High Prevalence of Undocumented SARS-CoV-2 Infections in the Pediatric Population of the Tyrolean District of Schwaz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Analysis
2.3. Data Analysis
2.4. Ethical Clearance
3. Results
3.1. Infection Status
3.2. Household Infections
3.3. Characterizing PCR-Confirmed Infections
3.4. Serological Data
3.5. Undocumented SARS-CoV-2 Infections and Age-Standardized Seroprevalence for the Pediatric Population of Schwaz
4. Discussion
4.1. Serostatus
4.2. Seroprevalence
4.3. Silent Infections among the Pediatric Population
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 1 September 2022).
- Zhang, H.; Wu, Y.; He, Y.; Liu, X.; Liu, M.; Tang, Y.; Li, X.; Yang, G.; Liang, G.; Xu, S.; et al. Age-Related Risk Factors and Complications of Patients With COVID-19: A Population-Based Retrospective Study. Front. Med. 2022, 8, 757459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Cordero-Franco, H.F.; De La Garza-Salinas, L.H.; Gomez-Garcia, S.; Moreno-Cuevas, J.E.; Vargas-Villarreal, J.; González-Salazar, F. Risk Factors for SARS-CoV-2 Infection, Pneumonia, Intubation, and Death in Northeast Mexico. Front. Public Health 2021, 9, 645739. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Esposito, D.; Campos, G.D.L. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect. Dis. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Poletti, P.; Tirani, M.; Cereda, D.; Trentini, F.; Guzzetta, G.; Marziano, V.; Buoro, S.; Riboli, S.; Crottogini, L.; Piccarreta, R.; et al. Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Eurosurveillance 2020, 25, 2001383. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus—Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Jiehao, C.; Jin, X.; Daojiong, L.; Zhi, Y.; Lei, X.; Zhenghai, Q.; Yuehua, Z.; Hua, Z.; Ran, J.; Pengcheng, L.; et al. A Case Series of Children With 2019 Novel Coronavirus Infection: Clinical and Epidemiological Features. Clin. Infect. Dis. 2020, 71, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Maltezou, H.C.; Magaziotou, I.; Dedoukou, X.; Eleftheriou, E.; Raftopoulos, V.; Michos, A.; Lourida, A.; Panopoulou, M.; Stamoulis, K.; Papaevangelou, V.; et al. Children and Adolescents with SARS-CoV-2 Infection. Pediatr. Infect. Dis. J. 2020, 39, e388–e392. [Google Scholar] [CrossRef]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y.Y.; Qu, J.; Zhang, W.; Wang, Y.; Bao, S.; Li, Y.; et al. SARS-CoV-2 Infection in Children. N. Engl. J. Med. 2020, 382, 1663–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, M.M.; Jafarli, I.; Al-Barazanchi, A.F.; Mosa, N.M.; Al-Ameen, Z.G.Y.; Alkhanchi, T. What you need to know about children′s COVID-19: A systematic review. Chin. J. Contemp. Pediatr. 2021, 23, 1080. [Google Scholar]
- Mehta, N.S.; Mytton, O.T.; Mullins, E.W.S.; Fowler, T.A.; Falconer, C.L.; Murphy, O.B.; Langenberg, C.; Jayatunga, W.J.P.; Eddy, D.H.; Nguyen-Van-Tam, J.S. SARS-CoV-2 (COVID-19): What do we know about children? A systematic review. Clin. Infect. Dis. 2020, 71, 2469–2479. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Coronavirus Infections in Children Including COVID-19. An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr. Infect. Dis. J. 2020, 39, 355–368. [Google Scholar] [CrossRef]
- Chou, J.; Thomas, P.G.; Randolph, A.G. Immunology of SARS-CoV-2 infection in children. Nat. Immunol. 2022, 23, 177–185. [Google Scholar] [CrossRef]
- Loske, J.; Röhmel, J.; Lukassen, S.; Stricker, S.; Magalhães, V.G.; Liebig, J.; Chua, R.L.; Thürmann, L.; Messingschlager, M.; Seegebarth, A.; et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. 2021, 40, 319–324. [Google Scholar] [CrossRef]
- Pierce, C.A.; Sy, S.; Galen, B.; Goldstein, D.Y.; Orner, E.; Keller, M.J.; Herold, K.C.; Herold, B.C. Natural mucosal barriers and COVID-19 in children. JCI Insight 2021, 6, e148694. [Google Scholar] [CrossRef]
- Muus, C.; Luecken, M.D.; Eraslan, G.; Sikkema, L.; Waghray, A.; Heimberg, G.; Kobayashi, Y.; Vaishnav, E.D.; Subramanian, A.; Smillie, C.; et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 2021, 27, 546–559. [Google Scholar] [CrossRef]
- Schuler, B.A.; Habermann, A.C.; PLosa, E.J.; Taylor, C.J.; Jetter, C.; Negretti, N.M.; Kapp, M.E.; Benjamin, J.T.; Gulleman, P.; Nichols, D.S.; et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J. Clin. Investig. 2021, 131, e140766. [Google Scholar] [CrossRef]
- Bunyavanich, S.; Do, A.; Vicencio, A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA 2020, 323, 2427. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 1 September 2022).
- Available online: https://www.ages.at/mensch/krankheit/krankheitserreger-von-a-bis-z/coronavirus#c12422 (accessed on 1 September 2022).
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.S.; Vihta, K.-D.; Gethings, O.; Pritchard, E.; Jones, J.; House, T.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; et al. Tracking the Emergence of SARS-CoV-2 Alpha Variant in the United Kingdom. N. Engl. J. Med. 2021, 385, 2582–2585. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, I.; Pravica, V.; Miljanovic, D.; Cupic, M. Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far? Viruses 2021, 13, 1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gack, M.U. SARS-CoV-2 learned the ‘Alpha’bet of immune evasion. Nat. Immunol. 2022, 23, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ages.at/en/topics/pathogenic-organism/coronavirus/SARS-CoV-2-varianten-inoesterreich/”onavirus/SARS-CoV-2-varianten-in-oesterreich (accessed on 1 May 2022).
- Willeit, P.; Kimpel, J.; Winner, H.; Harthaller, T.; Schäfer, H.; Bante, D.; Falkensammer, B.; Rössler, A.; Riepler, L.; Ower, C.; et al. Seroprevalence of SARS-CoV-2 infection in the Tyrolean district of Schwaz at the time of the rapid mass vaccination in March 2021 following B.1.351-variant outbreak. Front. Public Health 2022, 10, 989337. [Google Scholar] [CrossRef]
- Riepler, L.; Rössler, A.; Falch, A.; Volland, A.; Borena, W.; Von Laer, D.; Kimpel, J. Comparison of Four SARS-CoV-2 Neutralization Assays. Vaccines 2020, 9, 13. [Google Scholar] [CrossRef]
- Ferrara, F.; Temperton, N. Pseudotype Neutralization Assays: From Laboratory Bench to Data Analysis. Methods Protoc. 2018, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, F.; Costenaro, P.; Cantarutti, A.; Di Chiara, C.; Bortolami, A.; Petrara, M.R.; Carmona, F.; Pagliari, M.; Cosma, C.; Cozzani, S.; et al. Mild SARS-CoV-2 Infections and Neutralizing Antibody Titers. Pediatrics 2021, 148, e2021052173. [Google Scholar] [CrossRef]
- Garrido, C.; Hurst, J.H.; Lorang, C.G.; Aquino, J.N.; Rodriguez, J.; Pfeiffer, T.S.; Fouda, G.G. Asymptomatic or mild symptomatic SARS-CoV-2 infection elicits durable neutralizing antibody responses in children and adolescents. JCI Insight 2021, 6, e150909. [Google Scholar] [CrossRef]
- Zuiani, A.; Wesemann, D.R. Antibody Dynamics and Durability in Coronavirus Disease-19. Clin. Lab. Med. 2021, 42, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.-J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; et al. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. eBioMedicine 2021, 71, 103561. [Google Scholar] [CrossRef] [PubMed]
- Siller, A.; Seekircher, L.; Wachter, G.A.; Astl, M.; Tschiderer, L.; Pfeifer, B.; Gaber, M.; Schennach, H.; Willeit, P. Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021. Viruses 2022, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- Paetzold, J.; Kimpel, J.; Bates, K.; Hummer, M.; Krammer, F.; von Laer, D.; Winner, H. Impacts of rapid mass vaccination against SARS-CoV2 in an early variant of concern hotspot. Nat. Commun. 2022, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- Bánki, Z.; Seekircher, L.; Falkensammer, B.; Bante, D.; Schäfer, H.; Harthaller, T.; Kimpel, J.; Willeit, P.; von Laer, D.; Borena, W. Six-Month Follow-Up of Immune Responses after a Rapid Mass Vaccination against SARS-CoV-2 with BNT162b2 in the District of Schwaz/Austria. Viruses 2022, 14, 1642. [Google Scholar] [CrossRef]
- Vos, E.R.A.; Hartog, G.D.; Schepp, R.M.; Kaaijk, P.; van Vliet, J.; Helm, K.; Smits, G.; Wijmenga-Monsuur, A.; Verberk, J.D.M.; van Boven, M.; et al. Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave. J. Epidemiol. Community Health 2020, 75, 489–495. [Google Scholar] [CrossRef]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Perez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; de Larrea, N.F.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Haq, M.; Rehman, A.; Ahmad, J.; Zafar, U.; Ahmed, S.; Khan, M.A.; Naveed, A.; Rajab, H.; Muhammad, F.; Naushad, W.; et al. SARS-CoV-2: Big seroprevalence data from Pakistan—Is herd immunity at hand? Infection 2021, 49, 983–988. [Google Scholar] [CrossRef]
- Knabl, L.; Mitra, T.; Kimpel, J.; Rössler, A.; Volland, A.; Walser, A.; Ulmer, H.; Pipperger, L.; Binder, S.C.; Riepler, L.; et al. High SARS-CoV-2 seroprevalence in children and adults in the Austrian ski resort of Ischgl. Commun. Med. 2021, 1, 4. [Google Scholar] [CrossRef]
- Charlton, C.L.; Nguyen, L.T.; Bailey, A.; Fenton, J.; Plitt, S.S.; Marohn, C.; Lau, C.; Hinshaw, D.; Lutsiak, C.; Simmonds, K.; et al. Pre-Vaccine Positivity of SARS-CoV-2 Antibodies in Alberta, Canada during the First Two Waves of the COVID-19 Pandemic. Microbiol. Spectr. 2021, 9, e0029121. [Google Scholar] [CrossRef] [PubMed]
- CDC. COVID Data Tracker: Nationwide Commercial Lab Seroprevalence. Available online: https://covid.cdc.gov/covid-data-tracker/#national-lab (accessed on 7 September 2022).
- de Souza, T.H.; Nadal, J.A.; Nogueira, R.J.N.; Pereira, R.M.; Brandão, M.B. Clinical manifestations of children with COVID-19: A systematic review. Pediatr. Pulmonol. 2020, 55, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Whitten, T.A.; Bakal, J.A.; McAlister, F.A. Symptoms associated with a positive result for a swab for SARS-CoV-2 infection among children in Alberta. Can. Med. Assoc. J. 2020, 193, E1–E9. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.M.; Landaverde, L.; Gill, C.J.; Yee, G.M.; Sullivan, M.; Doucette-Stamm, L.; Landsberg, H.; Platt, J.T.; White, L.; Hamer, D.H.; et al. Comparison of anterior nares CT values in asymptomatic and symptomatic individuals diagnosed with SARS-CoV-2 in a university screening program. PLoS ONE 2022, 17, e0270694. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Chow, E.J.; Wilcox, N.C.; Burstein, R.; Brandstetter, E.; Han, P.D.; Fay, K.; Pfau, B.; Adler, A.; Lacombe, K.; et al. Comparison of Symptoms and RNA Levels in Children and Adults with SARS-CoV-2 Infection in the Community Setting. JAMA Pediatr. 2021, 175, e212025. [Google Scholar] [CrossRef]
- Kawasuji, H.; Takegoshi, Y.; Kaneda, M.; Ueno, A.; Miyajima, Y.; Kawago, K.; Fukui, Y.; Yoshida, Y.; Kimura, M.; Yamada, H.; et al. Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PLoS ONE 2020, 15, e0243597. [Google Scholar] [CrossRef]
- Bhavnani, D.; James, E.R.; Johnson, K.E.; Beaudenon-Huibregtse, S.; Chang, P.; Rathouz, P.J.; Weldon, M.; Matouschek, A.; Young, A.E. SARS-CoV-2 viral load is associated with risk of transmission to household and community contacts. BMC Infect. Dis. 2022, 22, 672. [Google Scholar] [CrossRef]
- Euser, S.; Aronson, S.; Manders, I.; van Lelyveld, S.; Herpers, B.; Sinnige, J.; Kalpoe, J.; van Gemeren, C.; Snijders, D.; Jansen, R.; et al. SARS-CoV-2 viral-load distribution reveals that viral loads increase with age: A retrospective cross-sectional cohort study. Int. J. Epidemiol. 2021, 50, 1795–1803. [Google Scholar] [CrossRef]
- Madera, S.; Crawford, E.; Langelier, C.; Tran, N.K.; Thornborrow, E.; Miller, S.; DeRisi, J.L. Nasopharyngeal SARS-CoV-2 viral loads in young children do not differ significantly from those in older children and adults. Sci. Rep. 2021, 11, 3044. [Google Scholar] [CrossRef]
- Jones, T.C.; Biele, G.; Mühlemann, B.; Veith, T.; Schneider, J.; Beheim-Schwarzbach, J.; Bleicker, T.; Tesch, J.; Schmidt, M.L.; Sander, L.E.; et al. Estimating infectiousness throughout SARS-CoV-2 infection course. Science 2021, 373, abi5273. [Google Scholar] [CrossRef]
- Sorg, A.-L.; Bergfeld, L.; Jank, M.; Corman, V.; Semmler, I.; Goertz, A.; Beyerlein, A.; Verjans, E.; Wagner, N.; Von Bernuth, H.; et al. Cross-sectional seroprevalence surveys of SARS-CoV-2 antibodies in children in Germany, June 2020 to May 2021. Nat. Commun. 2022, 13, 3128. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.M.; Mytton, O.T.; Bonell, C.; Melendez-Torres, G.J.; Ward, J.; Hudson, L.; Waddington, C.; Thomas, J.; Russell, S.; van der Klis, F.; et al. Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults:: A systematic review and meta-analysis. JAMA Pediatr. 2021, 175, 143. [Google Scholar] [CrossRef] [PubMed]
- Caini, S.; Martinoli, C.; La Vecchia, C.; Raimondi, S.; Bellerba, F.; D’Ecclesiis, O.; Sasso, C.; Basso, A.; Cammarata, G.; Gandini, S. SARS-CoV-2 Circulation in the School Setting: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5384. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.aektirol.at/coronavirus/rundschreiben/rundschreiben-detail/01042021-update-aktuelle-informationen-betreffend-coronavirus-sars-cov-2 (accessed on 1 September 2022).
Pediatric Study Population | |
---|---|
Total Number of Participants | 369 |
Age, years (range) | 2–15 |
Mean (SD) | 9.9 (3.4) |
Median (IQR) | 10.0 (7–13) |
Sex (%) | |
Male | 186 (50.4) |
Female | 183 (49.6) |
PCR confirmed SARS-CoV-2 infection § (% of total) | 55 (14.9) |
Seropositive any (%) | 53 (96.4) |
Anti-S positive | 53 (96.4) |
Anti-N positive | 51 (92.7) |
Neutralizing antibodies | 45 (81.8) |
History of household infections (% of seropositive) | 41 (77.4) |
Seronegative | 2 (3.6) |
History of household infections (% of seronegative) | 0 (0.0) |
No confirmed infection (% of total) | 314 (85.1) |
Seropositive any (%) | 79 (25.2) |
Anti-S positive | 78 (24.8) |
Anti-N positive | 68 (21.7) |
Neutralizing antibodies | 67 (21.3) |
History of household infection (% of seropositive) | 50 (63.3) |
Seronegative | 235 (74.8) |
History of household infection (% of seronegative) | 48 (20.4) |
Children | Adults | |
---|---|---|
Total Number | 55 | 147 |
Age (range) | 3–15 | 18–75 |
Mean (SD) | 10.5 | 39.8 |
Median (IQR) | 11 (9–13) | 38 (29–50) |
Sex (%) | ||
Female | 30 (54.5) | 96 (65.3) |
Male | 25 (45.5) | 51 (34.7) |
Days post infection (range) | 66–269 | 14–170 |
Mean (SD) | 204.6 (53.5) | 98.9 (42.7) |
Median (IQR) | 234.0 (157.0–237.0) | 114.0 (62.0–135.0) |
Clinical severity (%) | ||
Hospital admission | 0 (0.0) | 3 (2.0) |
Bedridden for ≥3 days | 9 (16.4) | 65 (44.2) ** |
Asymptomatic infection | 17 (30.9) | 14 (9.5) |
Symptoms (%) | 38 (69.1) | 133 (90.5) |
Fever | 20 (36.4) | n.a. |
Cough | 17 (30.9) | n.a. |
Dysgeusia/Loss of smell or taste | 10 (18.2 | n.a. |
Sore throat | 10 (18.2) | n.a. |
Abdominal pain/Diarrhea | 2 (3.6) | n.a. |
Difficulty breathing | 2 (3.6) | n.a. |
Other * | 24 (43.6) | n.a. |
Anti-S antibody status 1 | ||
Mean (SD) | 96.1 (75.4) | 166.9 (510.7) |
Geometric Mean (SD) | 59.8 (75.4) | 51.45 (510.7) |
Median (IQR) | 72.0 (42.5–134.2) | 43.0 (19.5–121.3) |
Anti-N antibody status 2 | ||
Mean (SD) | 72.8 (77.7)) | 71.6 (66.8) |
Geometric Mean (SD) | 29.1 (77.7) | 38.0 (66.8) |
Median (IQR) | 43.6 (15.9–111.8) | 48.6 (14.9–116.1) |
Neutralizing antibody status 3 | ||
Mean (SD) | 63.1 (56.7) | 51.5 (96.3) |
Geometric Mean (SD) | 34.3 (56.7) | 15.5 (96.3) |
Median (IQR) | 49.6 (25.2–89.4) | 23.9 (13.4–46.2) |
Age Group | Study Participants without Positive PCR (%) | Seropositive Participants without Positive PCR | Age-Specific Crude Prevalence (%, 95% CI) * | Children in Reference Population without Registered Infection (%) ** | Expected Number of Unreported Cases in Reference Population § | % Expected Cases of Total Reference Population without Registered Infection §§ |
---|---|---|---|---|---|---|
2–6 | 47 (15.0) | 15 | 31.9 (22.3–47.0) | 3510 (31.4) | 1120 | 10.03% (9.5–10.6) |
7–11 | 117 (37.3) | 34 | 29.1 (21.0–38.2) | 3965 (35.5) | 1152.2 | 10.32% (9.8–10.9) |
12–15 | 150 (47.8) | 30 | 20.0 (13.9–27.3) | 3692 (33.1) | 738.4 | 6.61% (6.2–7.1) |
2–15 | 314 (100) | 79 | 25.2 (20.5–30.3) | 11,167 (100) | 3011 | 26.96% (26.1–27.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harthaller, T.; Borena, W.; Bante, D.; Schäfer, H.; Strallhofer, O.; Zöggeler, T.; Hochmuth, E.; Hoch, L.; Rössler, A.; von Laer, D.; et al. High Prevalence of Undocumented SARS-CoV-2 Infections in the Pediatric Population of the Tyrolean District of Schwaz. Viruses 2022, 14, 2294. https://doi.org/10.3390/v14102294
Harthaller T, Borena W, Bante D, Schäfer H, Strallhofer O, Zöggeler T, Hochmuth E, Hoch L, Rössler A, von Laer D, et al. High Prevalence of Undocumented SARS-CoV-2 Infections in the Pediatric Population of the Tyrolean District of Schwaz. Viruses. 2022; 14(10):2294. https://doi.org/10.3390/v14102294
Chicago/Turabian StyleHarthaller, Teresa, Wegene Borena, David Bante, Helena Schäfer, Oliver Strallhofer, Thomas Zöggeler, Eva Hochmuth, Luiza Hoch, Annika Rössler, Dorothee von Laer, and et al. 2022. "High Prevalence of Undocumented SARS-CoV-2 Infections in the Pediatric Population of the Tyrolean District of Schwaz" Viruses 14, no. 10: 2294. https://doi.org/10.3390/v14102294
APA StyleHarthaller, T., Borena, W., Bante, D., Schäfer, H., Strallhofer, O., Zöggeler, T., Hochmuth, E., Hoch, L., Rössler, A., von Laer, D., Kimpel, J., & Falkensammer, B. (2022). High Prevalence of Undocumented SARS-CoV-2 Infections in the Pediatric Population of the Tyrolean District of Schwaz. Viruses, 14(10), 2294. https://doi.org/10.3390/v14102294