Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. STV Infection Status and Samples Collection
2.2. Total RNA Preparation and Virus Detection
2.3. Detection Using RT-PCR
2.4. Detection Using NGS
2.5. Amplification and Molecular Cloning of the STV Genome
2.6. Multiple Sequence Alignment and Phylogenetics
2.7. Estimation of the Nucleotide Diversity and Haplotype Variability Indices
2.8. Recombination Analysis of STV Populations
2.9. Analysis of Positive and Negative Selection
3. Results
3.1. STV Diagnosis and Infection Dynamics
3.2. Amplification of the STV Genome and Molecular Cloning
3.3. Multiple Sequence Alignment and Molecular Phylogenetics
3.4. Comparison of Genetic Variability between STV Populations
3.5. Possible Recombination Events Involved in the Genetic Diversity of STV
3.6. Analysis of Positive and Negative Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastas, K.K. Impact of climate change on food security and plant disease. In Microbial Biocontrol: Food Security and Post Harvest Management; Kumar, A., Ed.; Springer Nature: Cham, Switzerland, 2022; Volume 2, pp. 1–22. ISBN 978-3-030-87289-2. [Google Scholar]
- Brooks, D.R.; Hoberg, E.P.; Boeger, W.A.; Trivellone, V. Emerging infectious disease: An underappreciated area of strategic concern for food security. Transbound. Emerg. Dis. 2022, 69, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. NJP Sci. Food 2018, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M. The persistent threat of emerging plant disease pandemics to global food security. Proc. Nat. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef] [PubMed]
- Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A historical account of viruses in intensive horticultural crops in the Spanish mediterranean arc: New challenges for a sustainable agriculture. Agronomy 2020, 10, 860. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Lapidot, M.; Thomma, B.P. Emerging viral diseases of tomato crops. Mol. Plant-Microb. Interact. 2010, 23, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.N.; Taheri, S.; Othman, R.Y.; Teo, C.H. Viral disease of tomato crops (Solanum lycopesicum L.): An overview. J. Plant Dis. Protect. 2020, 127, 725–739. [Google Scholar] [CrossRef]
- Sabanadzovic, S.; Valverde, R.A.; Brown, J.K.; Martin, R.R.; Tzanetakis, I.E. Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Res. 2009, 140, 130–137. [Google Scholar] [CrossRef]
- Elvira-González, L.; Medina, V.; Rubio, L.; Galipienso, L. The persistent southern tomato virus modifies miRNA expression without inducing symptoms and cell ultra-structural changes. Eur. J. Plant Pathol. 2020, 156, 615–622. [Google Scholar] [CrossRef]
- Gaafar, Y.; Lüddecke, P.; Heidler, C.; Hartrick, J.; Sieg-Müller, A.; Hübert, C.; Wichura, A.; Ziebell, H. First report of Southern tomato virus in German tomatoes. New Dis. Rep. 2019, 40, 1. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Lee, H.K.; Park, C.Y.; Yeom, Y.A.; Min, H.G.; Yang, H.J.; Jeong, R.D.; Kim, H.; Moon, J.S.; Lee, S.H. First report of Southern tomato virus in tomato (Solanum lycopersicum) in Korea. Plant Dis. 2018, 102, 1467. [Google Scholar] [CrossRef]
- Verbeek, M.; Dullemans, A.; Espino, A.; Botella, M.; Alfaro-Fernández, A.; Font, M. First report of Southern tomato virus in tomato in the Canary Islands, Spain. J. Plant Pathol. 2015, 97, 392. [Google Scholar]
- Candresse, T.; Marais, A.; Faure, C. First report of Southern tomato virus on tomatoes in southwest France. Plant Dis. 2013, 97, 1124. [Google Scholar] [CrossRef] [PubMed]
- Alcalá-Briseño, R.I.; Coşkan, S.; Londoño, M.A.; Polston, J.E. Genome sequence of southern tomato virus in asymptomatic tomato ‘Sweet Hearts’. Genom. Announc. 2017, 5, e01374-e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, C.; Zheng, Y.; Li, R.; Sun, S.E.; Zhang, D.; Liu, Y.; Fei, Z.; Ling, K.S. Complete genome sequence of Southern tomato virus identified in China using next-generation sequencing. Genom. Announc. 2015, 3, e01226-e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puchades, A.V.; Carpino, C.; Alfaro-Fernandez, A.; Font-San-Ambrosio, M.; Davino, S.; Guerri, J.; Rubio, L.; Galipienso, L. Detection of Southern tomato virus by molecular hybridisation. Annal. Appl. Biol. 2017, 171, 172–178. [Google Scholar] [CrossRef]
- Hussain, M.D.; Du, K.-T.; Liu, S.; Jiang, T.; Farooq, T.; Zhou, T. First report of southern tomato virus in tomato cultivars in Pakistan. J. Plant Pathol. 2022, 104, 1161–1162. [Google Scholar] [CrossRef]
- Elvira González, L.; Peiró, R.; Rubio, L.; Galipienso, L. Persistent southern tomato virus (STV) interacts with cucumber mosaic and/or pepino mosaic virus in mixed-infections modifying plant symptoms, viral titer and small RNA accumulation. Microorganisms 2021, 9, 689. [Google Scholar] [CrossRef]
- Fukuhara, T.; Tabara, M.; Koiwa, H.; Takahashi, H. Effect of asymptomatic infection with southern tomato virus on tomato plants. Archiv. Virol. 2020, 165, 11–20. [Google Scholar] [CrossRef]
- Adams, I.; Fox, A. Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. In Current Research Topics in Plant Virology; Springer: Cham, Switzerland, 2016; pp. 323–335. ISBN 978-3-319-32917-8. [Google Scholar]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant virus metagenomics: Advances in virus discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef] [Green Version]
- Villamor, D.; Ho, T.; Al Rwahnih, M.; Martin, R.; Tzanetakis, I. High throughput sequencing for plant virus detection and discovery. Phytopathology 2019, 109, 716–725. [Google Scholar] [CrossRef]
- Marchant, W.G.; Gautam, S.; Hutton, S.F.; Srinivasan, R. Tomato Yellow Leaf Curl Virus-Resistant and -Susceptible Tomato Genotypes Similarly Impact the Virus Population Genetics. Front. Plant Sci. 2020, 11, 599697. [Google Scholar] [CrossRef] [PubMed]
- Fiallo-Olivé, E.; Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant Pathol. 2019, 20, 1307–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzanetakis, I.E.; Martin, R.R.; Wintermantel, W.M. Epidemiology of criniviruses: An emerging problem in world agriculture. Front. Microbiol. 2013, 4, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saokham, K.; Hemniam, N.; Roekwan, S.; Hunsawattanakul, S.; Thawinampan, J.; Siriwan, W. Survey and molecular detection of Sri Lankan cassava mosaic virus in Thailand. PLoS ONE 2021, 16, e0252846. [Google Scholar] [CrossRef]
- Chu, F.H.; Chao, C.H.; Chung, M.H.; Chen, C.C.; Yeh, S.D. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 2001, 91, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Dovas, C.; Katis, N.; Avgelis, A. Multiplex detection of criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 2002, 86, 1345–1349. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Udaya Shankar, A.; Nayaka, S.; Lund, O.; Prakash, H. Detection of Tobacco mosaic virus and Tomato mosaic virus in pepper and tomato by multiplex RT–PCR. Lett. Appl. Microbiol. 2011, 53, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, X.; Zhang, X.; Xie, Y. Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Arch. Virol. 2004, 149, 1721–1732. [Google Scholar] [CrossRef]
- Vaira, A.; Accotto, G.; Vecchiati, M.; Bragaloni, M. Tomato infectious chlorosis virus causes leaf yellowing and reddening of tomato in Italy. Phytoparasitica 2002, 30, 290–294. [Google Scholar] [CrossRef]
- Xie, Y.; Jiao, X.; Zhou, X.; Liu, H.; Ni, Y.; Wu, J. Highly sensitive serological methods for detecting tomato yellow leaf curl virus in tomato plants and whiteflies. Virol. J. 2013, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhou, X.; Zhang, Z.; Qi, Y. Tobacco curly shoot virus isolated in Yunnan is a distinct species of Begomovirus. Chin. Sci. Bull. 2002, 47, 199–201. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, R.; Wang, N.; Fan, Z.; Zhou, T.; Shi, Y.; Chai, M. First report of Tomato chlorosis virus in China. Plant Dis. 2013, 97, 1123. [Google Scholar] [CrossRef] [PubMed]
- Williams-Woods, J.; González-Escalona, N.; Burkhardt, W., III. Direct sequencing of hepatitis A virus and norovirus RT-PCR products from environmentally contaminated oyster using M13-tailed primers. J. Virol. Meth. 2011, 178, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Han, R.; Yu, N.; Zhang, W.; Xing, L.; Xie, D.; Peng, D. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS ONE 2018, 13, e0196592. [Google Scholar] [CrossRef] [PubMed]
- Vomelova, I.; Vaníčková, Z.; Šedo, A. Technical note methods of RNA purification. All ways (should) lead to Rome. Fol. Biol. 2009, 55, 243–251. [Google Scholar]
- Ho, T.; Tzanetakis, I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 2014, 471, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Jennison, A.; Whiley, D.; McMahon, J.; Hewitson, G.; Graham, R.; De Jong, A.; Warrilow, D. Illumina sequencing of clinical samples for virus detection in a public health laboratory. Sci. Rep. 2019, 9, 5409. [Google Scholar] [CrossRef] [Green Version]
- Paskey, A.C.; Frey, K.G.; Schroth, G.; Gross, S.; Hamilton, T.; Bishop-Lilly, K.A. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. BMC Genom. 2019, 20, 115. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Van-Leeuwen, J.; Andrews, B.; Boone, C.; Tan, G. Rapid and efficient plasmid construction by homologous recombination in yeast. Col. Spring. Harb. Protoc. 2015, 9, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Eevol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Otake, Y.; Uchimoto, S.; Hasebe, A.; Goto, Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses 2020, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucl. Aci. Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffler, K.; Martin, D.P.; Seoighe, C. Robust inference of positive selection from recombining coding sequences. Bioinformatics 2006, 22, 2493–2499. [Google Scholar] [CrossRef] [Green Version]
- Pond, S.L.K.; Frost, S.D. Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21, 2531–2533. [Google Scholar] [CrossRef] [Green Version]
- Kosakovsky Pond, S.L.; Posada, D.; Gravenor, M.B.; Woelk, C.H.; Frost, S.D. GARD: A genetic algorithm for recombination detection. Bioinformatics 2006, 22, 3096–3098. [Google Scholar] [CrossRef] [Green Version]
- Martínez, R.T.; de Almeida, M.M.S.; Rodriguez, R.; de Oliveira, A.S.; Melo, F.L.; Resende, R.O. Identification and genome analysis of tomato chlorotic spot virus and dsRNA viruses from coinfected vegetables in the Dominican Republic by high-throughput sequencing. Virol. J 2018, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, J.; Ding, T.; Chu, D. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. Front. Plant Sci. 2021, 12, 672400. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.B.; López-Moya, J.J. When viruses play team sports: Mixed infections in plants. Phytopathology 2020, 110, 29–48. [Google Scholar] [CrossRef]
- Tugume, A.K.; Mukasa, S.B.; Valkonen, J.P. Mixed infections of four viruses, the incidence and phylogenetic relationships of Sweet potato chlorotic fleck virus (Betaflexiviridae) isolates in wild species and sweetpotatoes in Uganda and evidence of distinct isolates in East Africa. PLoS ONE 2016, 11, e0167769. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ghanim, M.; Liu, Y. Mixed Infections of Plant Viruses in Nature and the Impact on Agriculture. Front. Microbiol. 2022, 13, 922607. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lv, Y.; Zhao, T.; Li, N.; Yang, Y.; Yu, W.; He, X.; Liu, T.; Zhang, B. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 2013, 8, e80816. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros, I.; López-Moya, J.J.; Díaz-Pendón, J.A. Coinfection of Tomato Plants with Tomato yellow leaf curl virus and Tomato chlorosis virus Affects the Interaction with Host and Whiteflies. Phytopathology 2022, 112, 944–952. [Google Scholar] [CrossRef]
- Clark, C.A.; Davis, J.A.; Abad, J.A.; Cuellar, W.J.; Fuentes, S.; Kreuze, J.F.; Gibson, R.W.; Mukasa, S.B.; Tugume, A.K.; Tairo, F.D. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 2012, 96, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, A.L.; Duffy, S.; Sseruwagi, P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr. Opin. Virol. 2018, 33, 167–176. [Google Scholar] [CrossRef]
- Rey, C.; Vanderschuren, H. Cassava mosaic and brown streak diseases: Current perspectives and beyond. Ann. Rev. Virol. 2017, 4, 429–452. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Nibert, M.L. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch. Virol. 2009, 154, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.R.; Zhou, J.; Tzanetakis, I.E. Blueberry latent virus: An amalgam of the Partitiviridae and Totiviridae. Virus Res. 2011, 155, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Nibert, M.L.; Woods, K.M.; Upton, S.J.; Ghabrial, S.A. Cryspovirus: A new genus of protozoan viruses in the family Partitiviridae. Arch. Virol. 2009, 154, 1959–1965. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Sun, X.; Shen, J.; Gao, F.; Qiu, G.; Wang, T.; Nie, X.; Zhang, W.; Gao, Y.; Bai, Y. Molecular evolutionary analysis of potato virus Y infecting potato based on the VPg gene. Front. Microbiol. 2019, 10, 01708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Chen, W.; Yasaka, R.; Chen, C.; Chen, X. Temporal analysis and adaptive evolution of the global population of potato virus M. Infec. Genet. Evol. 2019, 73, 167–174. [Google Scholar] [CrossRef]
- Gao, F.; Kawakubo, S.; Ho, S.Y.; Ohshima, K. The evolutionary history and global spatio-temporal dynamics of potato virus Y. Virus Evol. 2020, 6, veaa056. [Google Scholar] [CrossRef]
- Nourinejhad Zarghani, S.; Hily, J.M.; Glasa, M.; Marais, A.; Wetzel, T.; Faure, C.; Vigne, E.; Velt, A.; Lemaire, O.; Boursiquot, J.M. Grapevine virus T diversity as revealed by full-length genome sequences assembled from high-throughput sequence data. PLoS ONE 2018, 13, e0206010. [Google Scholar] [CrossRef]
- Tabassum, A.; Ramesh, S.; Zhai, Y.; Iftikhar, R.; Olaya, C.; Pappu, H.R. Viruses Without Borders: Global Analysis of the Population Structure, Haplotype Distribution, and Evolutionary Pattern of Iris Yellow Spot Orthotospovirus (Family Tospoviridae, Genus Orthotospovirus). Front. Microbiol. 2021, 12, 633710. [Google Scholar] [CrossRef]
- Grillová, L.; Oppelt, J.; Mikalová, L.; Nováková, M.; Giacani, L.; Niesnerová, A.; Noda, A.A.; Mechaly, A.E.; Pospíšilová, P.; Čejková, D. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front. Microbiol. 2019, 10, 01691. [Google Scholar] [CrossRef] [Green Version]
- Lefeuvre, P.; Martin, D.P.; Hoareau, M.; Naze, F.; Delatte, H.; Thierry, M.; Varsani, A.; Becker, N.; Reynaud, B.; Lett, J.M. Begomovirus ‘melting pot’in the south-west Indian Ocean islands: Molecular diversity and evolution through recombination. J. Gener. Virol. 2007, 88, 3458–3468. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.Z.; Rong, J.C.; Xie, B.B. Comparative genomics reveals broad genetic diversity, extensive recombination and nascent ecological adaptation in Micrococcus luteus. BMC Genom. 2021, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Silva, J.C.; Silva, F.N.; Castillo-Urquiza, G.P.; Silva, F.F.; Seah, Y.M.; Mizubuti, E.S.; Duffy, S.; Zerbini, F.M. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol. 2017, 3, vex005. [Google Scholar] [CrossRef] [PubMed]
- Monci, F.; Sánchez-Campos, S.; Navas-Castillo, J.; Moriones, E. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 2002, 303, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, T.M.; Blawid, R.; Aranda, M.A.; Freitas, D.M.S.; Andrade, G.P.; Inoue-Nagata, A.K.; Nagata, T. Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant. Arch. Virol. 2019, 164, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, H.; Diaz, A.; Ahlquist, P. Intermolecular RNA recombination occurs at different frequencies in alternate forms of brome mosaic virus RNA replication compartments. Viruses 2018, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Lauring, A.S.; Frydman, J.; Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 2013, 11, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moonan, F.; Mirkov, T.E. Analyses of genotypic diversity among North, South, and Central American isolates of Sugarcane yellow leaf virus: Evidence for Colombian origins and for intraspecific spatial phylogenetic variation. J. Virol. 2002, 76, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Moonan, F.; Molina, J.; Mirkov, T.E. Sugarcane yellow leaf virus: An emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors. Virology 2000, 269, 156–171. [Google Scholar] [CrossRef]
- Silva, T.; Corrêa, R.; Castilho, Y.; Silvie, P.; Bélot, J.L.; Vaslin, M. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease. Virol. J. 2008, 5, 123. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Yoo, R.H.; Igori, D.; Zhao, F.; Kim, K.H.; Moon, J.S. Genome sequence of a recombinant brassica yellows virus infecting Chinese cabbage. Arch. Virol. 2015, 160, 597–600. [Google Scholar] [CrossRef]
- Filardo, F.F.; Thomas, J.E.; Webb, M.; Sharman, M. Faba bean polerovirus 1 (FBPV-1); A new polerovirus infecting legume crops in Australia. Arch. Virol. 2019, 164, 1915–1921. [Google Scholar] [CrossRef]
- Knierim, D.; Deng, T.; Tsai, W.; Green, S.; Kenyon, L. Molecular identification of three distinct Polerovirus species and a recombinant Cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathol. 2010, 59, 991–1002. [Google Scholar] [CrossRef]
- Qadir, R.; Khan, Z.A.; Monga, D.; Khan, J.A. Diversity and recombination analysis of Cotton leaf curl Multan virus: A highly emerging begomovirus in northern India. BMC Genom. 2019, 20, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, T.; Umar, M.; She, X.; Tang, Y.; He, Z. Molecular phylogenetics and evolutionary analysis of a highly recombinant begomovirus, Cotton leaf curl Multan virus, and associated satellites. Virus Evol. 2021, 7, veab054. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.V.; Prasanna, H.; Singh, A.; Ragunathan, D.; Garg, G.; Chakraborty, S. Molecular genetic analysis and evolution of begomoviruses and betasatellites causing yellow mosaic disease of bhendi. Virus Gen. 2017, 53, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Newbert, M.J. The Genetic Diversity of Turnip Yellows Virus in Oilseed Rape (Brassica napus) in Europe, Pathogenic Determinants, New Sources of Resistance and Host Range. Ph.D. Dissertation, University of Warwick, Coventry, UK, 2016; pp. 1–241. [Google Scholar]
Sample Locality | GPS (Latitude, Longitude) | Type of Sample (Production) | Rate of ToYSD Infection (%) 1 | Rate of STV Infection (%) | Multiple-Virus Infections | |||||
---|---|---|---|---|---|---|---|---|---|---|
ToYSD Prevalence a | ToYSD Incidence b | RT-PCR | Sanger | RT-PCR | Sanger | HTS | ||||
Beijing, China | Fangshan | 39°44′4.67″ N, 116°11’30.7″ E | Leaf (greenhouse) | 80.00 | 75.00 | 58.33 | √ | STV, TYLCV, ToCV, TSWV, ToMV | √ | √ |
Changping | 40°10′39.36″ N, 116°23′59.17″ E | Leaf (greenhouse) | 75.00 | 71.42 | 57.14 | √ | STV, TYLCV, ToCV, TSWV | √ | // | |
Tongzhou | 39°54′35.87″ N, 116°39′23.17″ E | Leaf/seed (greenhouse) | 83.33 | 76.66 | 53.33 | √ | STV, TSWV, TYLCV, ToCV, ToMV, TICV | √ | √ | |
Shunyi | 40°7′49.25″ N, 116°39′16.74″ E | Leaf (greenhouse/open field) | 66.66 | 62.50 | 37.50 | √ | STV, TYLCV | √ | // | |
Miyun | 40°22′36.95″ N, 116°50′35.04″ E | Leaf (greenhouse) | 60.00 | 58.33 | 33.33 | √ | STV, TYLCV, ToCV | √ | // | |
Pinggu | 40°7′34.61″ N, 117°15′31.86″ E | Leaf (greenhouse) | 60.00 | 57.14 | 35.71 | √ | STV, TSWV, TYLCV, ToCV | √ | // | |
Daxing | 39°47′29.3″ N, 116°29′48.44″ E | Leaf (greenhouse) | 75.00 | 66.66 | 41.66 | √ | TYLCV, STV, TICV, ToMV | √ | // | |
Yanqing | 40°31′4.33″ N, 115°54′47.89″ E | Leaf (greenhouse) | 66.66 | 57.14 | 28.57 | √ | STV, TYLCV, ToCV | √ | // | |
Overall STV incidence | 43.19 | |||||||||
Punjab, Pakistan | Faisalabad | 31°27′1.32″ N, 73°8′5.86″ E | Leaf/seed (Greenhouse/open field) | 87.50 | 83.33 | 50.00 | √ | STV, ToCV, TYLCV, ToMV | √ | √ |
Multan | 30°9′26.85″ N, 71°31′29.69″ E | Leaf/seed (open field) | 75.00 | 62.50 | 37.50 | √ | TYLCV, STV, ToCV | √ | // | |
Bahawalpur | 29°21′15.66″ N, 71°41′27.84″ E | Leaf/seed (open field) | 60.00 | 50.00 | 30.00 | √ | STV, TYLCV, ToCV | √ | // | |
Lahore | 31°31′13.33″ N, 74°21′31.49″ E | Leaf/seed (open field) | 80.00 | 71.42 | 42.85 | √ | STV, TYLCV, ToCV | √ | // | |
Overall STV incidence | 40.08 |
Dataset. | No. of Sequences | No. of Analyzed Sites | S | H | Hd | π | θw | Eta | Neutrality Test | |
---|---|---|---|---|---|---|---|---|---|---|
Per Site | Per Sequence | Tajima’s D | ||||||||
STV | 44 | 3305 | 136 | 33 | 0.977 | 0.00404 | 0.00946 | 31.264 | 141 | −2.14304 * |
p42 | 44 | 1134 | 44 | 23 | 0.893 | 0.00329 | 0.00892 | 10.115 | 45 | −2.23347 ** |
RdRp | 44 | 3190 | 135 | 33 | 0.977 | 0.00417 | 0.00973 | 31.034 | 140 | −2.13714 * |
Recombination Event | Sequences Detected with Recomb. Event | Recombinant Sequence | Recombination Breakpoints without (with) Gaps | Parental Sequences | Detection Methods 1 | p-Value 2 | |||
---|---|---|---|---|---|---|---|---|---|
Isolate | Country | Begin | End | Major | Minor | ||||
STV | |||||||||
1 | 24 | OK309713 | Turkey | 2347 (2444) | 3089 (3186) | OK309721 | KT438549 | M | 3.579 × 10−03 |
2 | 38 | KY228384 | China | 1078 (1082) | 1284 (1288) | OK309710 | MF522617 | B3 | 3.227 × 10−02 |
3 | 3 | KT438549 | China | 2440 (2444) | 3182 (3186) | OK309708 | OK309721 | S3 | 2.625 × 10−02 |
RdRp | |||||||||
1 | 26 | OK309713 | Turkey | 2308 (2308) | 2994 (2994) | OK309721 | Unknown | M | 1.758 × 10−02 |
2 | 2 | OK309710 | Turkey | 945 (945) | 1188 (1188) | KY228384 | Unknown | 3 | 3.277 × 10−02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.D.; Farooq, T.; Chen, X.; Jiang, T.; Zang, L.; Shakeel, M.T.; Zhou, T. Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022, 14, 2481. https://doi.org/10.3390/v14112481
Hussain MD, Farooq T, Chen X, Jiang T, Zang L, Shakeel MT, Zhou T. Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses. 2022; 14(11):2481. https://doi.org/10.3390/v14112481
Chicago/Turabian StyleHussain, Muhammad Dilshad, Tahir Farooq, Xi Chen, Tong Jiang, Lianyi Zang, Muhammad Taimoor Shakeel, and Tao Zhou. 2022. "Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics" Viruses 14, no. 11: 2481. https://doi.org/10.3390/v14112481
APA StyleHussain, M. D., Farooq, T., Chen, X., Jiang, T., Zang, L., Shakeel, M. T., & Zhou, T. (2022). Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses, 14(11), 2481. https://doi.org/10.3390/v14112481