Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Samples
2.2. RNA and Total Nucleic Acid Extraction
2.3. Isolation of Fungal Strains from Leaves and Fungal Culture
2.4. High-Throughput Sequencing and Bioinformatic Analysis
2.5. Phylogenetic Analysis
2.6. RT-PCR and Northern Blot Analyses
2.7. Sequencing of Fungal DNA
3. Results
3.1. Experimental Procedures and Collection of Plant Samples
3.2. Identification of Virus Species Present in Plant Samples
3.3. Detection of Plant Viruses in the Fungal Strains
3.4. Species Identification of the Fungal Strains Carrying Plant Viruses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.A. Global plant virus disease pandemics and epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- De Ronde, D.; Butterbach, P.; Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 2014, 5, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, M.; Neriya, Y.; Yamaji, Y.; Namba, S. Recessive resistance to plant viruses: Potential resistance genes beyond translation initiation factors. Front. Microbiol. 2016, 7, 1695. [Google Scholar] [CrossRef] [Green Version]
- Paudel, D.B.; Sanfaçon, H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018, 9, 1575. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Trends in plant virus epidemiology: Opportunities from new or improved technologies. Virus Res. 2014, 186, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009, 141, 113–130. [Google Scholar] [CrossRef]
- Elena, S.F.; Fraile, A.; García-Arenal, F. Evolution and emergence of plant viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar]
- Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 2013, 51, 177–201. [Google Scholar] [CrossRef]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, A.E.; Huot, O.B.; Martin, K.M.; Kondo, H.; Dietzgen, R.G. Plant rhabdoviruses—Their origins and vector interactions. Curr. Opin. Virol. 2018, 33, 198–207. [Google Scholar] [CrossRef]
- Sun, L.; Kondo, H.; Andika, I.B. Cross-Kingdom Virus Infection. Encycl. Virol. 2021, 4, 443–449. [Google Scholar]
- Xie, J.; Wei, D.; Jiang, D.; Fu, Y.; Li, G.; Ghabrial, S.; Peng, Y. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J. Gen. Virol. 2006, 87, 241–249. [Google Scholar] [CrossRef]
- Howitt, R.L.; Beever, R.E.; Pearson, M.N.; Forster, R.L. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant ‘potex-like’viruses. J. Gen. Virol. 2001, 82, 67–78. [Google Scholar] [CrossRef]
- Howitt, R.; Beever, R.; Pearson, M.; Forster, R. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ‘potex-like’viruses. Arch. Virol. 2006, 151, 563–579. [Google Scholar] [CrossRef]
- Janda, M.; Ahlquist, P. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 1993, 72, 961–970. [Google Scholar] [CrossRef]
- Nagy, P.D. Yeast as a model host to explore plant virus-host interactions. Annu. Rev. Phytopathol. 2008, 46, 217–242. [Google Scholar] [CrossRef] [Green Version]
- Mascia, T.; Nigro, F.; Abdallah, A.; Ferrara, M.; De Stradis, A.; Faedda, R.; Palukaitis, P.; Gallitelli, D. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proc. Natl. Acad. Sci. USA 2014, 111, 4291–4296. [Google Scholar] [CrossRef] [Green Version]
- Mascia, T.; Vučurović, A.; Minutillo, S.; Nigro, F.; Labarile, R.; Savoia, M.; Palukaitis, P.; Gallitelli, D. Infection of Colletotrichum acutatum and Phytophthora infestans by taxonomically different plant viruses. Eur. J. Plant Pathol. 2019, 153, 1001–1017. [Google Scholar] [CrossRef]
- Bian, R.; Andika, I.B.; Pang, T.; Lian, Z.; Wei, S.; Niu, E.; Wu, Y.; Kondo, H.; Liu, X.; Sun, L. Facilitative and synergistic interactions between fungal and plant viruses. Proc. Natl. Acad. Sci. USA 2020, 117, 3779–3788. [Google Scholar] [CrossRef]
- Wei, S.; Bian, R.; Andika, I.B.; Niu, E.; Liu, Q.; Kondo, H.; Yang, L.; Zhou, H.; Pang, T.; Lian, Z. Symptomatic plant viroid infections in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA 2019, 116, 13042–13050. [Google Scholar] [CrossRef] [Green Version]
- Afanasenko, O.; Khiutti, A.; Mironenko, N.; Lashina, N. Transmission of potato spindle tuber viroid between Phytophthora infestans and host plants. Vavilov J. Gen. Breeding 2022, 26, 272–280. [Google Scholar] [CrossRef]
- Andika, I.B.; Wei, S.; Cao, C.; Salaipeth, L.; Kondo, H.; Sun, L. Phytopathogenic fungus hosts a plant virus: A naturally occurring cross-kingdom viral infection. Proc. Natl. Acad. Sci. USA 2017, 114, 12267–12272. [Google Scholar] [CrossRef]
- Hua, C.; Zhao, J.-H.; Guo, H.-S. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol. Plant 2018, 11, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Ann. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Brundrett, M.C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Rodriguez, R.; White Jr, J.; Arnold, A.E.; Redman, A.R. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.-M.; Zhang, Y.-R.; Cai, Y.-Y.; Wang, J.-Y.; Liu, M.-Y.; Wang, J.-Y.; Bao, J.-D.; Lin, F.-C. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Inter. J. Mol. Sci. 2022, 23, 4658. [Google Scholar] [CrossRef]
- Selosse, M.-A.; Strullu-Derrien, C.; Martin, F.M.; Kamoun, S.; Kenrick, P. Plants, fungi and oomycetes: A 400-million year affair that shapes the biosphere. New Phytol. 2015, 206, 501–506. [Google Scholar] [CrossRef]
- Sun, L.; Nuss, D.L.; Suzuki, N. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J. Gen. Virol. 2006, 87, 3703–3714. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Prot. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, R.; Serra, F.; Tárraga, J.; Medina, I.; Carbonell, J.; Pulido, L.; de María, A.; Capella-Gutíerrez, S.; Huerta-Cepas, J.; Gabaldón, T. Phylemon 2.0: A suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucl. Acids Res. 2011, 39, W470–W474. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Stielow, J.B.; Levesque, C.A.; Seifert, K.A.; Meyer, W.; Irinyi, L.; Smits, D.; Renfurm, R.; Verkley, G.; Groenewald, M.; Chaduli, D. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia-Mol. Phyl. Evol. Fungi 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.; Zhang, Z.P.; Fan, X.D.; Hu, G.J.; Dong, Y.F. First report of grapevine enamovirus 1 in grapevine in China. J. Plant Pathol. 2021, 103, 349. [Google Scholar] [CrossRef]
- Silva, J.M.F.; Al Rwahnih, M.; Blawid, R.; Nagata, T.; Fajardo, T.V.M. Discovery and molecular characterization of a novel enamovirus, Grapevine enamovirus-1. Virus Genes 2017, 53, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Lin, X.-D.; Tian, J.-H.; Chen, L.-J.; Chen, X.; Li, C.-X.; Qin, X.-C.; Li, J.; Cao, J.-P.; Eden, J.-S. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Kondo, H.; Botella, L.; Suzuki, N. Mycovirus diversity and evolution revealed/inferred from recent studies. Ann. Rev. Phytopathol. 2022, 60, 307–336. [Google Scholar] [CrossRef]
- Rott, M.E.; Kesanakurti, P.; Berwarth, C.; Rast, H.; Boyes, I.; Phelan, J.; Jelkmann, W. Discovery of negative-sense RNA viruses in trees infected with apple rubbery wood disease by next-generation sequencing. Plant Dis. 2018, 102, 1254–1263. [Google Scholar] [CrossRef]
- Hu, G.J.; Dong, Y.F.; Zhang, Z.P.; Fan, X.D.; Ren, F.; Lu, X.K. First Report of apple rubbery wood virus 1 in apple in China. Plant Dis. 2021, 105. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus years of fungal viruses. Virology 2015, 479, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Ghabrial, S.A.; Suzuki, N. Viruses of plant pathogenic fungi. Ann. Rev. Phytopathol. 2009, 47, 353–384. [Google Scholar] [CrossRef]
- Roossinck, M.J. Evolutionary and ecological links between plant and fungal viruses. New Phytol. 2019, 221, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Roossinck, M.J. Persistent plant viruses: Molecular hitchhikers or epigenetic elements? In Viruses: Essential Agents of Life; Springer: Berlin, Germany, 2012; pp. 177–186. [Google Scholar]
- Jacquemond, M. Cucumber mosaic virus. Adv. Virus Res. 2012, 84, 439–504. [Google Scholar]
- Liu, Y.; Li, F.; Li, Y.; Zhang, S.; Gao, X.; Xie, Y.; Yan, F.; Zhang, A.; Cheng, Z.; Ding, M. Identification, distribution and occurrence of viruses in the main vegetables of China. Sci. Agri. Sin. 2019, 52, 239–261. [Google Scholar]
- Wang, D.; Wang, J.; Cui, L.; Wang, S.; Niu, Y. Molecular identification and phylogeny of cucumber mosaic virus and zucchini yellow mosaic virus co-infecting Luffa cylindrica L. in Shanxi, China. J. Plant Pathol. 2020, 102, 477–487. [Google Scholar] [CrossRef]
- Hseu, S.; Wang, H.; Huang, C. Identification of a zucchini yellow mosaic virus from Cucumis sativus. J. Agri. Res. China 1985, 34, 87–95. [Google Scholar]
- Maina, S.; Coutts, B.A.; Edwards, O.R.; de Almeida, L.; Kehoe, M.A.; Ximenes, A.; Jones, R.A. Zucchini yellow mosaic virus populations from East Timorese and northern Australian cucurbit crops: Molecular properties, genetic connectivity, and biosecurity implications. Plant Dis. 2017, 101, 1236–1245. [Google Scholar] [CrossRef] [Green Version]
- Asad, Z.; Ashfaq, M.; Inam-Ul-Haq, M.; Irshad, G.; Khan, M.A. Current status and molecular characterization of zucchini yellow mosaic virus (ZYMV) infecting ridge gourd (Luffa acutangula l) in different regions of Punjab, Pakistan. Pak. J. Bot. 2022, 54, 467–474. [Google Scholar] [CrossRef]
- ZHANG, X.-y.; PENG, Y.-m.; XIANG, H.-y.; Ying, W.; LI, D.-w.; YU, J.-l.; HAN, C.-g. Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China. J. Int. Agri. 2022, 21, 774–780. [Google Scholar] [CrossRef]
- Yoshida, N.; Tamada, T. Host range and molecular analysis of Beet leaf yellowing virus, Beet western yellows virus-JP and Brassica yellows virus in Japan. Plant Pathol. 2019, 68, 1045–1058. [Google Scholar] [CrossRef]
- Passmore, B.K.; Sanger, M.; Chin, L.-S.; Falk, B.W.; Bruening, G. Beet western yellows virus-associated RNA: An independently replicating RNA that stimulates virus accumulation. Proc. Natl. Acad. Sci. USA 1993, 90, 10168–10172. [Google Scholar] [CrossRef]
- Sanger, M.; Passmore, B.; Falk, B.W.; Bruening, G.; Ding, B.; Lucas, W.J. Symptom severity of beet western yellows virus strain ST9 is conferred by the ST9-associated RNA and is not associated with virus release from the phloem. Virology 1994, 200, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Hahn, Y. A novel Waikavirus (the family Secoviridae) genome sequence identified in rapeseed (Brassica napus). Acta Virol. 2019, 63, 211–216. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Navarro, B.; Di Serio, F.; Stevens, K.; Hwang, M.S.; Kohl, J.; Vu, S.T.; Falk, B.W.; Golino, D.; Al Rwahnih, M. Two novel negative-sense RNA viruses infecting grapevine are members of a newly proposed genus within the family Phenuiviridae. Viruses 2019, 11, 685. [Google Scholar] [CrossRef] [Green Version]
- de Zoeten, G.A.; Skaf, J.S. Pea enation mosaic and the vagaries of a plant virus. Adv. Virus Res. 2001, 57, 323–350. [Google Scholar]
- Pettersson, J.H.-O.; Shi, M.; Eden, J.-S.; Holmes, E.C.; Hesson, J.C. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in northern Europe. Viruses 2019, 11, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutar, S.O.; Kordis, D. Analysis of the RNA virome of basal hexapods. PeerJ 2020, 8, e8336. [Google Scholar]
- Lin, Y.-H.; Fujita, M.; Chiba, S.; Hyodo, K.; Andika, I.B.; Suzuki, N.; Kondo, H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 2019, 533, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, A.; Gené, J.; Sutton, D.; Madrid, H.; De Hoog, G.; Cano, J.; Decock, C.; Crous, P.W.; Guarro, J. Phylogeny of Sarocladium (Hypocreales). Persoonia-Mol. Phyl. Evol. Fungi 2015, 34, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cantero, A.; Guarro, J. Sarocladium and Acremonium infections: New faces of an old opportunistic fungus. Mycoses 2020, 63, 1203–1214. [Google Scholar] [CrossRef]
- Fernández-Silva, F.; Capilla, J.; Mayayo, E.; Sutton, D.; Guarro, J. Experimental murine acremoniosis: An emerging opportunistic human infection. Medical Mycol. 2014, 52, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, A.C.; Menezes, U.P.d.; Marques, H.H.d.S.; Vallada, M.G.; Cappellozi, V.L.; Carnide, E.M.G.; Jacob, C.M.A. Acremonium kiliense infection in a child with chronic granulomatous disease. Brazilian J. Infect. Dis. 2005, 9, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar-Mobarake, M.; Nowroozi, J.; Badiee, P.; Mostafavi, S.N.; Mohammadi, R. Fatal disseminated infection due to Sarocladium kiliense in a diabetic patient with COVID-19. Clin. Case Rep. 2021, 9, e04596. [Google Scholar] [CrossRef]
- Júnior, M.C.; de Moraes Arantes, A.; Silva, H.M.; Costa, C.R.; Silva, M.d.R.R. Acremonium kiliense: Case report and review of published studies. Mycopathologia 2013, 176, 417–421. [Google Scholar] [CrossRef]
- Khosla, K.; Gupta, A. First report of Acremonium kiliense causing fruit rot of pears in India. New Dis. Rep. 2016, 33, 14. [Google Scholar] [CrossRef] [Green Version]
- Jingfeng, L.; Linyun, F.; Ruiya, L.; Xiaohan, W.; Haiyu, L.; Ligang, Z. Endophytic fungi from medicinal herb Salvia miltiorrhiza Bunge and their antimicrobial activity. Afr. J. Microbiol. Res. 2013, 7, 5343–5349. [Google Scholar] [CrossRef] [Green Version]
- Comby, M.; Gacoin, M.; Robineau, M.; Rabenoelina, F.; Ptas, S.; Dupont, J.; Profizi, C.; Baillieul, F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol. Res. 2017, 202, 11–20. [Google Scholar] [CrossRef]
- Li, J.-L.; Sun, X.; Zheng, Y.; Lü, P.-P.; Wang, Y.-L.; Guo, L.-D. Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 2020, 62, 75. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Fotouhifar, K. Identification of some fungi accompanying the scab symptoms in Iran. Mycol. Iran. 2016, 3, 25–37. [Google Scholar]
- Higginbotham, S.J.; Arnold, A.E.; Ibañez, A.; Spadafora, C.; Coley, P.D.; Kursar, T.A. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 2013, 8, e73192. [Google Scholar]
- Su, L.; Zhu, H.; Guo, Y.; Du, X.; Guo, J.; Zhang, L.; Qin, C. Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 2019, 387, 55–62. [Google Scholar] [CrossRef]
- Zare, R.; Gams, W. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwig. 2001, 73, 1–50. [Google Scholar] [CrossRef]
- Nicoletti, R.; Becchimanzi, A. Endophytism of lecanicillium and akanthomyces. Agriculture 2020, 10, 205. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2016, 15, 1–22. [Google Scholar] [CrossRef]
- MÁ, P.M.; Alonso, G.; Martin de Santos, R. The importance of genus Alternaria in mycotoxins production and human diseases. Nutr. Hosp. 2012, 27, 1772–1781. [Google Scholar]
- DeMers, M. Alternaria alternata as endophyte and pathogen. Microbiology 2022, 168, 001153. [Google Scholar] [CrossRef]
- Cunniffe, N.J.; Taylor, N.P.; Hamelin, F.M.; Jeger, M.J. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comp. Biol. 2021, 17, e1009759. [Google Scholar] [CrossRef]
- Morris, C.E.; Moury, B. Revisiting the concept of host range of plant pathogens. Ann. Rev. Phytopathol. 2019, 57, 63–90. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [Green Version]
- Andika, I.B.; Kondo, H.; Sun, L. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots. Front. Microbiol. 2016, 7, 1458. [Google Scholar] [CrossRef]
Contig (DDBJ Accession No.) | Length (nt) | NGS Reads | BLASTn/BLASTx Results (nt/aa) | Genus (or Group) Tentative Virus Name | ||||
---|---|---|---|---|---|---|---|---|
Accession No. | E-Value | Identity a | Segment/ Protein | Virus (Abbreviation) | ||||
DN122318_c150_g1_i1 (LC726798) | 3363 | 5,854,518 | AB179764.1/ QFZ79258.1 | 0/ 0 | 97.0/ 99.5 | RNA1/ protein 1a | Cucumber mosaic virus (CMV) b | Cucumovirus |
DN111361_c93_g1_i1 (LC726799) | 2866 | 1,863,038 | AF314188.1/ Q86783.1 | 0/ 0 | 98.6/ 99.4 | RNA2/ RdRP | ||
DN124624_c138_g1_i1 (LC726800) | 1367 | 741,776 | KP710853.1/ ACB56605.1 | 0/ 0 | 98.5/ 99.6 | RNA3/ MP | ||
DN133764_c33_g1_i1 (LC726792) | 5901 | 313,982 | KC790225.1/ AGO58930.1 | 0/ 0 | 97.8/ 99.5 | RNA1/ polyprotein | Broad bean wilt virus 2 (BBWV-2) | Fabavirus |
DN132884_c28_g1_i1 (LC726793) | 3653 | 253,794 | AB746939.1/ AZF99051.1 | 0/ 0 | 92.1/ 97.3 | RNA2/ polyprotein | ||
DN132743_c15_g1_i1 (LC726785) | 9598 | 149,164 | KX421104.1/ ARN61640.1 | 0/ 0 | 98.0/ 99.0 | – e/ polyprotein | Zucchini yellow mosaic virus (ZYMV) | Potyvirus |
DN97429_c17_g1_i1 (LC726783) | 10,344 | 133,131 | MF085000/ AWB03290.1 | 0/ 0 | 98.3/ 99.2 | –/ polyprotein | Papaya ringspot virus (PRSV) | |
DN133242_c23_g1_i2 c (LC726791) | 6247 | 126,843 | KC119188.1/ AGD80385.1 | 0/ 0 | 97.2/ 99.0 | –/ polyprotein | Turnip mosaic virus (TuMV)/ | |
DN105402_c0_g2_i1 (LC726786) | 9451 | 43,227 | MW961163.1/ QJW82783.1 | 0/ 0 | 78.4/ 88.1 | –/ polyprotein | Konjac mosaic virus (KoMV) | |
DN134304_c2_g2_i7 (LC726784) | 9894 | 1267 | MN914159.1/ QIQ08170.1 | 0/ 0 | 94.2/ 97.6 | –/ polyprotein | Watermelon mosaic virus (WMV) | |
DN71321_c0_g2_i1 (LC726782) | 12,267 | 3976 | NC_040586.1/ YP_009552078.1 | 0/ 0 | 98.9/ 99.5 | –/ replicasepolyprotein | Brassica napus RNA virus 1 (BnRV1) | Waikavirus |
DN128817_c10_g1_i1 c (LC726796) | 4345 | 62,121 | KT946712.1/ AMR60139.1 | 0/ 0 | 82.5/ 91.5 | –/ RdRP | Ixeridium yellow mottle virus 2 (IxYMV-2) | Umbravirus |
DN134266_c8_g3_i2 d (LC726802) | 2740 | 15,684 | LC428358.1/ BBG75734.1 | 0/ 0 | 96.9/ 97.3 | –/ P1 | Brassica yellows virus (BrYV)/ | Polerovirus |
DN134266_c8_g2_i1 d (LC726803) | 1175 | 10,234 | LC428358.1/ BBG75771.1 | 0/ 0 | 98.4/ 98.7 | –/ CP | ||
DN130249_c0_g1_i1 (LC726801) | 2816 | 1920 | MN497834.1/ QKG33160.1 | 0/ 0 | 95.1/ 97.4 | –/ RdRP | Turnip yellows virus-associated RNA (TuYV-aRNA) | Unassigned polerovirus associated RNA |
DN120852_c1_g1_i1 d (LC726794) | 4806 | 12,352 | – e/ QTF33728.1 | –/ 0 | –/ 64.1 | –/ RdRP | Grapevine enamovirus 1 | Enamovirus Qingdao RNA virus 1 (QRV1) f |
DN30870_c0_g1_i1 d (LC726795) | 1118 | 2961 | –/ YP_009249825.1 | –/ 7 × 1084 | –/ 53.4 | –/ CP read-through domain | Alfalfa enamovirus 1 | |
DN131759_c2_g1_i1 (LC726797) | 3462 | 9913 | –/ APG77086.1 | –/ 0 | –/ 48.3 | –/ RdRP | Beihai narna-like virus 23 | narna-like virus Qingdao RNA virus 2 (QRV2) f |
DN118628_c0_g1_i1 (LC726787) | 7275 | 3409 | –/ QUV77595.1 | –/ 0 | –/ 37.1 | RNA1/ RdRP | Apple rubbery wood virus 1 | Rubodvirus Qingdao RNA virus 3 (QRV3) f |
DN109466_c0_g1_i1 (LC726788) | 1433 | 235 | –/ AYS94195.1 | –/ 8 ×−1021 | –/ 33.5 | RNA2/ putative CP | ||
DN109396_c0_g1_i1 (LC726789) | 6279 | 2527 | –/ NC_033490.1 | –/ 9 ×−1059 | –/ 22.2 | RNA1/ RdRP | Wuhan insect virus 15 | Qinvirus Qingdao RNA virus 4 (QRV4) f |
DN12572_c0_g1_i1 (LC726790) | 2628 | 1611 | –/ YP_009342457.1 | –/ 3 × 1007 | –/ 29.3 | RNA2/ hypothetical protein |
Leaf Samples | Viruses | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CMV | BBWV-2 | ZYMV | PSRV | TuMV | KoMV | WMV | BnRV1 | BrYV | TuYV-aRNA | QRV1 | QRV2 | QRV3 | QRV4 | |
Spinach | + | |||||||||||||
Leaf mustard-1 | + | + | ||||||||||||
Leaf mustard-2 | + | + | + | |||||||||||
Radish-1 | + | + | + | + | ||||||||||
Radish-2 | + | + | + | + | ||||||||||
Radish-3 | + | + | + | |||||||||||
Napa cabbage | + | + | + | + | + | |||||||||
Bok choy | + | + | + | + | + | |||||||||
Celery | + | + | + | + | + | + | ||||||||
Stem lettuce | + | + | ||||||||||||
Watermelon | + | + | + | + | + |
Leaf Samples | No. of Fungi | No. of Fungal Strains with Virus Infection | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isol. | Tested | CMV | BBWV-2 | ZYMV | PSRV | TuMV | KoMV | WMV | BnRV1 | BrYV | TuYV-aRNA | QRV1 | QRV2 | QRV3 | QRV4 | Total | Mixed Infection | |
Spinach | 21 | 21 | 17 | 17 | ||||||||||||||
Leaf mustard-1 | 21 | 15 | 0 | 7 | 7 | |||||||||||||
Leaf mustard-2 | 39 | 18 | 0 | 4 | 0 | 4 | ||||||||||||
Radish-1 | 0 | 0 | ||||||||||||||||
Radish-2 | 55 | 38 | 4 | 11 | 0 | 0 | 14 | 1 | ||||||||||
Radish-3 | 0 | 0 | ||||||||||||||||
Napa cabbage | 18 | 18 | 16 | 2 | 4 | 0 | 16 | 18 | 16 | |||||||||
Bok choy | 17 | 17 | 6 | 8 | 0 | 0 | 1 | 13 | 2 | |||||||||
Celery | 8 | 8 | 0 | 4 | 0 | 4 | 4 | 4 | 8 | 5 | ||||||||
Stem lettuce | 62 | 34 | 7 | 2 | 8 | 1 | ||||||||||||
Watermelon | 0 | 0 | ||||||||||||||||
Total | 241 | 169 | 43 | 20 | 16 | 4 | 1 | 16 | 7 | 6 | 4 | 4 | 89 | 25 | ||||
Prevalence (%) | 38.4 | 20.4 | 37.2 | 5.9 | 5.9 | 88.9 | 46.7 | 14.3 | 50 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Liu, J.; Pang, J.; Kondo, H.; Chi, S.; Zhang, J.; Sun, L.; Andika, I.B. Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi. Viruses 2022, 14, 2279. https://doi.org/10.3390/v14102279
Cao X, Liu J, Pang J, Kondo H, Chi S, Zhang J, Sun L, Andika IB. Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi. Viruses. 2022; 14(10):2279. https://doi.org/10.3390/v14102279
Chicago/Turabian StyleCao, Xinran, Jie Liu, Jianguo Pang, Hideki Kondo, Shengqi Chi, Jianfeng Zhang, Liying Sun, and Ida Bagus Andika. 2022. "Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi" Viruses 14, no. 10: 2279. https://doi.org/10.3390/v14102279
APA StyleCao, X., Liu, J., Pang, J., Kondo, H., Chi, S., Zhang, J., Sun, L., & Andika, I. B. (2022). Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi. Viruses, 14(10), 2279. https://doi.org/10.3390/v14102279