Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytophthora Isolates
2.2. Curing Virus Infections
2.3. Virus Transfer Experiment
2.4. Growth Tests
2.5. Sporulation Tests
2.6. Morphology
2.7. RNA Extraction and RNA-Seq
2.8. Bioinformatics
2.9. Proteomics
2.10. Pathogenicity
3. Results
3.1. Curing Virus Infections
3.2. Transfer Tests
3.3. Viral Effects on Host Growth, Sporulation and Morphological Characteristics
3.4. Viral Effects on the Host Gene Expression and Protein Abundance
3.5. Viral Effects on Host Pathogenicity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society (APS Press): Saint Paul, MN, USA, 1996. [Google Scholar]
- Nellist, C.F.; Vickerstaff, R.J.; Sobczyk, M.K.; Marina-Montes, C.; Wilson, F.M.; Simpson, D.W.; Whitehouse, A.B.; Harrison, R.J. Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry (Fragaria × ananassa). Hortic. Res. 2019, 6, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikemo, H.; Stensvand, A.; Davik, J.; Tronsmo, A.M. Resistance to crown rot (Phytophthora cactorum) in strawberry cultivars and in offspring from crosses between cultivars differing in susceptibility to the disease. Ann. Appl. Biol. 2003, 142, 83–89. [Google Scholar] [CrossRef]
- Eikemo, H.; Stensvand, A.; Tronsmo, A.M. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis. 2003, 87, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourret, T.B.; Fajardo, S.N.; Engert, C.P.; Rizzo, D.M. A barcode-based phylogenetic characterization of Phytophthora cactorum identifies two cosmopolitan lineages with distinct host affinities and the first report of Phytophthora pseudotsugae in California. J. Fungi 2022, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.G.; Colowit, P.M.; Tai, T.H.; Aradhya, T.H.; Browne, G.T. Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis. 2006, 90, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.; Stensvand, A.; Tronsmo, A.M. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycol. Res. 2004, 108, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Hantula, J.; Lilja, A.; Parikka, P. Genetic variation and host specificity of Phytophthora cactorum isolated in Europe. Mycol. Res. 1997, 101, 565–572. [Google Scholar] [CrossRef]
- Chepsergon, J.; Motaung, T.E.; Bellieny-Rabelo, D.; Moleleki, L.N. Organize, don’t agonize: Strategic success of Phytophthora species. Microorganisms 2020, 8, 917. [Google Scholar] [CrossRef] [PubMed]
- Poimala, A.; Parikka, P.; Hantula, J.; Vainio, E.J. Viral diversity in Phytophthora cactorum population infecting strawberry. Env. Microbiol. 2021, 23, 5200–5221. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Sakuta, K.; Ito, A.; Takahashi, Y.; Katayama, Y.; Omatsu, T.; Mizutani, T.; Arie, T.; Komatsu, K.; Fukuhara, T.; et al. Two novel endornaviruses co-infecting a Phytophthora pathogen of Asparagus officinalis modulate the developmental stages and fungicide sensitivities of the host oomycete. Front. Microbiol. 2021, 12, 633502. [Google Scholar] [CrossRef] [PubMed]
- Hacker, C.V.; Brasier, C.M.; Buck, K.W. A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J. Gen. Virol. 2005, 86, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Botella, L.; Jung, T. Multiple viral infections detected in Phytophthora condilina by total and small RNA Sequencing. Viruses 2021, 13, 620. [Google Scholar] [CrossRef] [PubMed]
- Poimala, A.; Vainio, E.J. Complete genome sequence of a novel toti-like virus from the plant-pathogenic oomycete Phytophthora cactorum. Arch. Virol. 2020, 165, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Myers, K.; Fry, W.E.; Hillman, B.I. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch. Virol. 2012, 157, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Krychiw, J.F.; Myers, K.; Fry, W.E.; Hillman, B.I. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology 2013, 435, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, G.; Myers, K.; Hillman, B.I.; Fry, W.E. A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 2009, 392, 5261. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Myers, K.; Fry, W.E.; Hillman, B.I. Phytophthora infestans RNA virus 2, a novel RNA virus from Phytophthora infestans, does not belong to any known virus group. Arch. Virol. 2018, 164, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Khalifa, M.E.; Framptom, R.A.; Smith, G.R.; McDougal, R.L.; MacDiarmid, R.M.; Kalamorz, F. Characterization of a novel double-stranded RNA virus from Phytophthora pluvialis in New Zealand. Viruses 2022, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Raco, M.; Vainio, E.J.; Sutela, S.; Eichmeier, A.; Hakalová, E.; Jung, T.; Botella, L. High diversity of novel viruses in the tree pathogen Phytophthora castaneae revealed by high-throughput sequencing of total and small RNA. Front. Micobiol. 2022, 13, 911474. [Google Scholar] [CrossRef] [PubMed]
- Hannat, S.; Pontarotti, P.; Colson, P.; Kuhn, M.L.; Galiana, E.; La Scola, B.; Aherfi, S.; Panabières, F. Diverse trajectories drive the expression of a giant virus in the oomycete plant pathogen Phytophthora parasitica. Front. Microbiol. 2021, 12, 662762. [Google Scholar] [CrossRef]
- Arjona-López, J.M.; Telengech, P.; Suzuki, N.; López-Herrera, C.J. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Fungal Biol. 2021, 125, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.J.; Jurvansuu, J.; Hyder, R.; Kashif, M.; Piri, T.; Tuomivirta, T.; Poimala, A.; Xu, P.; Mäkelä, S.; Nitisa, D.; et al. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J. Virol. 2018, 92, e01744-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasse, W.; Zipper, R.; Totska, M.; Spring, O. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower. Fungal Genet. Biol. 2013, 57, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Prospero, S.; Botella, L.; Santini, A.; Robin, C. Biological control of emerging forest diseases: How can we move from dreams to reality? For. Ecol. Manag. 2021, 496, 119377. [Google Scholar] [CrossRef]
- Rigling, D.; Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Kanematsu, S.; Yaegashi, H. Draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus. Phytopathol. 2018, 108, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.M.; Cho, W.K.; Yu, J.; Son, M.; Choi, H.; Min, K.; Lee, Y.W.; Kim, K.H. A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. PLoS ONE 2014, 9, e100989. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.D.; Dawe, A.L.; Nuss, D.L. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot. Cell 2003, 2, 1253–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Fu, Y.; Jiang, D.; Li, G.; Ghabrial, S.A.; Yi, X. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res. 2008, 135, 95–106. [Google Scholar] [CrossRef]
- Cho, W.K.; Yu, J.; Lee, K.-M.; Son, M.; Min, K.; Lee, Y.-W.; Kim, K.-H. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genom. 2012, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, H.; Hu, W.; Yang, W.; Hong, N.; Wang, G.; Wang, A.; Wang, L. De novo transcriptomic assembly and mRNA expression patterns of Botryosphaeria dothidea infection with mycoviruses chrysovirus 1 (BdCV1) and partitivirus 1 (BdPV1). Virol. J. 2018, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Fry, W.E.; Hillman, B.I. PiRV-2 stimulates sporulation in Phytophthora infestans. Virus Res. 2019, 271, 197674. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; Hendrickson, R.C.; et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Margaria, P.; Bosco, L.; Vallino, M.; Ciuffo, M.; Mautino, G.C.; Tavella, L.; Turina, M. The NSs Protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J. Virol. 2014, 88, 5788–5802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.-C.; Li, J.; Cao, J.-P.; Eden, J.-S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaire, L.; Pagán, I.; Ayllón, M.A. Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 2016, 499, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Marzano, S.-Y.L.; Nelson, B.D.; Ajayi-Oyetunde, O.; Bradley, C.A.; Hughes, T.J.; Hartman, G.L.; Eastburn, D.M.; Domier, L.L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 2016, 90, 6846–6863. [Google Scholar] [CrossRef] [Green Version]
- Velasco, L.; Arjona-Girona, I.; Cretazzo, E.; López-Herrera, C. Viromes in Xylariaceae fungi infecting avocado in Spain. Virology 2019, 532, 11–21. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Yang, Y.; Liu, Q.; Zhang, Z.; Han, C.; Wang, Y. Characterization of the mycovirome from the plant-pathogenic fungus Cercospora beticola. Viruses 2021, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, W.; Kondo, H.; Ulrich, S.; Rigling, D.; Prospero, S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res. 2022, 320, 198901. [Google Scholar] [CrossRef] [PubMed]
- Nerva, L.; Turina, M.; Zanzotto, A.; Gardiman, M.; Gaiotti, F.; Gambino, G.; Chitarra, W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 2019, 21, 2886–2904. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Fujita, M.; Chiba, S.; Hyodo, K.; Andika, I.B.; Suzuki, N.; Kondo, H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 2019, 533, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Nerva, L.; Forgia, M.; Ciuffo, M.; Chitarra, W.; Chiapello, M.; Vallino, M.; Varese, G.C.; Turina, M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019, 273, 197737. [Google Scholar] [CrossRef] [PubMed]
- Sasai, S.; Tamura, K.; Tojo, M.; Herrero, M.L.; Hoshino, T.; Ohki, S.T.; Mochizuki, T. A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology 2018, 522, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Botella, L.; Janousek, J.; Maia, C.; Horta Jung, M.; Raco, M.; Jung, T. 2020. Marine Oomycetes of the genus Halophytophthora harbor viruses related to Bunyaviruses. Front. Microbiol. 2020, 11, 1467. [Google Scholar] [CrossRef] [PubMed]
- Chiapello, M.; Rodríguez-Romero, J.; Ayllón, M.A.; Turina, M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020, 6, veaa058. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ni, Y.; Liu, X.; Zhao, H.; Xiao, Y.; Xiao, X.; Li, S.; Liu, H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol. 2021, 7, veaa095. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakis, S.L.; Day, P.R. Hypovirulence conversion in Endothia parasitica. Phytopathology 1979, 69, 1226–1229. [Google Scholar] [CrossRef]
- Thapa, V.; Turner, G.G.; Hafenstein, S.; Overton, B.E.; Vanderwolf, K.J.; Roossinck, M.J. Using a novel partitivirus in Pseudogymnoascus destructans to understand the epidemiology of white-nose syndrome. PLoS Pathog. 2016, 12, e1006076. [Google Scholar] [CrossRef] [PubMed]
- Michel, B.E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 1983, 72, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.R.; Webber, J.F. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathol. 2016, 65, 1441–1451. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Stukely, M.J.C.; Hardy, G.S.J.; White, D.; Paap, T.; Dunstan, W.A.; Burgess, T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia 2011, 26, 13–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, T.; Horta Jung, M.; Scanu, B.; Seress, D.; Kovács, G.; Maia, C.; Pérez-Sierra, A.; Chang, T.-T.; Chandelier, A.; Heungens, K.; et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia 2017, 38, 100–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallio, M.A.; Tuimala, J.T.; Hupponen, T.; Klemelä, P.; Gentile, M.; Scheinin, I.; Koski, M.; Käki, J.; Korpelainen, E.I. Chipster: User-friendly analysis software for microarray and other high-throughput data. BMC Genom. 2011, 12, 507. [Google Scholar] [CrossRef] [Green Version]
- Dufková, H.; Berka, M.; Greplová, M.; Shejbalová, Š.; Hampejsová, R.; Luklová, M.; Domkářová, J.; Novák, J.; Kopačka, V.; Brzobohatý, B.; et al. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. Plants 2022, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Duan, S.; Mei, X.; Huang, X.; Chen, W.; Liu, Y.; Guo, C.; Yang, T.; Wei, W.; Liu, X.; et al. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci. Rep. 2018, 8, 6534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfer, V.; Pichler, P.; Stranz, T.; Stadlmann, J.; Taus, T.; Winkler, S.; Mechtler, K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014, 13, 3679–3684. [Google Scholar] [CrossRef] [PubMed]
- Thelen, M.P.; Wirth, B.; Kye, M.J. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun. 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Rytkönen, A.; Lilja, A.; Petäistö, R.-L.; Hantula, J. Irrigation water and stem lesions on Betula pendula in a forest nursery. Scan. J. For. Res. 2008, 23, 404–411. [Google Scholar] [CrossRef]
- Rytkönen, A.; Lilja, A.; Vercauteren, A.; Sirkiä, S.; Parikka, P.; Soukainen, M.; Hantula, J. Identity and potential pathogenity of Phytophthora species found on symptomatic rhododendron plants in a Finnish nursery. Can. J. Plant Pathol. 2012, 34, 255–267. [Google Scholar] [CrossRef]
- Muszewska, A.; Steczkiewicz, K.; Stepniewska-Dziubinska, M.; Ginalski, K. Cut-and-paste transposons in fungi with diverse lifestyles. Genome Biol. Evol. 2017, 9, 3463–3477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, J.; Fitzpatrick, D.A. Genomic, network and phylogenetic analysis of the Oomycete effector arsenal. mSphere 2017, 2, e00408-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamir, J.; Darwiche, R.; van’t Hof, P.; Choudhary, V.; Stumpe, M.; Schneiter, R.; Mauch, F. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J. 2016, 89, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Situ, J.; Guan, T.; Dou, Z.; Kong, G.; Jiang, Z.; Xi, P. A C2H2 zinc finger protein PlCZF1 is necessary for oospore development and virulence in Peronophythora litchii. Int. J. Mol. Sci. 2022, 23, 2733. [Google Scholar] [CrossRef]
- Feng, B.Z.; Zhu, X.P.; Fu, L.; Lv, R.F.; Storey, D.; Tooley, P.; Zhang, X.G. Characterization of necrosis-inducing NLP proteins in Phytophthora capsici. BMC Plant Biol. 2014, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Min, J. Structure and function of WD40 domain proteins. Protein Cell 2011, 2, 202–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Mahajan, A.; Tsai, M.-D. Ankyrin repeat: A unique motif mediating protein−protein interactions. Biochemistry 2006, 45, 15168–15178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, Z.; Yong, S.; Yu, S.; Feng, H.; Yin, M.; Ye, W.; Wang, Y.; Qiu, M. An oomycete-specific leucine-rich repeat-containing protein is involved in zoospore flagellum development in Phytophthora sojae. Phytopathology 2022. [CrossRef] [PubMed]
- Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006, 44, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Liu, L.; Xiong, Q.; Flores, C.; Wong, J.; Shi, J.; Wang, X.; Liu, X.; Xiang, Q.; Jiang, S.; et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Gen. 2013, 45, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Gu, L.; Zhang, Y.; Yan, T.; Kong, G.; Kong, L.; Guo, B.; Qiu, M.; Wang, Y.; Jing, M.; et al. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat. Commun. 2017, 8, 2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharel, A.; Islam, M.T.; Rookes, J.; Cahill, D. How to unravel the key functions of cryptic Oomycete elicitin proteins and their role in plant disease. Plants 2021, 10, 1201. [Google Scholar] [CrossRef] [PubMed]
- Derevnina, L.; Dagdas, Y.F.; De la Concepcion, J.C.; Bialas, A.; Kellner, R.; Petre, B.; Domazakis, E.; Du, J.; Wu, C.-H.; Lin, X.; et al. Nine things to know about elicitins. New Phytol. 2016, 212, 888–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhao, D.; Dong, J.; Kong, X.; Zhang, Q.; Li, T.; Meng, Y.; Shan, W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. Mol. Plant Pathol. 2020, 21, 95–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darino, M.; Chia, K.-S.; Marques, J.; Aleksza, D.; Soto-Jiménez, L.M.; Saado, I.; Uhse, S.; Borg, M.; Betz, R.; Bindics, J.; et al. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytol. 2021, 229, 3393–3407. [Google Scholar] [CrossRef] [PubMed]
- Gan, P.H.P.; Shan, W.; Blackman, L.M.; Hardham, A. Characterization of cyclophilin-encoding genes in Phytophthora. Mol. Genet. Genom. 2009, 281, 565–578. [Google Scholar] [CrossRef]
- Qutob, D.; Tedman-Jones, J.; Gijzen, M. Effector-triggered immunity by the plant pathogen Phytophthora. Trends Microbiol. 2006, 14, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.H.; Weide, R.; van de Vondervoort, P.J.; Govers, F. Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome Res. 2016, 16, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Dou, D.; Kale, S.D.; Liu, T.; Tang, Q.; Wang, X.; Arredondo, F.D.; Basnayake, S.; Whisson, S.; Drenth, A.; Maclean, D.; et al. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps 4 and Rps 6. Mol. Plant-Microbe. Interact. 2010, 23, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Bansal, G.; Narang, A.; Basak, T.; Abbas, T.; Dash, D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016, 16, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
- Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.; Richter, S.; Shikata, H.; Lang, D.; et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020, 579, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Pánek, M.; Fér, T.; Mráček, J.; Tomšovský, M. Evolutionary relationships within the Phytophthora cactorum species complex in Europe. Fungal Biol. 2016, 120, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Hillman, B.I. Phytophthora viruses. Adv. Virus Res. 2013, 86, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Van Poucke, K.; Haegeman, A.; Goedefroit, T.; Focquet, F.; Leus, L.; Horta Jung, M.; Nave, C.; Redondo, M.A.; Husson, C.; Kostov, K.; et al. Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation. IMA Fungus 2021, 12, 16. [Google Scholar] [CrossRef]
Isolate Name | Viruses | Isolation Year | Strawberry Cultivar | Collection Location | Used in Analyses |
---|---|---|---|---|---|
PhF9 | PcAEV1, PcAEV2, PcRV1 | 1990 | Jonsok | Pohja | I |
PhF38 | PcAEV1, PcAEV2, PcRV1 | 1993 | unknown | Ilomantsi | II |
PhF66 | PcBV1, PcBV2 | 2006 | Polka | Nurmijärvi | I, II, III, IV |
PhF79 | PcBV1, PcBV2, PcBV3, PcRV1, PcUV1 | 1991 | Jonsok | Pohja | I, II |
PhF101 | PcAEV1, PcAEV3, PcRV1 | 1993 | Jonsok | Pohja | II |
PhF17/19 | PcRV1 | 2019 | Polka | Huhdasjärvi | IV |
Ph415 | unknown | 2004 | Betula pendula | Suonenjoki | IV |
Sporangia | Oogonia | Antheridia | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length/µm | Breadth/µm | Sporangia Form | Abundance (№ per Agar Plug) | Length /µm | Breadth /µm | Oogonia Form | Oospore Diam./µm | Oospore Wall/µm | Length /µm | Breadth /µm | Antheridia Form | Abortion Rate | ||
PhF66 | Mean Min Max | 36.37 26.35 45.11 | 29.77 22.14 37.05 | broad-ovoid and ovoid, also spherical | 897 453 599 | 32.49 27.19 39.09 | 30.60 24.16 35.24 | smooth, globous to sub-globous | 25.87 21.57 30.79 | 1.27 0.44 1.83 | 14.52 9.55 26.41 | 10.50 7.01 23.52 | Paragynus, clavate | 29.27% 20% 38% |
PhF66– | Mean Min Max | 45.10 33.87 57.13 | 35.58 29.72 42.75 | ovoid to slight limoniform | 519 724 1148 | 33.66 28.24 39.12 | 29.81 24.57 33.64 | smooth, globous to sub-globous | 25.81 21.57 32.81 | 1.33 0.84 1.84 | 14.04 9.53 22.88 | 9.98 5.86 12.51 | Paragynus, clavate | 91.11% 85% 97% |
N | 50 | 50 | 50 | 2076/3588 (PhF66/PhF66–) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 100 | |
p-value sig. level ≤0.00625 | 4.207 × 10−13 | 1.135 × 10−12 | 0.008073 | 0.03295 | 0.06979 | 0.8706 | 0.2227 | 0.4411 | 0.2362 | 0.000586 |
Read Counts per Million | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PhF66– (No Viruses) | PhF66 (PcBV1&PcBV2) | ||||||||||||||
Accession | Description | Length | R1 | R2 | R3 | R7 | R8 | R4 | R5 | R6 | R9 | R10 | log2Fold Change | FDR | Padj |
KAF1787014.1 | hypothetical protein GQ600_18332 | 581 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.91 | 17.78 | 21.27 | 21.19 | 15.59 | 6.56 | 0.000002 | <0.001 |
KAF1778147.1 | Riboflavin synthase-like beta-barrel | 1444 | 1.50 | 0.92 | 1.54 | 4.68 | 1.66 | 22.08 | 54.90 | 8.28 | 8.28 | 10.26 | 2.70 | 0.000053 | <0.001 |
KAF1774323.1 | Elicitin | 534 | 52.63 | 47.31 | 47.61 | 7.90 | 8.57 | 45.43 | 77.86 | 283.71 | 293.98 | 292.02 | 2.68 | 0 | <0.001 |
KAF1774322.1 | Elicitin | 516 | 0.11 | 0.16 | 0.00 | 0.08 | 0.00 | 0.07 | 0.25 | 2.92 | 2.77 | 2.32 | 2.49 | 0.000513 | <0.001 |
KAF1789104.1 | hypothetical protein GQ600_9925 | 270 | 0.75 | 0.84 | 0.35 | 0.45 | 0.58 | 4.82 | 5.01 | 4.02 | 2.77 | 3.87 | 2.43 | 0.00005 | <0.001 |
KAF1774139.1 | hypothetical protein GQ600_10043 | 470 | 0.15 | 0.08 | 0.04 | 0.12 | 0.12 | 0.91 | 2.96 | 0.69 | 1.26 | 1.22 | 2.39 | 0.000147 | <0.001 |
KAF1781019.1 * | Elicitin | 357 | 1.94 | 0.72 | 1.41 | 0.04 | 0.00 | 0.98 | 1.34 | 6.99 | 28.63 | 13.27 | 2.35 | 0.000294 | <0.001 |
KAF1780261.1 | SMP-30/Gluconolactonase/LRE-like region | 1114 | 2.13 | 2.32 | 1.19 | 2.65 | 1.12 | 15.59 | 14.53 | 8.43 | 7.82 | 7.16 | 2.19 | 0.000161 | <0.001 |
KAF1780813.1 | hypothetical protein GQ600_560 | 264 | 1.31 | 1.64 | 0.84 | 0.90 | 0.42 | 7.40 | 2.34 | 7.39 | 5.93 | 6.80 | 2.14 | 0.000655 | <0.001 |
KAF1785474.1 | Nucleotide-diphospho-sugar transferase | 879 | 0.82 | 0.32 | 0.66 | 2.28 | 0.87 | 6.96 | 19.45 | 2.43 | 2.52 | 2.77 | 2.07 | 0.000655 | <0.001 |
KAF1788825.1 | Ankyrin repeat-containing domain | 1174 | 34.09 | 38.83 | 36.01 | 33.31 | 39.71 | 0.00 | 0.00 | 0.25 | 0.29 | 0.24 | −3.70 | 0 | <0.001 |
KAF1791464.1 | WD40/YVTN repeat-like-containing domain | 5799 | 5.27 | 4.96 | 5.47 | 4.56 | 5.41 | 0.36 | 0.04 | 0.30 | 0.50 | 0.45 | −3.24 | 0.000041 | <0.001 |
KAF1788826.1 | hypothetical protein GQ600_3050 | 762 | 2.73 | 1.96 | 1.94 | 0.49 | 1.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −3.21 | 0.000421 | <0.001 |
KAF1775491.1 | WD40-repeat-containing domain | 6238 | 2.77 | 2.20 | 2.60 | 2.52 | 1.58 | 0.11 | 0.38 | 0.10 | 0.04 | 0.08 | −2.72 | 0.000065 | <0.001 |
KAF1791150.1 | hypothetical protein GQ600_24668 | 3162 | 9.79 | 11.80 | 12.58 | 13.97 | 13.02 | 3.08 | 1.54 | 0.69 | 0.76 | 0.85 | −2.69 | 0.000062 | <0.001 |
KAF1789612.1 | putative domain, di-copper centre | 1712 | 15.59 | 12.76 | 13.94 | 5.33 | 4.95 | 0.98 | 0.38 | 2.28 | 1.89 | 1.83 | −2.54 | 0.000029 | <0.001 |
KAF1790519.1 | putative domain, di-copper centre | 444 | 2.80 | 2.64 | 3.35 | 1.18 | 0.75 | 0.22 | 0.00 | 0.30 | 0.13 | 0.28 | −2.45 | 0.000347 | <0.001 |
KAF1789787.1 | hypothetical protein GQ600_24324 | 311 | 4.45 | 3.72 | 3.79 | 2.00 | 1.04 | 0.25 | 0.21 | 0.50 | 0.63 | 0.16 | −2.34 | 0.000161 | <0.001 |
KAF1792605.1 | hypothetical protein GQ600_23700 | 6403 | 11.51 | 13.08 | 11.21 | 29.07 | 23.20 | 4.50 | 3.42 | 2.33 | 2.40 | 1.91 | −2.32 | 0.000008 | <0.001 |
KAF1795150.1 | Tetratricopeptide repeat | 7222 | 16.15 | 15.16 | 16.02 | 30.86 | 24.70 | 4.68 | 4.97 | 3.57 | 2.48 | 2.61 | −2.31 | 0.000001 | <0.001 |
KAF1782989.1 | WD repeat-containing protein 90 | 7515 | 5.05 | 4.92 | 5.47 | 5.13 | 4.32 | 1.20 | 1.13 | 0.45 | 0.67 | 0.28 | −2.29 | 0.000164 | <0.001 |
KAF1782797.1 ** | Thrombospondin type-1 (TSP1) repeat | 7184 | 67.62 | 56.07 | 58.42 | 14.66 | 11.35 | 1.99 | 2.46 | 12.74 | 11.94 | 9.53 | −2.29 | 0.000001 | <0.001 |
KAF1783174.1 | hypothetical protein GQ600_25520 | 558 | 0.78 | 0.84 | 0.88 | 0.41 | 0.71 | 0.00 | 0.00 | 0.00 | 0.04 | 0.04 | −2.28 | 0.000328 | <0.001 |
KAF1775375.1 ** | Carbonic anhydrase, alpha-class, conserved site | 661 | 24.45 | 20.76 | 23.17 | 1.55 | 1.75 | 0.51 | 0.75 | 1.74 | 2.77 | 1.83 | −2.24 | 0.000232 | <0.001 |
KAF1793614.1 | hypothetical protein GQ600_19168 | 3971 | 9.38 | 9.60 | 9.58 | 10.42 | 13.06 | 1.81 | 1.34 | 2.58 | 1.85 | 1.55 | −2.23 | 0.00003 | <0.001 |
KAF1783504.1 | WD40-repeat-containing domain | 3039 | 1.16 | 2.12 | 1.72 | 1.59 | 2.49 | 0.33 | 0.38 | 0.20 | 0.13 | 0.00 | −2.21 | 0.000635 | <0.001 |
KAF1783853.1 | Katanin p60 subunit A1 | 2091 | 11.85 | 15.64 | 14.21 | 12.54 | 14.97 | 3.44 | 3.42 | 1.98 | 1.64 | 2.48 | −2.19 | 0.000019 | <0.001 |
KAF1793060.1 | EF-Hand 1, calcium-binding site | 804 | 1.46 | 1.92 | 1.85 | 1.26 | 0.62 | 0.04 | 0.13 | 0.10 | 0.17 | 0.33 | −2.18 | 0.000247 | <0.001 |
KAF1772692.1 | EF-hand domain pair | 2739 | 1.31 | 1.20 | 1.94 | 1.34 | 0.83 | 0.15 | 0.13 | 0.00 | 0.00 | 0.00 | −2.12 | 0.000757 | <0.001 |
KAF1789078.1 | WD40-repeat-containing domain | 2961 | 2.80 | 3.76 | 3.22 | 3.91 | 4.12 | 0.80 | 1.04 | 0.25 | 0.38 | 0.69 | −2.12 | 0.000098 | <0.001 |
KAF1794169.1 | Organic solute carrier protein 1 | 5303 | 5.53 | 6.96 | 6.35 | 11.81 | 10.35 | 3.37 | 3.46 | 0.79 | 0.42 | 0.28 | −2.11 | 0.000655 | <0.001 |
KAF1782147.1 | P-loop containing nucleoside triphosphate hydrolase | 13632 | 6.65 | 5.24 | 4.85 | 7.94 | 8.48 | 1.34 | 2.00 | 1.69 | 0.63 | 0.69 | −2.10 | 0.000126 | <0.001 |
KAF1788166.1 | hypothetical protein GQ600_1662 | 1674 | 0.52 | 0.60 | 0.26 | 0.90 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −2.04 | 0.002536 | <0.001 |
PhF66– (No Viruses) | PhF66 (PcBV1&PcBV2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Accession | Description | Unique Peptides | Blank | S2 | S3 | S4 | S5 | S6 | S7 | log2Fold Change | Padj |
KAF1782669.1 | S-adenosyl-L-methionine-dependent methyltransferase | 2 | Not Found | Not Found | Not Found | Not Found | High | High | Peak Found | 6.64 | <0.001 |
KAF1784643.1 | P-loop containing nucleoside triphosphate hydrolase | 2 | Peak Found | Not Found | Not Found | Not Found | Not Found | High | Peak Found | 6.64 | <0.001 |
KAF1791085.1 | hypothetical protein GQ600_7093 | 5 | Not Found | Not Found | Peak Found | Peak Found | High | High | High | 4.69 | <0.001 |
KAF1785983.1 | FAD/NAD(P)-binding domain | 2 | Not Found | High | Not Found | High | Not Found | Not Found | Not Found | −6.64 | <0.001 |
KAF1784304.1 | Ubiquitin-activating enzyme E1, Cys active site | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1777841.1 | Zinc finger, RING/FYVE/PHD-type | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1780096.1 | 50S ribosomal protein L30e-like | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1778206.1 | Nucleotide-binding alpha-beta plait domain | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1772484.1 | Exosome complex RNA-binding protein 1/RRP40/RRP4 | 2 | Peak Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1791972.1 * | Zinc finger, NHR/GATA-type | 2 | Not Found | High | High | High | Not Found | Not Found | Not Found | −6.64 | <0.001 |
KAF1794225.1 | thiamine diphosphate-binding fold | 2 | Not Found | Not Found | Not Found | Not Found | High | High | Not Found | 6.64 | <0.001 |
KAF1775607.1 * | DNA polymerase family X lyase domain | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1772539.1 | Alpha/Beta hydrolase fold | 2 | Not Found | Not Found | Not Found | Not Found | Not Found | High | Not Found | 6.64 | <0.001 |
KAF1774000.1 | hypothetical protein GQ600_3647 | 2 | Not Found | Not Found | Not Found | Not Found | High | High | Not Found | 6.64 | <0.001 |
KAF1793066.1 | Aldolase-type TIM barrel | 2 | Not Found | Peak Found | Not Found | High | Not Found | Not Found | Not Found | −6.64 | <0.001 |
KAF1795828.1 | Late embryogenesis abundant protein LEA | 4 | Not Found | Peak Found | High | Not Found | High | High | High | 3.08 | <0.001 |
KAF1790797.1 | hypothetical protein GQ600_24592 | 4 | Not Found | Peak Found | High | Peak Found | High | High | High | 3.06 | <0.001 |
KAF1781808.1 | Leucine-rich repeat domain, L domain-like | 3 | Not Found | Not Found | Not Found | Peak Found | Not Found | High | Not Found | 2.51 | <0.001 |
KAF1790245.1 * | Fatty acid desaturase domain | 2 | Not Found | Not Found | Not Found | High | Not Found | Peak Found | Peak Found | −2.34 | <0.001 |
KAF1772416.1 | S-adenosyl-L-methionine-dependent methyltransferase | 2 | Not Found | High | High | High | Peak Found | Peak Found | Peak Found | −2.15 | <0.001 |
KAF1781019.1 * | Elicitin | 3 | Not Found | Peak Found | Not Found | Not Found | High | High | High | 2.30 | <0.001 |
KAF1780998.1 | Molybdenum cofactor biosynthesis, conserved site | 2 | Not Found | Peak Found | Not Found | Peak Found | Not Found | High | Not Found | 2.22 | <0.001 |
KAF1779922.1 | hypothetical protein GQ600_6917 | 2 | Not Found | Not Found | Peak Found | Not Found | High | High | Peak Found | 2.08 | <0.001 |
KAF1779895.1 | Multicopper oxidase, type 3 | 2 | Not Found | Not Found | Peak Found | Not Found | High | High | High | 2.03 | <0.001 |
KAF1794156.1 | NAD(P)-binding domain | 2 | Not Found | Peak Found | Not Found | Peak Found | Not Found | High | Not Found | 2.00 | <0.001 |
KAF1783208.1 | FAD/NAD(P)-binding domain | 11 | Peak Found | High | High | High | Peak Found | Not Found | Peak Found | −1.83 | <0.001 |
KAF1789511.1 | TmcA/NAT10/Kre33 | 2 | Not Found | Not Found | High | Peak Found | High | High | High | 1.91 | <0.001 |
KAF1779266.1 * | Major facilitator superfamily domain | 2 | Not Found | Peak Found | Peak Found | High | Not Found | High | Peak Found | −1.73 | <0.001 |
KAF1794053.1 | NAD(P)-binding domain | 2 | Not Found | Peak Found | Peak Found | Not Found | High | High | Peak Found | 1.88 | <0.001 |
KAF1791322.1 | Short-chain dehydrogenase/reductase, conserved site | 10 | Not Found | High | High | High | High | High | High | −1.72 | 0.001 |
KAF1787880.1 | Multicopper oxidase, type 3 | 3 | Not Found | Not Found | Peak Found | Not Found | High | High | High | 1.84 | 0.002 |
KAF1780390.1 | Ubiquitin conjugation factor E4, core | 2 | Peak Found | Peak Found | Not Found | Peak Found | Peak Found | High | Peak Found | 1.83 | 0.002 |
KAF1779223.1 * | Glycoside hydrolase superfamily | 6 | Peak Found | High | High | High | High | High | High | 1.83 | 0.002 |
KAF1777766.1 | Elicitin | 6 | Not Found | Peak Found | High | Peak Found | High | High | High | 1.80 | 0.002 |
KAF1773149.1 | Thioredoxin-like fold | 5 | Not Found | High | High | High | High | High | High | 1.73 | 0.003 |
KAF1780973.1 | Leucine-rich repeat domain, L domain-like | 2 | Not Found | Peak Found | Not Found | Peak Found | Not Found | High | Peak Found | 1.71 | 0.004 |
KAF1793851.1 | Ubiquitin-conjugating enzyme, active site | 20 | Peak Found | High | High | High | High | High | High | 1.66 | 0.006 |
KAF1791020.1 | NAD(P)-binding domain | 11 | Peak Found | High | High | High | High | High | High | −1.45 | 0.009 |
KAF1781134.1 | P-loop containing nucleoside triphosphate hydrolase | 2 | Not Found | Peak Found | Peak Found | High | Peak Found | Not Found | Not Found | −1.42 | 0.011 |
KAF1791905.1 | FAD/NAD(P)-binding domain | 2 | Not Found | High | Peak Found | High | Peak Found | Peak Found | Peak Found | −1.37 | 0.016 |
KAF1788119.1 | S-adenosyl-L-methionine-dependent methyltransferase | 2 | Not Found | High | Peak Found | High | Peak Found | Peak Found | Peak Found | −1.36 | 0.018 |
KAF1791684.1 | ABC-transporter extension domain | 4 | Not Found | High | High | High | Peak Found | Peak Found | Peak Found | −1.33 | 0.021 |
KAF1794255.1 | Peptidase C1A | 4 | Not Found | Peak Found | High | Peak Found | High | High | High | 1.48 | 0.022 |
KAF1773151.1 | Acyl-CoA dehydrogenase/oxidase, N-terminal | 13 | Peak Found | High | High | Peak Found | High | High | High | 1.48 | 0.023 |
KAF1786762.1 | HAD-like domain | 2 | Not Found | Not Found | Peak Found | Not Found | High | High | High | 1.46 | 0.026 |
KAF1794937.1 | Phosphoenolpyruvate carboxykinase (ATP), conserved site | 3 | Peak Found | High | High | High | Peak Found | High | High | −1.27 | 0.032 |
KAF1773405.1 | Extradiol ring-cleavage dioxygenase, class III enzyme, subunit B | 3 | Not Found | High | Not Found | High | Not Found | Not Found | Peak Found | −1.24 | 0.037 |
KAF1773588.1 | Glyoxalase/Bleomycin resistance protein/Dihydroxybiphenyl dioxygenase | 2 | Not Found | Peak Found | Not Found | Not Found | Peak Found | High | Peak Found | 1.40 | 0.038 |
KAF1782519.1 | ClpP/crotonase-like domain | 14 | Peak Found | High | High | High | High | High | High | 1.38 | 0.043 |
KAF1775431.1 | Cell division protein FtsZ, C-terminal | 3 | Not Found | Peak Found | Peak Found | Peak Found | Peak Found | High | Peak Found | 1.37 | 0.046 |
KAF1778058.1 | Protein argonaute, N-terminal | 10 | Peak Found | Peak Found | Peak Found | Peak Found | High | High | High | 1.37 | 0.046 |
KAF1772871.1 | Glycine cleavage T-protein/YgfZ, C-terminal domain | 2 | Not Found | High | High | High | Peak Found | Peak Found | High | −1.19 | 0.05 |
Treatment | Replicate | 0 dpi | 20 dpi | Increase in Amount of Healthy Leaves | Average | ||
---|---|---|---|---|---|---|---|
Healthy Leaves | Healthy Leaves | Wilting | Dead | ||||
Control | 1 | 5 | 8 | 0 | 0 | 3 | |
2 | 3 | 6 | 0 | 0 | 3 | ||
3 | 4 | 8 | 0 | 0 | 4 | ||
4 | 3 | 6 | 0 | 0 | 3 | 3.25 | |
PhF66 | 1 | 4 | 7 | 0 | 0 | 3 | |
2 | 5 | 9 | 0 | 0 | 4 | ||
3 | 3 | 5 | 0 | 0 | 2 | ||
4 | 4 | 6 | 0 | 0 | 2 | 2.75 | |
PhF66– | 1 | 5 | 7 | 0 | 0 | 2 | |
2 | 5 | 8 | 0 | 0 | 3 | ||
3 | 3 | 7 | 0 | 0 | 4 | ||
4 | 3 | 6 | 0 | 0 | 3 | 3 | |
PhF17/19 | 1 | 5 | 7 | 1 | 2 | −1 | |
2 | 4 | 7 | 2 | 2 | −1 | ||
3 | 5 | 7 | 5 | 2 | −5 | ||
4 | 4 | 6 | 5 | 1 | −4 | ||
5 | 4 | 7 | 0 | 4 | −1 | ||
6 | 6 | 7 | 0 | 7 | −6 | −3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poimala, A.; Raco, M.; Haikonen, T.; Černý, M.; Parikka, P.; Hantula, J.; Vainio, E.J. Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum. Viruses 2022, 14, 2596. https://doi.org/10.3390/v14122596
Poimala A, Raco M, Haikonen T, Černý M, Parikka P, Hantula J, Vainio EJ. Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum. Viruses. 2022; 14(12):2596. https://doi.org/10.3390/v14122596
Chicago/Turabian StylePoimala, Anna, Milica Raco, Tuuli Haikonen, Martin Černý, Päivi Parikka, Jarkko Hantula, and Eeva J. Vainio. 2022. "Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum" Viruses 14, no. 12: 2596. https://doi.org/10.3390/v14122596
APA StylePoimala, A., Raco, M., Haikonen, T., Černý, M., Parikka, P., Hantula, J., & Vainio, E. J. (2022). Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum. Viruses, 14(12), 2596. https://doi.org/10.3390/v14122596