD2 | 2.16 | Radical S-adenosyl methionine domain containing 2 | LAG3 | 9.36 | Lymphocyte activating 3 |
LYG2 | 2.09 | Lysozyme g2 | AVD | 9.23 | Avidin |
Highly Downregulated DEG at 4 wpi | HAAO | 9.16 | 3-hydroxyanthranilate 3,4-dioxygenase | ||
Gene | log2FC | Description (as Provided on Ensembl) | GPR55 | 9.01 | G protein-coupled receptor 55 |
VWCE | −6.83 | Von Willebrand factor C and EGF domains | CTLA4 | 8.37 | Cytotoxic T-lymphocyte associated protein 4 |
SLC16A8 | −6.00 | Solute carrier family 16 member 8 | CCL5 | 8.29 | C-C motif chemokine ligand 5 |
BAIAP2L2 | −5.39 | BAR/IMD domain containing adaptor protein 2 like 2 | CXCL13L3 | 8.24 | C-X-C motif chemokine ligand 13-like 3 |
CGN | −5.10 | Cingulin | CRTAM | 8.20 | Cytotoxic and regulatory T cell molecule |
CHRNA2 | −4.96 | Cholinergic receptor nicotinic alpha 2 subunit | CCL1 | 7.94 | C-C motif chemokine ligand 1 |
CBLN1 | −4.86 | Cerebellin 1 precursor | XCL1 | 7.62 | X-C motif chemokine ligand 1 |
KCNH6 | −4.75 | Potassium voltage-gated channel subfamily H member 6 | CCL19 | 7.43 | C-C motif chemokine ligand 19 |
LZTS3 | −4.33 | Leucine zipper tumor suppressor family member 3 | POU2AF1 | 7.39 | POU class 2 homeobox associating factor 1 |
USP43 | −4.12 | Ubiquitin-specific peptidase 43 | GLOD5 | 7.29 | Glyoxalase domain containing 5 |
SYNPO2L | −4.07 | Synaptopodin 2 like | CXCL13L2 | 7.25 | C-X-C motif chemokine ligand 13-like 2 |
SLC10A4 | −4.06 | Solute carrier family 10 member 4 | GZMA | 7.17 | Granzyme A |
INSM2 | −3.93 | INSM transcriptional repressor 2 | AICDA | 7.11 | Activation-induced cytidine deaminase |
GPRC5C | −3.86 | G protein-coupled receptor class C group 5 member C | ART1 | 7.10 | ADP-ribosyltransferase 1 |
PLEKHD1 | −3.68 | Pleckstrin homology and coiled-coil domain containing D1 | Highly Downregulated DEGs at 12 wpi | ||
KCNK3 | −3.61 | Potassium two-pore domain channel subfamily K member 3 | Gene | log2FC | Description (as Provided on Ensembl) |
OTOS | −3.52 | Otospiralin | TTR | −8.30 | Transthyretin |
DMP1 | −3.50 | Dentin-matrix acidic phosphoprotein 1 | DMRT2 | −5.24 | Doublesex and mab-3-related transcription factor 2 |
CARNS1 | −3.46 | Carnosine synthase 1 | PPP1R17 | −2.86 | Protein phosphatase 1 regulatory subunit 17 |
NOS1 | −3.41 | Nitric oxide synthase 1 | TLL2 | −2.60 | Tolloid like 2 |
SHISA6 | −3.30 | Shisa family member 6 | BAIAP2L2 | −2.59 | BAR/IMD domain containing adaptor protein 2 like 2 |
OvoDA1 | −2.47 | Ovodefensin A1 | |||
KCNH8 | −2.29 | Potassium voltage-gated channel subfamily H member 8 | |||
NPFFR2 | −2.23 | Neuropeptide FF receptor 2 | |||
KY | −2.18 | Kyphoscoliosis peptidase | |||
KCNK3 | −2.04 | Potassium two-pore domain channel subfamily K member 3 |
Species, Time Point | Highly Differentially Expressed Novel lncRNAs (Absolute log2FC > 2) | ||
---|---|---|---|
Total lncRNAs | Upregulated | Downregulated | |
Ducks, 4 wpi | 95 | 87 | 8 |
Ducks, 12 wpi | 22 | 22 | 0 |
Chickens, 4 wpi | 13 | 2 | 11 |
Chickens, 12 wpi | 123 | 119 | 4 |
Pathway Name | Pathway ID | Groups and p-Value (adj) | ||
---|---|---|---|---|
Ducks at 4 wpi | Ducks at 12 wpi | Chickens at 12 wpi | ||
Cytokine-cytokine receptor interaction | KEGG:04060 | 1.597 × 10−26 | 4.112 × 10−4 | 9.672 × 10−29 |
Toll-like receptor signaling pathway | KEGG:04620 | 9.830 × 10−11 | 5.009 × 10−3 | 2.496 × 10−9 |
Herpes simplex virus 1 infection | KEGG:05168 | 1.182 × 10−9 | 1.439 × 10−8 | 1.807 × 10−9 |
Cell adhesion molecules | KEGG:04514 | 6.796 × 10−9 | 6.256 × 10−10 | 4.410 × 10−15 |
Influenza A | KEGG:05164 | 7.120 × 10−8 | 1.386 × 10−3 | 1.501 × 10−8 |
NOD-like receptor signaling pathway | KEGG:04621 | 2.323 × 10−6 | 7.947 × 10−4 | 2.031 × 10−3 |
Phagosome | KEGG:04145 | 7.605 × 10−5 | 7.501 × 10−3 | 1.213 × 10−7 |
Cytosolic DNA-sensing pathway | KEGG:04623 | 5.904 × 10−6 | 1.852 × 10−3 | |
Intestinal immune network for IgA production | KEGG:04672 | 4.814 × 10−8 | 6.503 × 10−22 | |
Necroptosis | KEGG:04217 | 7.425 × 10−4 | ||
RIG-I-like receptor signaling pathway | KEGG:04622 | 1.171 × 10−5 | ||
C-type lectin receptor signaling pathway | KEGG:04625 | 1.520 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, P.H.; Tockovska, T.; Leacy, A.; Iverson, M.; Ricker, N.; Susta, L. Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1). Viruses 2022, 14, 2211. https://doi.org/10.3390/v14102211
Pham PH, Tockovska T, Leacy A, Iverson M, Ricker N, Susta L. Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1). Viruses. 2022; 14(10):2211. https://doi.org/10.3390/v14102211
Chicago/Turabian StylePham, Phuc H., Teodora Tockovska, Alexander Leacy, Melanie Iverson, Nicole Ricker, and Leonardo Susta. 2022. "Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1)" Viruses 14, no. 10: 2211. https://doi.org/10.3390/v14102211
APA StylePham, P. H., Tockovska, T., Leacy, A., Iverson, M., Ricker, N., & Susta, L. (2022). Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1). Viruses, 14(10), 2211. https://doi.org/10.3390/v14102211