HTLV-2 Enhances CD8+ T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Serological and Virological Assays
2.3. Multiparametric Flow Cytometry Analysis of Lymphocyte T Cell Activation and Subsets
2.4. In Vitro CD8+ T Cell-Mediated HIV-1 Inhibition
2.5. Quantification of Plasma Cytolytic Enzymes and Inflammatory Soluble Markers
2.6. Integrated HIV-1 Proviral Load Quantification
2.7. HTLV-2 Proviral Load Quantification
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. CD8+ T Cell-Mediated HIV-1 Inhibition Was Higher in HTLV-2 Coinfected Individuals
3.3. HIV-1 Proviral Load in CD4+ T Cells Was Lower in HTLV-2 Coinfected Individuals
3.4. Higher Levels of Granzyme A, Granzyme B, Perforin, RANTES, and IL-6 in HTLV-2 Coinfected Individuals
3.5. Higher Effector Memory CD8+ T Cells and Lower CD8+ T Cell Activation in HTLV-2 Individuals
3.6. CD8+ T Cell-Mediated HIV-1 Inhibition Positively Correlated with Effector Memory CD8+ T Cell Subset, Cytolytic Enzymes, and Perforin
3.7. Integrated HIV-1 Proviral Load Negatively Correlates with RANTES
3.8. HTLV-2 Proviral Load Positively Correlated with the Effector Memory CD8+ T Cell Subset and Granzyme A
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalyanaraman, V.S.; Sarngadharan, M.G.; Robert-Guroff, M.; Miyoshi, I.; Blayney, D.; Golde, D.; Gallo, R.C. A New Subtype of Human T-Cell Leukemia Virus (HTLV-II) Associated with a T-Cell Variant of Hairy Cell Leukemia. Science 1982, 218, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.W.; Ishak, R.; Zhu, S.W.; Novoa, P.; Eiraku, N.; Takahashi, H.; Ferreira, M.D.C.; Azevedo, V.; Ishak, M.O.G.; Ferreira, O.D.C.; et al. Human T Lymphotropic Virus Type II (HTLV-II): Epidemiology, Molecular Properties, and Clinical Features of Infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology 1996, 13, S204–S214. [Google Scholar] [CrossRef] [PubMed]
- Ishak, R.; Ishak, M.D.O.G.; Azevedo, V.N.; Machado, L.F.A.; Vallinoto, I.M.C.; Queiroz, M.A.F.; Costa, G.D.L.C.; Guerreiro, J.F.; Vallinoto, A.C.R. HTLV in South America: Origins of a silent ancient human infection. Virus Evol. 2020, 6, veaa053. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, A.-M.; Salemi, M.; Van Brussel, M.; Liu, H.-F.; Van Laethem, K.; Van Ranst, M.; Michels, L.; Desmyter, J.; Goubau, P. African Origin of Human T-Lymphotropic Virus Type 2 (HTLV-2) Supported by a Potential New HTLV-2d Subtype in Congolese Bambuti Efe Pygmies. J. Virol. 1998, 72, 4327–4340. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Filho, A.B.; Araújo, A.P.S.; Souza, A.P.C.; Gomes, C.M.; Silva-Oliveira, G.C.; Martins, L.C.; Fischer, B.; Machado, L.F.A.; Vallinoto, A.C.R.; Ishak, R.; et al. Human T-lymphotropic virus 1 and 2 among people who used illicit drugs in the state of Pará, northern Brazil. Sci. Rep. 2019, 9, 14750. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.; Dronda, F.; Dominguez, E.; Moreno, S.; Vallejo, A. HTLV-2b Among HIV Type 1-Coinfected Injecting Drug Users in Spain. AIDS Res. Hum. Retrovir. 2011, 27, 579–583. [Google Scholar] [CrossRef]
- Castro, E.; Roger, E. Hepatitis C virus/human T lymphotropic virus 1/2 co-infection: Regional burden and virological outcomes in people who inject drugs. World J. Virol. 2016, 5, 68–72. [Google Scholar] [CrossRef]
- Norman, F.F.; Salvador, F.; Gullón, B.; Díaz-Menéndez, M.; Pérez-Ayala, A.; Rodriguez-Guardado, A.; García-Rodriguez, M.; Henriquez-Camacho, C.; Goikoetxea, J.; Bosch-Nicolau, P.; et al. Frequency and characteristics of HTLV in migrants: Results from the +Redivi collaborative network in Spain. J. Travel Med. 2022, 29, taac019. [Google Scholar] [CrossRef]
- Pilotti, E.; Bianchi, M.V.; De Maria, A.; Bozzano, F.; Romanelli, M.G.; Bertazzoni, U.; Casoli, C. HTLV-1/-2 and HIV-1 co-infections: Retroviral interference on host immune status. Front. Microbiol. 2013, 4, 372. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.P.; Al-Saleem, J.; Green, P.L. Comparative virology of HTLV-1 and HTLV-2. Retrovirology 2019, 16, 21. [Google Scholar] [CrossRef]
- Machado, L.F.A.; Vallinoto, A.C.R.; Rosadas, C.; Taylor, G.P.; Ishak, R. Editorial: Prevention and control of human T lymphotropic viruses 1 and 2 (HTLV-1/2). Front. Med. 2022, 9, 998431. [Google Scholar] [CrossRef] [PubMed]
- Nicolás, D.; Ambrosioni, J.; Paredes, R.; Marcos, M.A.; Manzardo, C.; Moreno, A.; Miró, J.M. Infection with human retroviruses other than HIV-1: HIV-2, HTLV-1, HTLV-2, HTLV-3 and HTLV-4. Expert Rev. Anti-Infective Ther. 2015, 13, 947–963. [Google Scholar] [CrossRef] [PubMed]
- Campos, K.R.; Gonçalves, M.G.; Caterino-De-Araujo, A. Short Communication: Failures in Detecting HTLV-1 and HTLV-2 in Patients Infected with HIV-1. AIDS Res. Hum. Retrovir. 2017, 33, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Sanidad. Segundo Estudio de Seroprevalencia en España. September 2020. Available online: https://www.sanidad.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/comoTrabajamos/docs/EstudioSeroprevalencia_EnfermedadesInmunoprevenibles.pdf (accessed on 13 August 2022).
- Piron, M.; Salvador, F.; Caballero, E.; Sánchez-Montalvá, A.; Bes, M.; Casamitjana, N.; Puig, L.; Molina, I.; Sauleda, S. HTLV-1/2 Infection in Blood Donors from a Non-Endemic Area (Catalonia, Spain) between 2008 and 2017: A 10-Year Experience. Viruses 2022, 14, 1975. [Google Scholar] [CrossRef]
- Zehender, G.; De Maddalena, C.; Osio, M.; Cavalli, B.; Parravicini, C.; Moroni, M.; Galli, M. High Prevalence of Human T Cell Lymphotropic Virus Type II Infection in Patients Affected by Human Immunodeficiency Virus Type 1-Associated Predominantly Sensory Polyneuropathy. J. Infect. Dis. 1995, 172, 1595–1598. [Google Scholar] [CrossRef]
- Berger, J.R.; Raffanti, S.; Svenningsson, A.; McCarthy, M.; Snodgrass, S.; Resnick, L. The role of HTLV in HIV-1 neurologic disease. Neurology 1991, 41, 197–202. [Google Scholar] [CrossRef]
- Araujo, A.Q.-C. Neurological Aspects of HIV-1/HTLV-1 and HIV-1/HTLV-2 Coinfection. Pathogens 2020, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Araujo, A.; Hall, W.W. Human T-lymphotropic virus type II and neurological disease. Ann. Neurol. 2004, 56, 10–19. [Google Scholar] [CrossRef]
- Zehender, G.; Meroni, L.; Varchetta, S.; De Maddalena, C.; Cavalli, B.; Gianotto, M.; Bosisio, A.B.; Colasante, C.; Rizzardini, G.; Moroni, M.; et al. Human T-Lymphotropic Virus Type 2 (HTLV-2) Provirus in Circulating Cells of the Monocyte/Macrophage Lineage in Patients Dually Infected with Human Immunodeficiency Virus Type 1 and HTLV-2 and Having Predominantly Sensory Polyneuropathy. J. Virol. 1998, 72, 7664–7668. [Google Scholar] [CrossRef] [Green Version]
- Ijichi, S.; Ramundo, M.B.; Takahashi, H.; Hall, W.W. In vivo cellular tropism of human T cell leukemia virus type II (HTLV-II). J. Exp. Med. 1992, 176, 293–296. [Google Scholar] [CrossRef]
- Melamed, A.; Witkover, A.D.; Laydon, D.J.; Brown, R.; Ladell, K.; Miners, K.; Rowan, A.; Gormley, N.; Price, D.; Taylor, G.P.; et al. Clonality of HTLV-2 in Natural Infection. PLOS Pathog. 2014, 10, e1004006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Myllymäki, M.; Kankainen, M.; Jarvinen, T.; Park, G.; Bruhn, R.; Murphy, E.L.; Mustjoki, S. Somatic STAT3 mutations in CD8+ T cells of healthy blood donors carrying human T-cell leukemia virus type 2. Haematologica 2022, 107, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Turci, M.; Pilotti, E.; Ronzi, P.; Magnani, G.; Boschini, A.; Parisi, S.G.; Zipeto, D.; Lisa, A.; Casoli, C.; Bertazzoni, U. Coinfection With HIV-1 and Human T-Cell Lymphotropic Virus Type II in Intravenous Drug Users Is Associated with Delayed Progression to AIDS. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 41, 100–106. [Google Scholar] [CrossRef]
- Beilke, M.A.; Theall, K.P.; Megan, O.; Clayton, J.L.; Benjamin, S.M.; Winsor, E.L.; Kissinger, P.J. Clinical Outcomes and Disease Progression among Patients Coinfected with HIV and Human T Lymphotropic Virus Types 1 and 2. Clin. Infect. Dis. 2004, 39, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaño-Castellón, I.; Marconi, C.S.C.; Saffe, C.; Brites, C. Clinical and Laboratory Outcomes in HIV-1 and HTLV-1/2 Coinfection: A Systematic Review. Front. Public Health 2022, 10, 820727. [Google Scholar] [CrossRef]
- Goedert, J.J.; Fung, M.W.; Felton, S.; Battjes, R.J.; Engels, E.A. Cause-specific mortality associated with HIV and HTLV-II infections among injecting drug users in the USA. AIDS 2001, 15, 1295–1302. [Google Scholar] [CrossRef]
- Londhe, R.; Kulkarni, S. HTLV-2 Encoded Antisense Protein APH-2 Suppresses HIV-1 Replication. Viruses 2021, 13, 1432. [Google Scholar] [CrossRef]
- Martini, F.; Arone, C.; Hasset, A.; Hall, W.W.; Sheehy, N. The ESCRT-0 Protein HRS Interacts with the Human T Cell Leukemia Virus Type 2 Antisense Protein APH-2 and Suppresses Viral Replication. J. Virol. 2019, 94, e01311-19. [Google Scholar] [CrossRef]
- Murphy, E.L.; Grant, R.; Kropp, J.; Oliveira, A.; Lee, T.-H.; Busch, M.P. Increased Human T-Lymphotropic Virus Type II Proviral Load Following Highly Active Retroviral Therapy in HIV-Coinfected Patients. JAIDS J. Acquir. Immune Defic. Syndr. 2003, 33, 655–656. [Google Scholar] [CrossRef]
- Ruiz-Mateos, E.; Ruiz-León, M.J.; Tarancón-Díez, L.; Gutiérrez, C.; Dronda, F.; Domínguez-Molina, B.; Pérez-Elías, M.J.; Moreno, A.; Leal, M.; Moreno, S.; et al. High CD8 T cell percentage and HCV replication control are common features in HIV-1 controllers and HTLV-2-co-infected patients with a history of injection drug use. Virus Res. 2019, 264, 40–44. [Google Scholar] [CrossRef]
- Casoli, C.; Vicenzi, E.; Cimarelli, A.; Magnani, G.; Ciancianaini, P.; Cattaneo, E.; Dall’Aglio, P.; Poli, G.; Bertazzoni, U. HTLV-II down-regulates HIV-1 replication in IL-2–stimulated primary PBMC of coinfected individuals through expression of MIP-1α. Blood 2000, 95, 2760–2769. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.J.; Gautier, V.W.; Wang, X.-P.; Kaplan, M.H.; Hall, W.W. Spontaneous Production of C-C Chemokines by Individuals Infected with Human T Lymphotropic Virus Type II (HTLV-II) Alone and HTLV-II/HIV-1 Coinfected Individuals. J. Immunol. 2000, 165, 4127–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilotti, E.; Elviri, L.; Vicenzi, E.; Bertazzoni, U.; Re, M.C.; Allibardi, S.; Poli, G.; Casoli, C. Postgenomic up-regulation of CCL3L1 expression in HTLV-2–infected persons curtails HIV-1 replication. Blood 2007, 109, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Oo, Z.; Barrios, C.; Castillo, L.; Beilke, M. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections. J. Med. Virol. 2015, 87, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.S.; Castillo, L.; Zhi, H.; Giam, C.-Z.; Beilke, M.A. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin. Exp. Immunol. 2014, 175, 92–103. [Google Scholar] [CrossRef]
- Barrios, C.S.; Abuerreish, M.; Lairmore, M.D.; Castillo, L.; Giam, C.Z.; Beilke, M.A. Recombinant HTLV-1/2 Tax proteins induce high levels of CC-chemokines and downregulate CCR5 in human PBMC. Viral. Immunol. 2011, 24, 429–439. [Google Scholar] [CrossRef]
- Balistrieri, G.; Barrios, C.; Castillo, L.; Umunakwe, T.C.; Giam, C.Z.; Zhi, H.; Beilke, M.A. Induction of CC-chemokines with antiviral function in macrophages by the HTLV-2 transactivating protein, Tax2. Viral. Immunol. 2013, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Paxton, W.A.; Martin, S.R.; Tse, D.; O’Brien, T.R.; Skurnick, J.; VanDevanter, N.L.; Padian, N.; Braun, J.F.; Kotler, D.P.; Wolinsky, S.M.; et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures. Nat. Med. 1996, 2, 412–416. [Google Scholar] [CrossRef]
- Cocchi, F.; DeVico, A.L.; Yarchoan, R.; Redfield, R.; Cleghorn, F.; Blattner, W.A.; Garzino-Demo, A.; Colombini-Hatch, S.; Margolis, D.; Gallo, R.C. Higher macrophage inflammatory protein (MIP)-1a and MIP-1b levels from CD8+ T cells are associated with asymptomatic HIV infection. Proc. Natl. Acad. Sci. USA 2000, 97, 13812–13817. [Google Scholar] [CrossRef] [Green Version]
- Ferbas, J.; Giorgi, J.V.; Amini, S.; Grovit-Ferbas, K.; Wiley, D.J.; Detels, R.; Plaeger, S. Antigen-specific production of RANTES, macrophage inflammatory protein (MIP)-1a, and MIP-1b in vitro is a correlate of reduced HIV burden in vivo. J. Infect. Dis. 2000, 182, 1247–1250. [Google Scholar] [CrossRef]
- Abad-Fernández, M.; Moreno, A.; Dronda, F.; Del Campo, S.; Quereda, C.; Casado, J.L.; Elias, M.J.P.; Moreno, S.; Vallejo, A. Delayed liver fibrosis in HTLV-2-infected patients co-infected with HIV-1 and hepatitis C virus with suppressive antiretroviral therapy. AIDS 2015, 29, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.A.; Campos, K.; Lemos, M.F.; Moreira, R.C.; Caterino-De-Araujo, A. Hepatitis C viral load in HCV-monoinfected and HCV/HIV-1-, HCV/HTLV-1/-2-, and HCV/HIV/HTLV-1/-2-co-infected patients from São Paulo, Brazil. Braz. J. Infect. Dis. 2018, 22, 123–128. [Google Scholar] [CrossRef]
- Perdomo-Celis, F.; Velilla, P.A.; Taborda, N.A.; Rugeles, M.T. An altered cytotoxic program of CD8+ T-cells in HIV-infected patients despite HAART-induced viral suppression. PLoS ONE 2019, 14, e0210540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, P.; Betts, M.R.; Price, D.; Gostick, E.; Horton, H.; Roederer, M.; De Rosa, S.C. The cytolytic enzymes granyzme A, granzyme B, and perforin: Expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J. Leukoc. Biol. 2009, 85, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Weideman, A.M.; Abad-Fernandez, M.; Mollan, K.R.; Kallon, S.; Samir, S.; Warren, J.A.; Clutton, G.; Roan, N.; Adimora, A.A.; et al. Reliable Estimation of CD8 T Cell Inhibition of In Vitro HIV-1 Replication. Front. Immunol. 2021, 12, 666991. [Google Scholar] [CrossRef]
- Sáez-Cirión, A.; Shin, S.Y.; Versmisse, P.; Barré-Sinoussi, F.; Pancino, G. Ex vivo T cell–based HIV suppression assay to evaluate HIV-specific CD8+ T-cell responses. Nat. Protoc. 2010, 5, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Funakoshi, K.; Bagheri, M.; Zhou, M.; Suzuki, R.; Abe, H.; Akashi, H. Highly sensitive and specific Alu-based quantification of human cells among rodent cells. Sci. Rep. 2017, 7, 13202. [Google Scholar] [CrossRef] [Green Version]
- Pinzone, M.R.; O’Doherty, U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018, 15, 22. [Google Scholar] [CrossRef] [Green Version]
- Brady, T.; Kelly, B.J.; Male, F.; Roth, S.; Bailey, A.; Malani, N.; Gijsbers, R.; O’Doherty, U.; Bushman, F.D. Quantitation of HIV DNA integration: Effects of differential integration site distributions on Alu-PCR assays. J. Virol. Methods 2013, 189, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Cohn, L.B.; Silva, I.T.; Oliveira, T.Y.; Rosales, R.A.; Parrish, E.H.; Learn, G.H.; Hahn, B.H.; Czartoski, J.L.; McElrath, M.J.; Lehmann, C.; et al. HIV-1 Integration Landscape during Latent and Active Infection. Cell 2015, 160, 420–432. [Google Scholar] [CrossRef]
- Naarding, M.A.; Fernandez, N.; Kappes, J.C.; Hayes, P.; Ahmed, T.; Icyuz, M.; Edmonds, T.G.; Bergin, P.; Anzala, O.; Hanke, T.; et al. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses. J. Immunol. Methods 2014, 409, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirui, J.; Freed, E.O. Generation and validation of a highly sensitive bioluminescent HIV-1 reporter vector that simplifies measurement of virus release. Retrovirology 2020, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Beilke, M.A.; Dorge, V.L.T.; Sirois, M.; Bhuiyan, A.; Murphy, E.L.; Walls, J.M.; Fagan, R.; Winsor, E.L.; Kissinger, P.J. Relationship between Human T Lymphotropic Virus (HTLV) Type 1/2 Viral Burden and Clinical and Treatment Parameters among Patients with HIV Type 1 and HTLV-1/2 Coinfection. Clin. Infect. Dis. 2007, 44, 1229–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBrien, J.B.; Kumar, N.A.; Silvestri, G. Mechanisms of CD8+T cell-mediated suppression of HIV/SIV replication. Eur. J. Immunol. 2018, 48, 898–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrow, P.; Lewicki, H.; Hahn, B.H.; Shaw, G.M.; Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 1994, 68, 6103–6110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Trumble, I.M.; Warren, J.A.; Clutton, G.; Abad-Fernandez, M.; Kirchnerr, J.; Adimora, A.A.; Deeks, S.; Margolis, D.M.; Kuruc, J.D.; et al. HIV-Specific T Cell Responses Are Highly Stable on Antiretroviral Therapy. Mol. Ther.-Methods Clin. Dev. 2019, 15, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Migueles, S.A.; Weeks, K.A.; Nou, E.; Berkley, A.M.; Rood, J.E.; Osborne, C.M.; Hallahan, C.W.; Cogliano-Shutta, N.A.; Metcalf, J.A.; McLaughlin, M.; et al. Defective Human Immunodeficiency Virus-Specific CD8 + T-Cell Polyfunctionality, Proliferation, and Cytotoxicity Are Not Restored by Antiretroviral Therapy. J. Virol. 2009, 83, 11876–11889. [Google Scholar] [CrossRef] [Green Version]
- Bassani, S.; Lopez, M.; Toro, C.; Jimenez, V.; Sempere, J.M.; Soriano, V.; Benito, J.M. Influence of Human T Cell Lymphotropic Virus Type 2 Coinfection on Virological and Immunological Parameters in HIV Type 1–Infected Patients. Clin. Infect. Dis. 2007, 44, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.L.A.; Hayakawa, H.; Schor, D.; Leite, A.C.C.B.; Espíndola, O.M.; Waters, A.; Dean, J.; Doherty, D.G.; Araújo, A.Q.-C.; Hall, W.W. High Frequencies of Functionally Competent Circulating Tax-Specific CD8+T Cells in Human T Lymphotropic Virus Type 2 Infection. J. Immunol. 2009, 183, 2957–2965. [Google Scholar] [CrossRef] [Green Version]
- Galandrini, R.; Cernetti, C.; Albi, N.; Dembech, C.; Terenzi, A.; Grignani, F.; Velardi, A. Interleukin-6 is constitutively produced by human CTL clones and is required to maintain their cytolytic function. Cell. Immunol. 1991, 138, 11–23. [Google Scholar] [CrossRef]
- Hocini, H.; Bonnabau, H.; Lacabaratz, C.; Lefebvre, C.; Tisserand, P.; Foucat, E.; Lelièvre, J.-D.; Lambotte, O.; Saez–Cirion, A.; Versmisse, P.; et al. HIV Controllers Have Low Inflammation Associated with a Strong HIV-Specific Immune Response in Blood. J. Virol. 2019, 93, e01690-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casado, C.; Galvez, C.; Pernas, M.; Tarancon-Diez, L.; Rodriguez, C.; Sanchez-Merino, V.; Vera, M.; Olivares, I.; De Pablo-Bernal, R.; Merino-Mansilla, A.; et al. Permanent control of HIV-1 pathogenesis in exceptional elite controllers: A model of spontaneous cure. Sci. Rep. 2020, 10, 1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, K.; Trumble, I.; Clohosey, M.L.; Moeser, M.; Roan, N.R.; Adimora, A.A.; Joseph, S.B.; Archin, N.M.; Hudgens, M.; Soriano-Sarabia, N. Measuring the contribution of γδ T cells to the persistent HIV reservoir. AIDS 2020, 34, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.B.; Guest, J.L.; Rimland, D. Hepatitis C Virus Coinfection Increases Mortality in HIV-Infected Patients in the Highly Active Antiretroviral Therapy Era: Data from the HIV Atlanta VA Cohort Study. Clin. Infect. Dis. 2004, 39, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
HT+ Group | HT− Group | ANOVA | Student’s t-Test | |||
---|---|---|---|---|---|---|
HC+ Group | HCsvr Group | HC+ Group | HCsvr Group | 4 Groups | HT+ vs. HT− | |
N | 41 | 25 | 25 | 37 | ||
Age (years) | 44 (43–49) | 45 (42–48) | 47 (43–51) | 51 (47–52) | 0.001 | 0.001 |
Gender (male) | 29 (70.7%) | 19 (76%) | 23 (92%) | 26 (70.3%) | 0.193 | 0.409 |
Time of HIV-1 diagnosis (months) | 384 (343–415) | 371 (319–415) | 381 (353–410) | 389 (347–427) | 0.396 | 0.359 |
Time on suppressive ART (months) | 186 (167–210) | 197 (171–221) | 196 (179–231) | 234 (222–281) | 0.071 | 0.034 |
Pre-ART plasma HIV-1 RNA (log copies/mL) | 4.7 (4.2–5.2) | 4.7 (3.95–5) | 4.9 (4.7–5.3) | 4.8 (4.58–5.35) | 0.039 | 0.005 |
Nadir CD4+ T cell count (cells/mm3) | 128 (67–189) | 160 (55–276) | 114 (44–164) | 114 (37–204) | 0.324 | 0.165 |
CD4+ T cell count (cells/mm3) | 441 (297–574) | 502 (343–667) | 411 (214–542) | 649 (519–814) | 0.002 | 0.080 |
Percentage | 21 (14–30) | 25 (22–32) | 20 (14–25) | 28 (24–37) | 0.001 | 0.316 |
CD8+ T cell count (cells/mm3) | 954 (633–1410) | 925 (794–1011) | 872 (775–1280) | 814 (574–1107) | 0.584 | 0.605 |
Percentage | 53 (40–59) | 45 (39–57) | 50 (40–56) | 40 (31–48) | 0.021 | 0.062 |
CD4+/CD8+ ratio | 0.39 (0.26–0.69) | 0.61 (0.43–0.81) | 0.40 (0.28–0.63) | 0.74 (0.49–1.18) | 0.002 | 0.309 |
Plasma HCV RNA (log copies/mL) | 6.11 (5.59–6.61) | Und | 6.43 (5.78–6.89) | Und | - | 0.481 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Fernández, M.; Hernández-Walias, F.J.; Ruiz de León, M.J.; Vivancos, M.J.; Pérez-Elías, M.J.; Moreno, A.; Casado, J.L.; Quereda, C.; Dronda, F.; Moreno, S.; et al. HTLV-2 Enhances CD8+ T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1. Viruses 2022, 14, 2472. https://doi.org/10.3390/v14112472
Abad-Fernández M, Hernández-Walias FJ, Ruiz de León MJ, Vivancos MJ, Pérez-Elías MJ, Moreno A, Casado JL, Quereda C, Dronda F, Moreno S, et al. HTLV-2 Enhances CD8+ T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1. Viruses. 2022; 14(11):2472. https://doi.org/10.3390/v14112472
Chicago/Turabian StyleAbad-Fernández, María, Francisco J. Hernández-Walias, María J. Ruiz de León, María J. Vivancos, María J. Pérez-Elías, Ana Moreno, José L. Casado, Carmen Quereda, Fernando Dronda, Santiago Moreno, and et al. 2022. "HTLV-2 Enhances CD8+ T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1" Viruses 14, no. 11: 2472. https://doi.org/10.3390/v14112472
APA StyleAbad-Fernández, M., Hernández-Walias, F. J., Ruiz de León, M. J., Vivancos, M. J., Pérez-Elías, M. J., Moreno, A., Casado, J. L., Quereda, C., Dronda, F., Moreno, S., & Vallejo, A. (2022). HTLV-2 Enhances CD8+ T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1. Viruses, 14(11), 2472. https://doi.org/10.3390/v14112472