SARS-CoV-2 Pre-Exposure Prophylaxis with Sotrovimab and Tixagevimab/Cilgavimab in Immunocompromised Patients—A Single-Center Experience
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Patient Characteristics
3.2. Antibody Measurements
3.3. Breakthrough Infections
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weston, S.; Frieman, M.B. COVID-19: Knowns, Unknowns, and Questions. mSphere 2020, 5, e00203-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021. Available online: https://coronavirus.jhu.edu/map.html (accessed on 4 July 2021).
- Plumb, I.D.; Feldstein, L.R.; Barkley, E.; Posner, A.B.; Bregman, H.S.; Hagen, M.B.; Gerhart, J.L. Effectiveness of COVID-19 mRNA Vaccination in Preventing COVID-19–Associated Hospitalization Among Adults with Previous SARS-CoV-2 Infection—United States, June 2021–February 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Risk, M.; Schiopu, E.; Hayek, S.S.; Xie, T.; Holevinski, L.; Akin, C.; Freed, G.; Zhao, L. Efficacy of COVID-19 vaccines in patients taking immunosuppressants. Ann. Rheum. Dis. 2022, 81, 875. [Google Scholar] [CrossRef]
- Parker, E.P.K.; Desai, S.; Marti, M.; Nohynek, H.; Kaslow, D.C.; Kochhar, S.; O’Brien, K.L.; Hombach, J.; Wilder-Smith, A. Response to additional COVID-19 vaccine doses in people who are immunocompromised: A rapid review. Lancet Glob. Health 2022, 10, e326–e328. [Google Scholar] [CrossRef]
- Januel, E.; De Seze, J.; Vermersch, P.; Maillart, E.; Bourre, B.; Pique, J.; Moisset, X.; Bensa, C.; Maarouf, A.; Pelletier, J.; et al. Post-vaccine COVID-19 in patients with multiple sclerosis or neuromyelitis optica. Mult. Scler. J. 2021, 28, 1155–1159. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Bin Lee, A.R.Y.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: A systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar]
- Herishanu, Y.; Avivi, I.; Aharon, A.; Shefer, G.; Levi, S.; Bronstein, Y.; Morales, M.; Ziv-Baran, T.; Arbel, Y.S.; Scarfò, L.; et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 2021, 137, 3165–3173. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Update: FDA Authorizes New Long-Acting Monoclonal Antibodies for Pre-Exposure Prevention of COVID-19 in Certain Individuals. 2021. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-long-acting-monoclonal-antibodies-pre-exposure (accessed on 30 August 2022).
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.-M.; McTamney, P.M.; Arends, R.H.; Abram, M.E.; Aksyuk, A.A.; Diallo, S.; Flores, D.J.; Kelly, E.J.; Ren, K.; Roque, R.; et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci. Transl. Med. 2022, 14, eabl8124. [Google Scholar] [CrossRef] [PubMed]
- EMA. GlaxoSmithKline Use of Sotrovimab (VIR-7831/GSK4182136) for the Treatment of COVID-19; Assessment Report, Procedure under Article 5(3) of Regulation (EC) No 726/2004; EMA: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pinto, D.; Park, Y.-J.; Beltramello, M.; Walls, A.C.; Tortorici, M.A.; Bianchi, S.; Jaconi, S.; Culap, K.; Zatta, F.; De Marco, A.; et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020, 583, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Pharmacokinetics of Sotrovimab as Pre-exposure Prophylaxis for COVID-19 in Hematopoietic Stem Cell Transplant Recipients, COVIDMAB Study. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05135650 (accessed on 30 August 2022).
- FDA. TUSFaDA. Fact Sheet for Healthcare Providers Emergency Use Authorization (Eua) of Sotrovimab. Available online: https://www.fda.gov/media/149534/download#:~:text=Sotrovimab%20is%20authorized%20for%20use,who%20are%20at%20high%20risk.2021 (accessed on 30 August 2022).
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Corey, L.; Beyrer, C.; Cohen, M.S.; Michael, N.L.; Bedford, T.; Rolland, M. SARS-CoV-2 Variants in Patients with Immunosuppression. N. Engl. J. Med. 2021, 385, 562–566. [Google Scholar] [CrossRef]
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef]
- ECDC. Epidemiological Update: SARS-CoV-2 Omicron Sub-Lineages BA.4 and BA.5; ECDC: Solna, Sweden, 2022. [Google Scholar]
- Cao, Y.; Song, W.; Wang, L.; Liu, P.; Yue, C.; Jian, F.; Yu, Y.; Yisimayi, A.; Wang, P.; Wang, Y.; et al. Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe 2022. [Google Scholar] [CrossRef]
- Park, Y.J.; Pinto, D.; Walls, A.C.; Liu, Z.; De Marco, A.; Benigni, F.; Zatta, F.; Silacci-Fregni, C.; Bassi, J.; Sprouse, K.R.; et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. bioRxiv 2022. [Google Scholar] [CrossRef]
- Tzou, P.L.; Tao, K.; Pond, S.L.K.; Shafer, R.W. Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons. PLoS ONE 2022, 17, e0261045. [Google Scholar] [CrossRef] [PubMed]
- Tuekprakhon, A.; Huo, J.; Nutalai, R.; Dijokaite-Guraliuc, A.; Zhou, D.; Ginn, H.M.; Sekvaraj, M.; Liu, C.; Mentzer, A.J.; Supasa, P.; et al. Further antibody escape by Omicron BA.4 and BA.5 from vaccine and BA.1 serum. bioRxiv. 2022. [Google Scholar] [CrossRef]
- Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Halfmann, P.; Watanabe, S.; Maeda, K.; et al. Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. N. Engl. J. Med. 2022, 386, 1475–1477. [Google Scholar] [CrossRef]
- Mazzaferri, F.; Mirandola, M.; Savoldi, A.; De Nardo, P.; Morra, M.; Tebon, M.; Armellini, M.; De Luca, G.; Calandrino, L.; Sasset, L.; et al. Exploratory data on the clinical efficacy of monoclonal antibodies against SARS-CoV-2 Omicron Variant of Concern. medRxiv 2022. [Google Scholar] [CrossRef]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Elecsys® Anti-SARS-CoV-2 S. Immunoassay for the Quantitative Determination of Antibodies to the SARS-CoV-2 Spike Protein. Available online: https://diagnostics.roche.com/global/en/products/params/elecsys-anti-sars-cov-2-s.html (accessed on 31 August 2022).
- Vijenthira, A.; Gong, I.; Betschel, S.D.; Cheung, M.; Hicks, L.K. Vaccine response following anti-CD20 therapy: A systematic review and meta-analysis of 905 patients. Blood Adv. 2021, 5, 2624–2643. [Google Scholar] [CrossRef] [PubMed]
- Madelon, N.; Lauper, K.; Breville, G.; Royo, I.S.; Goldstein, R.; Andrey, D.O.; Grifoni, A.; Sette, A.; Kaiser, L.; Siegrist, C.-A.; et al. Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: A prospective cohort study. Clin. Infect. Dis. 2021, 75, e1037–e1045. [Google Scholar] [CrossRef]
- Apostolidis, S.A.; Kakara, M.; Painter, M.M.; Goel, R.R.; Mathew, D.; Lenzi, K.; Rezk, A.; Patterson, K.R.; Espinoza, D.A.; Kadri, J.C.; et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 2021, 27, 1990–2001. [Google Scholar] [CrossRef]
- Schiavetti, I.; Ponzano, M.; Signori, A.; Bovis, F.; Carmisciano, L.; Sormani, M.P. Severe outcomes of COVID-19 among patients with multiple sclerosis under anti-CD-20 therapies: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 57, 103358. [Google Scholar] [CrossRef] [PubMed]
- Meschi, S.; Matusali, G.; Colavita, F.; Lapa, D.; Bordi, L.; Puro, V.; Leoni, B.D.; Galli, C.; Capobianchi, M.R.; Castilletti, C. Predicting the protective humoral response to a SARS-CoV-2 mRNA vaccine. Clin. Chem. Lab. Med. CCLM 2021, 59, 2010–2018. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, A.; Nuccetelli, M.; Pieri, M.; Sarubbi, S.; Pelagalli, M.; Calugi, G.; Tomassetti, F.; Bernardini, S. Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects. Int. Immunopharmacol. 2021, 101, 108215. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, D.; Fiore-Gartland, A.; Johnson, M.; Hunt, A.; Bengt, C.; Zavadska, D.; Snipe, H.D.; Brown, J.S.; Workman, L.; Zar, H.J.; et al. Towards a population-based threshold of protection for COVID-19 vaccines. Vaccine 2022, 40, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.N.; et al. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat. Med. 2022, 28, 1072–1082. [Google Scholar] [CrossRef]
- FDA. Emergency Use Authorization (EUA) for Sotrovimab; Center for Drug Evaluation and Research (CDER) Memorandum: Silver Spring, MD, USA, 2022. [Google Scholar]
- GSK. Sotrovimab Product Monograph; GSK: Brentford, UK, 2021. [Google Scholar]
- Tao, K.; Tzou, P.L.; Pond, S.L.K.; Ioannidis, J.P.A.; Shafer, R.W.; Ueno, T. Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis. Microbiol. Spectr. 2020, 10, e00926-22. [Google Scholar] [CrossRef]
- Corti, D.; Purcell, L.A.; Snell, G.; Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021, 184, 3086–3108. [Google Scholar] [CrossRef] [PubMed]
- Forthal, D.N. Functions of Antibodies. Microbiol. Spectr. 2014, 2, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AGES Dashboard for SARS-CoV-2 Infections in Austria. 2022. Available online: https://www.ages.at/mensch/krankheit/krankheitserreger-von-a-bis-z/coronavirus#c12422 (accessed on 10 July 2022).
- Gaitzsch, E.; Passerini, V.; Khatamzas, E.; Strobl, C.D.; Muenchhoff, M.; Scherer, C.; Osterman, A.; Heide, M.; Reischer, A.; Subklewe, M.; et al. COVID-19 in Patients Receiving CD20-depleting Immunochemotherapy for B-cell Lymphoma. HemaSphere 2021, 5, e603. [Google Scholar] [CrossRef] [PubMed]
- Deveci, B.; Saba, R. Prolonged viral positivity induced recurrent coronavirus disease 2019 (COVID-19) pneumonia in patients receiving anti-CD20 monoclonal antibody treatment: Case reports. Medicine 2021, 100, e28470. [Google Scholar] [CrossRef] [PubMed]
- Hueso, T.; Pouderoux, C.; Péré, H.; Beaumont, A.-L.; Raillon, L.-A.; Ader, F.; Chatenoud, L.; Eshagh, D.; Szwebel, T.-A.; Martinot, M.; et al. Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19. Blood 2020, 136, 2290–2295. [Google Scholar] [CrossRef]
- Totschnig, D.; Doberer, D.; Haberl, R.; Wenisch, C.; Valipour, A. Treatment of persistent COVID-19 in two B-cell-depleted patients with the monoclonal antibody Sotrovimab. IDCases 2022, 29, e01528. [Google Scholar] [CrossRef] [PubMed]
Demographic Parameters (n = 116) | |
---|---|
Age (years) | 59.6 (±15.1) |
Male/Female (% Male) | 53/63 (46%) |
Weight (kg) | 75.5(±15.7) |
Number of SARS-CoV-2 vaccinations received before first PrEP | 3.7 (±0.9) |
Underlying Disease | |
Hematologic malignancy | 49 (42%) |
Autoimmune disease | 27 (23%) |
Multiple sclerosis | 21 (18%) |
Immunodeficiency | 10 (9%) |
Organ transplantation | 9 (8%) |
Immunosuppressive Medication | |
Anti-CD20 | 39 (34%) |
Fingolimod | 14 (12%) |
Tacrolimus/MMF | 12 (10%) |
Other immunosuppressive therapy | 12 (10%) |
Other oncological therapy | 7 (6%) |
Unknown | 7 (6%) |
None | 25 (22%) |
COVID-19 PrEP | |
Median antibody-level before first infusion (BAU/mL) | 9 (IQR = 250) |
First PrEP with SOT | 87 (75%) |
First PrEP with TIX/CIL | 29 (25%) |
Follow-up PrEP with SOT | 7 |
Follow-up PrEP with TIX/CIL | 83 |
Median duration of follow-up (days since first PrEP) | 93.9 (± 43.4) |
Patients with Breakthrough Infection (n = 13) | |
---|---|
Age (years) | 60.2 (±13.9) |
Male/Female % | 9/13 (69%) |
Rate of breakthrough by underlying disease | |
Hematologic malignancy | 8/58 (13.8%) |
Multiple sclerosis | 3/24 (12.5%) |
Immunodeficiency | 1/11 (9%) |
Organ transplantation | 1/9 (11%) |
Autoimmune disease | 0/30 |
Rate of breakthrough by immunosuppressive medication | |
Other oncological therapy | 4/9 (44.4%) |
Anti-CD20 | 3/46 (6.5%) |
Fingolimod | 2/15 (13.3%) |
Unknown | 2/9 (22.2%) |
Tacrolimus/MMF | 1/13 (7.7%) |
None | 1/28 (3.6%) |
Other immunosuppressive therapy | 0/12 |
Breakthrough infection | |
Incidence | 13/132 (10%) |
Median days since last PrEP | 40.0 (IQR = 34.5) |
Last PrEP with SOT | 11/13 |
Last PrEP with TIX/CIL | 2/13 |
Hospitalization | 1/13 |
Supplemental oxygen | 0/13 |
Median duration of symptoms (days) | 4.0 (IQR = 8) |
Median duration until Ct-value > 30 (days) | 10.0 (IQR = 16.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totschnig, D.; Augustin, M.; Niculescu, I.; Laferl, H.; Jansen-Skoupy, S.; Lehmann, C.; Wenisch, C.; Zoufaly, A. SARS-CoV-2 Pre-Exposure Prophylaxis with Sotrovimab and Tixagevimab/Cilgavimab in Immunocompromised Patients—A Single-Center Experience. Viruses 2022, 14, 2278. https://doi.org/10.3390/v14102278
Totschnig D, Augustin M, Niculescu I, Laferl H, Jansen-Skoupy S, Lehmann C, Wenisch C, Zoufaly A. SARS-CoV-2 Pre-Exposure Prophylaxis with Sotrovimab and Tixagevimab/Cilgavimab in Immunocompromised Patients—A Single-Center Experience. Viruses. 2022; 14(10):2278. https://doi.org/10.3390/v14102278
Chicago/Turabian StyleTotschnig, David, Max Augustin, Iulia Niculescu, Hermann Laferl, Sonja Jansen-Skoupy, Clara Lehmann, Christoph Wenisch, and Alexander Zoufaly. 2022. "SARS-CoV-2 Pre-Exposure Prophylaxis with Sotrovimab and Tixagevimab/Cilgavimab in Immunocompromised Patients—A Single-Center Experience" Viruses 14, no. 10: 2278. https://doi.org/10.3390/v14102278
APA StyleTotschnig, D., Augustin, M., Niculescu, I., Laferl, H., Jansen-Skoupy, S., Lehmann, C., Wenisch, C., & Zoufaly, A. (2022). SARS-CoV-2 Pre-Exposure Prophylaxis with Sotrovimab and Tixagevimab/Cilgavimab in Immunocompromised Patients—A Single-Center Experience. Viruses, 14(10), 2278. https://doi.org/10.3390/v14102278