African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines
Abstract
:1. Introduction
2. Summary of Current ASF Vaccine Approaches
2.1. Inactivated ASFV Experimental Vaccines
2.2. Recombinant Subunit ASF Experimental Vaccines (Protein-Based, DNA, Viral-Vectored or Combinations Thereof)
2.3. Modified-Live Viruses (MLV)
Naturally Attenuated Viruses
3. Summary of MLV Gene Deleted Vaccine Candidates
3.1. Single Gene Deleted
MLV Vx Candidate | Breed/Age-Weight/Route | N | Immunizing Dose | Obs. Period (dpv) | Readouts |
---|---|---|---|---|---|
Lv17/WB/Rie1 [78] | N/A, 3–4 mo/10–15 kg or 6–8 wks | 9 | 104 TCID50 | 30 | CS, T, V |
3 | contact | ||||
3 | 103.6 HAD50 | 14 | |||
3 | 103.3 HAD50 | ||||
3 | 2 doses of 102.6 HAD50 | 28 | |||
3 | 102.8 HAD50 | ||||
BA71ΔCD2 [92,93] | Landrace × Lg White, 6–8 wks., IM | 6 | 103 PFU | 24 | CS, T, V, NS |
6 | 103 PFU | 24 | none reported | ||
6 | 3.3 × 104 PFU | ||||
6 | 106 PFU | ||||
6 | 103 PFU | 24 | none reported | ||
6 | 3.3 × 104 PFU | ||||
6 | 106 PFU | ||||
6 | 3.3 × 104 PFU | 24 | CS, T. V, NS | ||
6 | 106 PFU | ||||
Lg. White, 15–30 kg, IM | 6 | 106 PFU | 16 | CS | |
6 | 3.3 × 104 PFU | 21 | CS | ||
6 | 106 PFU | ||||
4 | 3.3 × 104 PFU (D0/D21) | 42 | CS, T, VS | ||
SY18ΔI226R [98] | Landrace, IM | 5 | 104 TCID50 | 21 | CS, T, V, OS, RS |
5 | 107 TCID50 | ||||
ASFV-G-Δ9GL/UK [99] | Crossbreed Yorkshire, 80–90 lb., IM | 9 | 102 HAD50 | 21 | CS, T, V |
10 | 104 HAD50 | ||||
15 | 106 HAD50 | ||||
ASFV-SY-18-ΔCD2v/UK [100] | Lg White × Landrace, 16–20 kg, IM | 5 | 104 TCID50 | 28 | CS, T, V, NS |
ASFV-G-ΔMGF [101] | Crossbreed Yorkshire, 80–90 lb., IM | 10 | 102 HAD50 | 28 | CS, T, V |
104 HAD50 | |||||
ASFV-G-ΔI177L/ΔLVR [102] | Crossbreed Yorkshire, 80–90 lb., IM | 5 | 102 HAD50 | 28 | CS, T, V |
5 | 104 HAD50 | ||||
10 | 106 HAD50 | ||||
HLJ/18-7GD [103] | SPF Large, ~50 days, IM | 4 | 103 TCID50 | 21 | CS, T |
4 | 105 TCID50 | ||||
6 | 107 TCID50 | CS, LN, qPCR | |||
3/BP | blind passage | CS, TS, qPCR | |||
2 | 107.7 TCID50 | 21 | LN qPCR | ||
Local commercial farm, IM | 1 | 106 TCID50 | 4 post-farrowing | T, # of healthy, stillborn, mummified piglets | |
3 | |||||
2 |
MLV Vx Candidate | N | Challenge Route | Challenge Dose | Challenge Strain | Challenge Timepoint (dpv) | Observation Period (dpc) | Readouts |
---|---|---|---|---|---|---|---|
BA71ΔCD2 [92,93] | 6 | IM | 103 HAD50 (20 LD50) | BA71 | 24 | 24 | CS, T, V, NS |
6 | CS, T, V | ||||||
6 | |||||||
6 | |||||||
6 | 104 HAD50 (20 LD50) | E75 | |||||
6 | |||||||
6 | |||||||
6 | 20 LD50 | Georgia/07 | CST, T, V, NS | ||||
6 | |||||||
6 | tick | 12 ticks/pig | RSA/11/2017 | 16 | 20 | CS | |
6 | IM | 102 HAU | Ken06.Bus | 21 | |||
6 | |||||||
4 | 102 HAU | 42 | 28 | CS, T, V | |||
SY18ΔI226R [98] | 5 | IM | 104 TCID50 | SY18 | 21 | 28 | CS, T, V, OS, RS, HP, T qPCR |
5 | 102.5 TCID50 | ||||||
ASFV-G-Δ9GL/UK [99] | 9 | IM | 103 HAD50 | Georgia/07 | 28 | 21 | CS, T, V |
10 | |||||||
15 | |||||||
5 | 7 | ||||||
5 | 14 | ||||||
5 | 21 | ||||||
ASFV-SY-18-ΔCD2v/UK [100] | 5 | IM | 104 TCID50 | ASFV-SY18 | 28 | 21 | CS.T. TGP, TqPCR |
ASFV-G-ΔMGF [101] | 10 | IM | 103 HAD50 | Georgia/07 | 28 | 21 | CS, T. V |
10 | |||||||
ASFV-G-ΔI177L/ΔLVR [102] | 5 | IM | 103 HAD50 | Georgia/07 | 28 | 21 | CS, T. V |
5 | |||||||
HLJ/18-7GD [103] | 4 | IM | 200 PLD50 | HLJ/18 | 21 | 21 | CS, TqPCR |
4 | |||||||
5 | 28 | ||||||
5 | 70 | ||||||
5 | 14 | ||||||
5 | oral | 21 |
3.2. Double Gene Deleted
3.3. Multiple Gene Deleted
4. ASFV-G-ΔI177L Recombinant Licensed Vaccine (NAVET-ASFVAC)
5. Summary of the Current Asymmetrical Landscape on ASFV-G-ΔI177L and ASF MLV First Generation Vaccine Candidates
5.1. Manufacturing (Purity)
5.2. Analytical (Potency)
5.3. Clinical (Safety and Efficacy)
5.4. Other ASF MLV Vaccine Attributes
6. Recommendations to Support the Development of Harmonized Guidelines for ASF MLV First Generation Vaccines: Purity, Potency, Safety and Efficacy
- A.
- Purity and Potency (Manufacturing)
- 1.
- Specific guidelines for MLV vaccines using primary cells for product manufacturing requires SPF pigs and donor herd pathogen monitoring. If swine primary (i.e., myeloid lineage) cells are used as the manufacturing cell substrate, current WOAH (Manual of Diagnostic Tests and Vaccines for Terrestrial Animals) [113,114], EU Pharmacopoeia 10.2/Chapter 5.2.4 [137] and USDA 9CFR regulatory guidelines [138,139,140] associated with animal sources and adventitious agent screening should be followed. Note—use of primary cells does not allow consistency with the EMA manufacturing “seed lot system” and may limit production serial volume sizes.
- 2.
- Characterize and if possible, qualify one or more current continuous cell line lead candidates for use in ASF MLV vaccine production [115].
- 3.
- For ease in potency release assay standardization, evaluate continuous cell lines for HAD50, TCID50, or PFU dose quantitation to replace currently used swine primary cells and to potentially decrease assay variability.
- B.
- Safety (Domestic and Wild Pig)
- 1.
- For each target host, standardize animal model. Where appropriate, some safety studies for MLV vaccine candidates intended use in wild boar may be conducted in domestic pigs.
- 2.
- Use current VICH [122,129], EMA, and USDA [128] guidance documents associated with target animal safety reversion to virulence/backpassage, overdose, one dose and repeat dose tests. Most preferably, the MLV dose tested in these studies should be at or above the maximum release titer or at a titer that is above target release dose stated in the outline of production.
- 3.
- Define the minimum criteria (e.g., absence of clinical signs including fever, viremia [onset, duration, titer], absence of MLV persistence and immunologic sequalae [chronic clinical signs], and MLV spread to naive cohorts [e.g., absence seroconversion in direct contact pigs]) to demonstrate the minimum threshold of acceptable safety. Acceptable safety should be defined in the context of vaccine fit-for-purpose use in ASF enzootic, epizootic, and disease-free countries.
- C.
- Efficacy—Domestic Pig
- 1.
- Standardize challenge method and challenge dose. Define a required challenge route (e.g., IM) and preferable dose range and acceptable methods for back titration quantitation.
- 2.
- 3.
- Define the minimum criteria (e.g., protection against mortality, protection against/absence of highest value objective clinical signs, reduction in challenge virus viremia, etc.) to demonstrate a minimum threshold of acceptable efficacy. Acceptable efficacy could be defined in the context of vaccine fit-for-purpose use in ASF enzootic or epizootic areas.
- 4.
- Standardize animal model for onset of protection. Define the minimum criteria to demonstrate acceptable onset of immunity (protection).
- 5.
- Standardize animal model for long-term (≥3 months post-vaccination) protection. Define the minimum criteria to demonstrate acceptable duration of immunity (protection).
- D.
- Efficacy—Wild Pig
- 1.
- Use the domestic pig efficacy model (above) and minimum threshold of acceptable efficacy for studies leading up to the selection of a final vaccine candidate for wild boar studies.
- 2.
- Standardize challenge method and challenge dose. Define a required challenge route (e.g., IM) and preferable dose and back titration quantitation method.
- 3.
- Test vaccine stability/efficacy in oral bait formulations over a prescribed total period and over a broad temperature range.
- E.
- Analytical (supportive safety and efficacy data sets)—For animal samples obtained during safety and efficacy studies, generate a published reference list of acceptable samples and assays to include but not limited to: ASFV isolation, ASFV quantitation (e.g., RT-PCR and virus titration), and commercially available ASFV antigen and antibody tests.
- F.
- Other Considerations.
- 1.
- Cross-protection (use of ‘heterologous’ challenge virus). Further research on ASFV strain diversity, and serogroup classifications in the context of the CD2v and C-type lectins is required to better understand the basis of homologous vs. ‘heterologous’ (cross-protection). First generation vaccines that target the relatively limited number of ASFV genotypes/viral lineages currently present in Europe or Asia are unlikely to demonstrate acceptable cross-protection against African epizootic and enzootic strains. Generate a consensus definition of a ‘heterologous virus’. In the near-term, in ASF MLV vaccine genotype II pandemic lineage challenge-efficacy studies consideration should be given to defining cross-protection as an ASFV strain that differs from the parental strain used to construct the MLV vaccine strain.
- 2.
- Differentiation of Infected from Vaccinated Animal (DIVA). In some, but not all circumstances, having a DIVA test that is compatible with a specific ASF MLV licensed vaccine may be advantageous, for example during the disease recovery and eradication phases following an epizootic outbreak in a previously ASFV-free country. ASF MLV DIVA vaccines in low- and middle-income countries and regions where ASFV is enzootic are arguably not needed at the present time. DIVA serology and molecular-based strategies should be pursued for ASF MLV second and third generation vaccines:
- a.
- In a DIVA serology strategy, the ASF MLV DIVA vaccine is preferably accompanied by an ELISA test to distinguish wild type vs. vaccine inducted antibodies. To develop this test, one or more of the ASFV deleted genes (negative marker) needs to be thoroughly evaluated for suitable immunogenicity in non-vaccinated, infected animals of all ages (including pregnant sows) and at numerous post-infection timepoints. Efforts to date to identify a target DIVA gene for deletion in any of the ASF MLV first generation vaccine candidates have been unsuccessful.
- b.
- A genetic DIVA strategy is predicated on identifying genetic mismatches between the ASF MLV DIVA vaccine and the wild-type field virus. This identification is typically based on multiplex real-time PCR assays that target the p72 gene of the wild-type ASFV and the deleted gene(s) of the ASF MLV DIVA vaccine. For example, a RT-PCR differential PCR DIVA prototype test for the ASFV-G-ΔI177L license vaccine has been described.
- c.
- Under certain circumstances, such as the oral bait vaccination of wild pig or vaccination campaign compliance monitoring in domestic pigs, a DIVA serology based on a positive gene marker may be advantageous. Since the ASFV-G-ΔI177L licensed vaccine and all the current ASF MLV first generation vaccine candidates contain at least one reporter gene (i.e., BGal, BGus, mCherry, eGFP), development of a positive marker DIVA serology test could be considered.
- 3.
- Fit-for-purpose vaccines. ASF MLV first generation vaccines for use in countries where ASF is presently enzootic, or epizootic should have a complementary molecular DIVA (differential PCR). ASF MLV second and third generation vaccines for use in epizootic regions of countries with established control areas and surveillance zones should have a complementary serology DIVA to one or more ASFV genes.
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Karabatsos, N. International Catalogue of Arboviruses: Including Certain Other Viruses of Vertebrates, 3rd ed.; American Society of Tropical Medicine and Hygiene for the Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses: San Antonio, TX, USA, 1985. [Google Scholar]
- Dixon, L.K.; Chapman, D.A.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Science 2022, 376, 1140. Available online: https://www.science.org/doi/epdf/10.1126/science.add3742 (accessed on 20 October 2022).
- Detray, D.E. African swine fever. Adv. Vet. Sci. Comp. Med. 1963, 19, 299–333. [Google Scholar]
- Mebus, C.A.; Dardiri, A.H. Western hemisphere isolates of African swine fever virus: Asymptomatic carriers and resistance to challenge inoculation. Am. J. Vet. Res. 1980, 41, 1867–1869. [Google Scholar]
- Gonzalvo, F.R.; Carnero, M.E.; Bruyel, V. Immunological responses of pigs to partially attenuated ASF and their resistance to virulent homologous and heterologous viruses. In Proceedings of the FAO/CEC Expert Consultation in ASF Research, Sassari, Italy, 23 September 1981; FAO: Rome, Italy, 1981; pp. 206–216. [Google Scholar]
- Hamdy, F.M.; Dardiri, A.H. Clinical and immunologic responses of pigs to African swine fever virus isolated from the Western Hemisphere. Am. J. Vet. Res. 1984, 45, 711–714. [Google Scholar]
- Leitão, A.; Cartaxeiro, C.; Coelho, R.; Cruz, B.; Parkhouse, R.M.; Portugal, F.; Vigário, J.D.; Martins, C.L. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 2001, 82, 513–523. [Google Scholar] [CrossRef]
- Penrith, M.L. African swine fever. Onderstepoort J. Vet. Res. 2009, 76, 91–95. [Google Scholar] [CrossRef]
- King, K.; Chapman, D.; Argilaguet, J.M.; Fishbourne, E.; Hutet, E.; Cariolet, R.; Hutchings, G.; Oura, C.A.; Netherton, C.L.; Moffat, K.; et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine 2011, 29, 4593–4600. [Google Scholar] [CrossRef] [Green Version]
- Lacasta, A.; Monteagudo, P.L.; Jiménez-Marín, Á.; Accensi, F.; Ballester, M.; Argilaguet, J.; Galindo-Cardiel, I.; Segalés, J.; Salas, M.L.; Domínguez, J.; et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. J. Vet. Res. 2015, 46, 35. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, E.G.; Perez-Nunez, D.; Revilla, Y. Development of vaccines against African swine fever virus. Virus Res. 2019, 265, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, N.N.; Richt, J.A. Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines 2019, 25, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 2287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, H.; Miller, G.; Lokhandwala, S.; Sangewar, N.; Waghela, S.D.; Bishop, R.P.; Mwangi, W. Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Front. Vet. Sci. 2020, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Teklue, T.; Sun, Y.; Abid, M.; Luo, Y.; Qiu, H.J. Current status and evolving approaches to African swine fever vaccine development. Transbound. Emerg. Dis. 2020, 67, 529–542. [Google Scholar] [CrossRef]
- Bosch-Camós, L.; López, E.; Rodriguez, F. African swine fever vaccines: A promising work still in progress. Porc. Health Manag. 2020, 6, 17. [Google Scholar] [CrossRef]
- Muñoz-Pérez, C.; Jurado, C.; Sánchez-Vizcaíno, J.M. African swine fever vaccine: Turning a dream into reality. Transbound. Emer. Dis. 2021, 68, 2657–2668. [Google Scholar] [CrossRef]
- Rock, D.L. Thoughts on African Swine Fever Vaccines. Viruses 2021, 13, 943. [Google Scholar] [CrossRef]
- Gladue, D.P.; Borca, M.V. Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses 2022, 14, 878. [Google Scholar] [CrossRef]
- Urbano, A.C.; Ferreira, F. African swine fever control and prevention: An update on vaccine development. Emerg. Microbes Infect. 2022, 11, 2021–2033. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.; Hess, W. Antibody response to inactivated preparations of African swine fever virus in pigs. Am. J. Vet. Res. 1967, 123, 475–489. [Google Scholar]
- Bommeli, W.; Kihm, U.; Ehrensperger, F. Preliminary study on immunization of pigs against African swine fever. In Proceedings of the a CEC/FAO Research, Sassari, Italy, 23–25 September 1981. [Google Scholar]
- Forman, A.J.; Wardley, R.C.; Wilkinson, P.J. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Arch. Virol. 1982, 74, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Gabriel, C.; Beer, M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 2014, 32, 3879–3882. [Google Scholar] [CrossRef] [PubMed]
- Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M.; van den Born, E.; Kosowska, A.; van Kilsdonk, E.; Fernández-Pacheco, P.; Gallardo, C.; Arias, M.; Barasona, J.A. High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines 2021, 9, 242. [Google Scholar] [CrossRef]
- Boudarkov, V.; Sereda, A.; Carpov, O.; Ponomarev, V. Using Gamma Rays to Inactivate African Swine Fever Virus. Russ. Agric. Sci. 2016, 42, 375–377. [Google Scholar] [CrossRef]
- Pikalo, J.; Porfiri, L.; Akimkin, V.; Roszyk, H.; Pannhorst, K.; Kangethe, R.T.; Wijewardana, V.; Sehl-Ewert, J.; Beer, M.; Cattoli, G.; et al. Vaccination with a Gamma Irradiation-Inactivated African Swine Fever Virus Is Safe But Does Not Protect Against a Challenge. Front. Immunol. 2022, 13, 832264. [Google Scholar] [CrossRef]
- Okoth, E.; (ILRI, Narobi, Kenya). Personal communication, 2022.
- Kaech, S.M.; Wherry, E.J.; Ahmed, R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002, 4, 251–262. [Google Scholar] [CrossRef]
- Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol. 2011, 12, 509–517. [Google Scholar] [CrossRef]
- Koup, R.A.; Douek, D.C. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb. Perspect. Med. 2011, 1, a007252. [Google Scholar] [CrossRef] [Green Version]
- Loving, C.L.; Vincent, A.L.; Pena, L.; Perez, D.R. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs. Vaccine 2012, 30, 5830–5838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, J.; O’Donnell, V.; Alfano, M.; Velazquez Salinas, L.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Higgs, S.; Borca, M.V. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model. Viruses 2016, 8, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oura, C.A.; Denyer, M.S.; Takamatsu, H.; Parkhouse, R.M. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 2005, 86, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Schlafer, D.H.; Mebus, C.A.; McVicar, J.W. African swine fever in neonatal pigs: Passively acquired protection from colostrum or serum of recovered pigs. Am. J. Vet. Res. 1984, 45, 1367–1372. [Google Scholar]
- Wardley, R.C.; Norley, S.G.; Wilkinson, P.J.; Williams, S. The role of antibody in protection against African swine fever virus. Vet. Immunol. Immunopathol. 1985, 9, 201–212. [Google Scholar] [CrossRef]
- Onisk, D.V.; Borca, M.V.; Kutish, G.; Kramer, E.; Irusta, P.; Rock, D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 1994, 198, 350–354. [Google Scholar] [CrossRef]
- Moormann, R.; Bouma, A.; Kramps, J.; Terpstra, C.; de Smit, H. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet. Microbiol. 2000, 73, 209–219. [Google Scholar] [CrossRef]
- Blome, S.; Moß, C.; Reimann, I.; König, P.; Beer, M. Classical swine fever vaccines-State-of-the-art. Vet. Microbiol. 2017, 206, 10–20. [Google Scholar] [CrossRef]
- Xia, S.L.; Xiang, G.T.; Lei, J.L.; Du, M.; Wang, Y.; Zhou, M.; Liu, Y.; Ji, S.; Wang, Y.L.; Luo, Y.; et al. Efficacy of the marker vaccine rAdV-SFV-E2 against classical swine fever in the presence of maternally derived antibodies to rAdV-SFV-E2 or C-strain. Vet. Microbiol. 2016, 196, 50–54. [Google Scholar] [CrossRef]
- Segalés, J. Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev. Vaccines 2015, 14, 473–487. [Google Scholar] [CrossRef]
- Ruiz-Gonzalvo, F.; Rodriguez, F.; Escribano, J.M. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 1996, 218, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Puertas, P.; Rodriguez, F.; Oviedo, J.M.; Brun, A.; Alonso, C.; Escribano, J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 1998, 243, 461–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barderas, M.G.; Rodriguez, F.; Gomez-Puertas, P.; Aviles, M.; Beitia, F.; Alonso, C.; Escribano, J.M. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Arch. Virol. 2001, 146, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Neilan, J.G.; Zsak, L.; Lu, Z.; Burrage, T.G.; Kutish, G.F.; Rock, D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobbold, C.; Windsor, M.; Wileman, T. A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J. Virol. 2001, 75, 7221–7229. [Google Scholar] [CrossRef]
- Geng, R.; Sun, Y.; Li, R.; Yang, J.; Ma, H.; Qiao, Z.; Lu, Q.; Qiao, S.; Zhang, G. Development of a p72 trimer-based colloidal gold strip for detection of antibodies against African swine fever virus. Appl. Microbiol. Biotechnol. 2022, 106, 2703–2714. [Google Scholar] [CrossRef]
- Argilaguet, J.; Perez-Martin, E.; Gallardo, C.; Salguero, F.; Borrego, B.; Lacasta, A.; Accensi, F.; Díaz, I.; Nofrarías, M.; Pujols, J.; et al. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine 2011, 29, 5379–5385. [Google Scholar] [CrossRef]
- Argilaguet, J.M.; Pérez-Martín, E.; Nofrarías, M.; Gallardo, C.; Accensi, F.; Lacasta, A.; Mora, M.; Ballester, M.; Galindo-Cardiel, I.; López-Soria, S.; et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE 2012, 7, e40942. [Google Scholar] [CrossRef] [Green Version]
- Lacasta, A.; Ballester, M.; Monteagudo, P.L.; Rodríguez, J.M.; Salas, M.L.; Accensi, F.; Pina-Pedrero, S.; Bensaid, A.; Argilaguet, J.; López-Soria, S.; et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J. Virol. 2014, 88, 13322–13332. [Google Scholar] [CrossRef] [Green Version]
- Jancovich, J.K.; Chapman, D.; Hansen, D.T.; Robida, M.D.; Loskutov, A.; Craciunescu, F.; Borovkov, A.; Kibler, K.; Goatley, L.; King, K.; et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. J. Virol. 2018, 96, e02219-17. [Google Scholar] [CrossRef] [Green Version]
- Sunwoo, S.Y.; Pérez-Núñez, D.; Morozov, I.; Sánchez, E.G.; Gaudreault, N.N.; Trujillo, J.D.; Mur, L.; Nogal, M.; Madden, D.; Urbaniak, K.; et al. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravilov, R.K.; Rizvanov, A.A.; Mingaleev, D.N.; Galeeva, A.G.; Zakirova, E.Y.; Shuralev, E.A.; Rutland, C.S.; Khammadov, N.I.; Efimova, M.A. Viral Vector Vaccines Against ASF: Problems and Prospectives. Front. Vet. Sci. 2022, 9, 830244. [Google Scholar] [CrossRef] [PubMed]
- Lokhandwala, S.; Petrovan, V.; Popescu, L.; Sangewar, N.; Elijah, C.; Stoian, A.; Olcha, M.; Ennen, L.; Bray, J.; Bishop, R.P.; et al. Adenovirus-vectored African swine fever virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet. Microbiol. 2019, 235, 10–20. [Google Scholar] [CrossRef]
- Cadenas-Fernandez, E.; Sánchez-Vizcaino, J.M.; Kosowska, A.; Rivera, B.; Mayoral-Alegre, F.; Rodriguez-Bertos, A.; Yao, J.; Bray, J.; Lokhandwala, S.; Mwangi, W.; et al. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent Arm07 isolate in Eurasian wild boar. Pathogens 2020, 28, 171. [Google Scholar] [CrossRef]
- Netherton, C.L.; Goatley, L.C.; Reis, A.L.; Portugal, R.; Gault, L.E.; Nieto, R.; Norlin, V.; Gallardo, C.; Ho, C.; Sánchez-Cordón, P.J.; et al. Identification and immunogenicity of African swine fever virus antigens. Front. Immunol. 2019, 10, 1318. [Google Scholar] [CrossRef]
- Goatley, L.C.; Reis, A.L.; Portugal, R.; Goldswain, H.; Shimmon, G.L.; Hargreaves, Z.; Ho, C.S.; Montoya, M.; Sánchez-Cordón, P.J.; Taylor, G.; et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines 2020, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Brake, D.A.; (BioQuest Associates, LLC. Stowe, VT, USA). Personal communication, 2022.
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Holinka, L.G.; Velazquez-Salinas, L.; Zhu, J.; Gladue, D.P. Development of a highly effective African swine fever virus vaccine by deletion of the I177 L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2020, 94, e02017-19. [Google Scholar] [CrossRef]
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis. 2021, 69, e497–e504. [Google Scholar] [CrossRef]
- Tran, X.H.; Phuong, L.T.T.; Huy, N.Q.; Thuy, D.T.; Nguyen, V.D.; Quang, P.H.; Ngôn, Q.V.; Rai, A.; Gay, C.G.; Gladue, D.P.; et al. Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L. Viruses 2022, 14, 896. [Google Scholar] [CrossRef]
- Detray, D.E. African swine fever in wart hogs (Phacochoerus aethiopicus). J. Am. Vet. Med. Assoc. 1957, 18, 811–816. [Google Scholar]
- Magrassi, F. Studii sull’infezione e sul- l’immunitor da virus erpetico. Ztschr. Hyg. Infektinskr. 1935, 117, 501–528. [Google Scholar] [CrossRef]
- Hoskins, M. A protective action of neurotropic against viserotropic yellow fever virus in Macacus rhesus. Am. J. Trop. Med. 1935, 15, 675–680. [Google Scholar] [CrossRef]
- Malmquist, W.A. Serologic and immunologic studies with African swine fever virus. Am. J. Vet. Res. 1963, 24, 450–459. [Google Scholar] [PubMed]
- Vigario, J.D.; Terrinha, A.M.; Moura Nunes, J.F. Antigenic relationship among strains of African swine fever virus. Archiv. Gesamte Virusforsch. 1974, 45, 272–277. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Nieto, R.; Sánchez, M.A.; Martins, C.; Pelayo, V.; Carrascosa, A.; Revilla, Y.; Simón, A.; Briones, V.; et al. Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transbound. Emerg. Dis. 2015, 62, 612–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, C.; Sánchez, E.G.; Pérez-Núñez, D.; Nogal, M.; de León, P.; Carrascosa, Á.L.; Nieto, R.; Soler, A.; Arias, M.L.; Revilla, Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine 2018, 36, 2694–2704. [Google Scholar] [CrossRef] [PubMed]
- Boinas, F.S.; Hutchings, G.H.; Dixon, L.K.; Wilkinson, P.J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 2004, 85, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Chapman, D.; Jabbar, T.; Reis, A.L.; Goatley, L.; Netherton, C.L.; Taylor, G.; Montoya, M.; Dixon, L. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antivir. Res. 2017, 138, 1–8. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Jabbar, T.; Chapman, D.; Dixon, L.K.; Montoya, M. Absence of Long-Term Protection in Domestic Pigs Immunized with Attenuated African Swine Fever Virus Isolate OURT88/3 or BeninΔMGF Correlates with Increased Levels of Regulatory T Cells and Interleukin-10. J. Virol. 2020, 94, e00350-20. [Google Scholar] [CrossRef]
- Reis, A.L.; Goatley, L.C.; Jabbar, T.; Lopez, E.; Rathakrishnan, A.; Dixon, L.K. Deletion of the Gene for the Type I Interferon Inhibitor I329L from the Attenuated African Swine Fever Virus OURT88/3 Strain Reduces Protection Induced in Pigs. Vaccines 2020, 8, 262. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Gallardo, C.; Cadenas-Fernández, E.; Jurado, C.; Rivera, B.; Rodríguez-Bertos, A.; Arias, M.; Sánchez-Vizcaíno, J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 2019, 6, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmquist, W.A. Propagation, modification, and hemadsorption of African swine fever virus in cell cultures. Am. J. Vet. Res. 1962, 23, 241–247. [Google Scholar] [PubMed]
- Manso-Ribeiro, J.; Nunes-Petisca, J.L.; Lopez-Frazao, F. and Sobral, M. Vaccination against ASF. Bull. Off. Int. Epizoot. 1963, 60, 921–937. [Google Scholar]
- Petisca, N. Quelques aspects morphogeneis des suites de la vaccination contre la PPA. Bull. Off. Int. Epizoot. 1965, 63, 199–237. [Google Scholar]
- Sereda, A.D.; Balyshev, V.M.; Kazakova, A.S.; Imatdinov, A.R.; Kolbasov, D.V. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens 2020, 9, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, P.W.; Holinka, L.G.; O’Donnell, V.; Reese, B.; Sanford, B.; Fernandez-Sainz, I.; Gladue, D.P.; Arzt, J.; Rodriguez, L.; Risatti, G.R.; et al. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J. Virol. 2015, 89, 2324–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titov, I.; Burmakina, G.; Morgunov, Y.; Morgunov, S.; Koltsov, A.; Malogolovkin, A.; Kolbasov, D. Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge. Arch. Virol. 2017, 162, 3081–3088. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Ge, S.; Zuo, Y.; Lu, H.; Lv, Y.; Han, N.; Cai, Y.; Wu, X.; Wang, Z. Attenuated African swine fever virus through serial passaging of viruses in cell culture: A brief review on the knowledge gathered during 60 years of research. Virus Genes 2022, 1–12. [Google Scholar] [CrossRef]
- Abrams, C.C.; Goatley, L.; Fishbourne, E.; Chapman, D.; Cooke, L.; Oura, C.A.; Netherton, C.L.; Takamatsu, H.H.; Dixon, L.K. Deletion of virulence associated genes from attenuated African swine fever virus isolate OURT 88/3 decreases its ability to protect against challenge with virulent virus. Virology 2013, 443, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Petrovan, V.; Rathakrishnan, A.; Islam, M.; Goatley, L.C.; Moffat, K.; Sanchez-Cordon, P.J.; Reis, A.L.; Dixon, L.K. Role of African Swine Fever Virus Proteins EP153R and EP402R in Reducing Viral Persistence in Blood and Virulence in Pigs Infected with BeninDeltaDP148R. J. Virol. 2022, 96, e0134021. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Holinka, L.G.; Sanford, B.; Krug, P.W.; Carlson, J.; Pacheco, J.M.; Reese, B.; Risatti, G.R.; Gladue, D.P.; Borca, M.V. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Res. 2016, 221, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladue, D.P.; Ot’Donnel, V.; Ramirez-Medina, E.; Rai, A.; Pruitt, S.; Vuono, E.A.; Silva, E.; Velazquez-Salinas, L.; Borca, M.V. Deletion of CD2- like (CD2v) and C-type lectin-like (EP153R) genes from African swine fever virus Georgia-9GL abrogates its effectiveness as an experimental vaccine. Viruses 2020, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Medina, E.; Vuono, E.; O’Donnell, V.; Holinka, L.G.; Silva, E.; Rai, A.; Pruitt, S.; Carrillo, C.; Gladue, D.P.; Borca, M.V. Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses 2019, 11, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, J.M.; Moreno, L.T.; Alejo, A.; Lacasta, A.; Rodríguez, F.; Salas, M.L. Genome Sequence of African Swine Fever Virus BA71, the Virulent Parental Strain of the Nonpathogenic and Tissue-Culture Adapted BA71V. PLoS ONE 2015, 10, e0142889. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo, P.L.; Lacasta, A.; Lopez, L.; Bosch, J.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.; et al. BA71deltaCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 2017, 91, e1058–e1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, E.; van Heerden, J.; Bosch-Camós, L.; Accensi, F.; Navas, M.J.; López-Monteagudo, P.; Argilaguet, J.; Gallardo, C.; Pina-Pedrero, S.; Salas, M.L.; et al. Live Attenuated African Swine Fever Viruses as Ideal Tools to Dissect the Mechanisms Involved in Cross-Protection. Viruses 2020, 12, 1474. [Google Scholar] [CrossRef]
- Lopez, E.; Bosch-Camós, L.; Ramirez-Medina, E.; Vuono, E.; Navas, M.J.; Muñoz, M.; Accensi, F.; Zhang, J.; Alonso, U.; Argilaguet, J.; et al. Deletion Mutants of the Attenuated Recombinant ASF Virus, BA71ΔCD2, Show Decreased Vaccine Efficacy. Viruses. 2021, 13, 1678. [Google Scholar] [CrossRef]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African swine fever in China. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Chi, X.; Yuan, X.; Wen, F.; Rai, K.R.; Wu, L.; Song, Z.; Wang, S.; Guo, G.; Chen, J.L. I226R Protein of African Swine Fever Virus Is a Suppressor of Innate Antiviral Responses. Viruses 2022, 14, 575. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Zhang, J.; Qi, Y. Construction and immunoprotective characterization of gene deleted African swine fever virus vaccine and candidates. Chin. J. Vet. Sci. 2019, 39, 1421–1427. [Google Scholar]
- Zhang, Y.; Ke, J.; Zhang, J.; Yang, J.; Yue, H.; Zhou, X.; Qi, Y.; Zhu, R.; Miao, F.; Li, Q.; et al. African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J. Virol. 2021, 95, e0119921. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Risatti, G.R.; Holinka, L.G.; Krug, P.W.; Carlson, J.; Velazquez-Salinas, L.; Azzinaro, P.A.; Gladue, D.P.; Borca, M.V. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge. J. Virol. 2016, 91, e01760-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teklue, T.; Wang, T.; Luo, Y.; Hu, R.; Sun, Y.; Qiu, H.J. Generation and Evaluation of an African Swine Fever Virus Mutant with Deletion of the CD2v and UK Genes. Vaccines 2020, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 2015, 89, 6048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borca, M.V.; Rai, A.; Ramirez-Medina, E.; Silva, E.; Velazquez-Salinas, L.; Vuono, E.; Pruitt, S.; Espinoza, N.; Gladue, D.P. A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. J. Virol. 2021, 95, e0012321. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 2020, 63, 623. [Google Scholar] [CrossRef]
- O’Donnell, V.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Carlson, J.; Sanford, B.; Alfano, M.; Kramer, E.; Lu, Z.; Arzt, J.; et al. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J. Virol. 2015, 89, 8556. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microbes Infect. 2019, 8, 438. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Yáñez, R.J.; Almazán, F.; Viñuela, E.; Rodriguez, J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J. Virol. 1993, 67, 5312. [Google Scholar] [CrossRef] [Green Version]
- Zsak, L.; Caler, E.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. A Nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J. Virol. 1998, 72, 1035. [Google Scholar] [CrossRef] [Green Version]
- Burrage, T.G.; Lu, Z.; Neilan, J.G.; Rock, D.L.; Zsak, L. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. J. Virol. 2004, 78, 2445. [Google Scholar] [CrossRef] [Green Version]
- Zsak, L.; Lu, Z.; Burrage, T.G.; Neilan, J.G.; Kutish, G.F.; Moore, D.M.; Rock, D.L. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 2001, 75, 3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutschmann, P.; Carrau, T.; Sehl-Ewert, J.; Forth, J.H.; Viaplana, E.; Mancera, J.C.; Urniza, A.; Beer, M.; Blome, S. Taking a Promising Vaccine Candidate Further: Efficacy of ASFV-G-ΔMGF after Intramuscular Vaccination of Domestic Pigs and Oral Vaccination of Wild Boar. Pathogens 2022, 11, 996. [Google Scholar] [CrossRef]
- LaRocco, M.; Krug, P.W.; Kramer, E.; Ahmed, Z.; Pacheco, J.M.; Duque, H.; Baxt, B.; Rodriguez, L.L. A continuous bovine kidney cell line constitutively expressing bovine αvβ6 integrin has increased susceptibility to foot-and-mouth disease virus. J. Clin. Microbiol. 2013, 51, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Espinoza, N.; Velazquez-Salinas, L.; Gay, C.G.; Gladue, D.P. ASFV-G-∆I177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses 2021, 13, 765. [Google Scholar] [CrossRef]
- Tests for Sterility and Freedom from Contamination of Biological Materials Intended for Veterinary Use. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/1.01.09_TESTS_FOR_STERILITY.pdf (accessed on 20 October 2022).
- Minimum Requirements for the Production and Quality Control of Vaccines. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/2.03.04_MANU_SITES_VACCINE_PROD_CONTROL.pdf (accessed on 20 October 2022).
- Velazquez-Salinas, L.; Ramirez-Medina, E.; Rai, A.; Pruitt, S.; Vuono, E.A.; Espinoza, N.; Gladue, D.P.; Borca, M.V. Development Real-Time PCR Assays to Genetically Differentiate Vaccinated Pigs From Infected Pigs With the Eurasian Strain of African Swine Fever Virus. Front. Vet. Sci. 2021, 8, 768869. [Google Scholar] [CrossRef]
- Meloni, D.; Franzoni, G.; Oggiano, A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines 2022, 10, 707. [Google Scholar] [CrossRef]
- Rai, A.; Pruitt, S.; Ramirez-Medina, E.; Vuono, E.A.; Silva, E.; Velazquez-Salinas, L.; Carrillo, C.; Borca, M.V.; Gladue, D.P. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples. Viruses 2020, 12, 820. [Google Scholar] [CrossRef]
- Kwon, H.I.; Do, D.T.; Van Vo, H.; Lee, S.C.; Kim, M.H.; Nguyen, D.T.T.; Tran, T.M.; Le, Q.T.V.; Ngo, T.T.N.; Nguyen, N.M.; et al. Development of optimized protocol for culturing African swine fever virus field isolates in MA104 cells. Can. J. Vet. Res. 2022, 86, 261–268. [Google Scholar]
- Njau, E.P.; Machuka, E.M.; Cleaveland, S.; Shirima, G.M.; Kusiluka, L.J.; Okoth, E.A.; Pelle, R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes. Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Simon-Loriere, E.; Holmes, E.C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011, 9, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Chen, Q.; Wang, L.; Madson, D.; Harmon, K.; Gauger, P.; Zhang, J.; Li, G. Recombination between Vaccine and Field Strains of Porcine Reproductive and Respiratory Syndrome Virus. Emerg. Infect. Dis. 2019, 25, 2335–2337. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Han, Z.; Zhao, Y.; Sun, J.; Liu, S.; Ma, D. Multiple recombination events between field and vaccine strains resulted in the emergence of a novel infectious bronchitis virus with decreased pathogenicity and altered replication capacity. Poult. Sci. 2020, 99, 1928–1938. [Google Scholar] [CrossRef]
- Thiry, E.; Meurens, F.; Muylkens, B.; McVoy, M.; Gogev, S.; Thiry, J.; Vanderplasschen, A.; Epstein, A.; Keil, G.; Schynts, F. Recombination in alphaherpesviruses. Rev. Med. Virol. 2005, 15, 89–103. [Google Scholar] [CrossRef]
- Vallée, G.; Norris, P.; Paszkowski, P.; Noyce, R.S.; Evans, D.H. Vaccinia Virus Gene Acquisition through Nonhomologous Recombination. J. Virol. 2021, 95, e0031821. [Google Scholar] [CrossRef]
- Routh, A.; Johnson, J.E. Discovery of functional genomic motifs in viruses with ViReMa-a Virus Recombination Mapper-for analysis of next-generation sequencing data. Nucleic Acids Res. 2014, 42, e11. [Google Scholar] [CrossRef] [Green Version]
- Sotcheff, S.; Zhou, Y.; Sun, Y.; Johnson, J.E.; Torbett, B.E.; Routh, A.L. ViReMa: A virus recombination mapper of next-generation sequencingdata characterizes diverse recombinant viral nucleic acids. bioRxiv 2022. [Google Scholar] [CrossRef]
- VICH Topic GL41. Guideline on Target Animal Safety: Examination of Live Veterinary Vaccines in Target Animals for Absence of Reversion to Virulence. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl41-target-animal-safety-examination-live-veterinary-vaccines-target-animals-absence-reversion_en.pdf (accessed on 20 October 2022).
- Veterinary Services Memorandum No. 800.201. General Licensing Considerations: Backpassage Studies. Available online: https://www.aphis.usda.gov/animal_health/vet_biologics/publications/memo_800_201.pdf (accessed on 20 October 2022).
- VICH Topic GL44. Guideline on Target Animal Safety for Veterinary Live and Inactivated Vaccines. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl44-target-animal-safety-veterinary-live-inactived-vaccines-step-7_en.pdf (accessed on 20 October 2022).
- Howey, E.B.; O’Donnell, V.; de Carvalho Ferreira, H.C.; Borca, M.V.; Arzt, J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res. 2013, 178, 328. [Google Scholar] [CrossRef]
- Heffernan, J.M.; Smith, R.J.; Wahl, L.M. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2005, 2, 281–293. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Ferreira, H.C.; Weesendorp, E.; Elbers, A.R.; Bouma, A.; Quak, S.; Stegeman, J.A.; Loeffen, W.L. African swine fever virus excretion patterns in persistently infected animals: A quantitative approach. Vet. Microbiol. 2012, 160, 327. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Cardiel, I.; Ballester, M.; Solanes, D.; Nofrarías, M.; López-Soria, S.; Argilaguet, J.M.; Lacasta, A.; Accensi, F.; Rodríguez, F.; Segalés, J. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Res. 2013, 173, 180. [Google Scholar] [CrossRef]
- Malogolovkin, A.; Kolbasov, D. Genetic and Antigenic Diversity of African Swine Fever Virus. Virus Res. 2019, 271, 197673. [Google Scholar] [CrossRef] [PubMed]
- Malmquist, W.A.; Hay, D. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am. J. Vet. Res. 1960, 21, 104. [Google Scholar]
- Njau, E.P.; Domelevo Entfellner, J.B.; Machuka, E.M.; Bochere, E.N.; Cleaveland, S.; Shirima, G.M.; Kusiluka, L.J.; Upton, C.; Bishop, R.P.; Pelle, R.; et al. The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Sci. Rep. 2021, 11, 13081. [Google Scholar] [CrossRef]
- Cell Cultures for the Production of Veterinary Vaccines. Available online: https://file.wuxuwang.com/yaopinbz/EP8/EP8.6_01__18.pdf (accessed on 20 October 2022).
- Code of Federal Regulations. §113.46. Detection of Cytopathogenic and/or Hemadsorbing Agents. Available online: https://www.ecfr.gov/current/title-9/chapter-I/subchapter-E/part-113/subject-group-ECFRdf8f72db5f24969/section-113.46 (accessed on 20 October 2022).
- Code of Federal Regulations. §113.47. Detection of Extraneous Viruses by the Fluorescent Antibody Technique. Available online: https://www.ecfr.gov/current/title-9/chapter-I/subchapter-E/part-113/subject-group-ECFRdf8f72db5f24969/section-113.47 (accessed on 20 October 2022).
- Code of Federal Regulations. §113.51. Requirements for Primary Cells Used for Production of Biologics. Available online: https://www.ecfr.gov/current/title-9/chapter-I/subchapter-E/part-113/subject-group-ECFRa4cbfb362190bc0/section-113.51 (accessed on 20 October 2022).
- Gómez-Villamandos, J.C.; Bautista, M.J.; Sánchez-Cordón, P.J.; Carrasco, L. Pathology of African swine fever: The role of monocyte-macrophage. Virus Res. 2013, 173, 140–149. [Google Scholar] [CrossRef]
- Center of Excellence for African Swine Fever Genomics. Available online: https://www.asfvgenomics.com (accessed on 20 November 2022).
- African Swine Fever. Gap Analysis Report. November 2018. Available online: https://www.ars.usda.gov/ARSUserFiles/np103/SymposiumWorkshopsMeetings/GARA%20Gap%20Analysis%20Report%202018%2011-11-18.pdf (accessed on 20 October 2022).
Prime | Boost | Result | Reference |
---|---|---|---|
DNA | DNA | no protection | [52] |
partial protection | [53] | ||
Viral vector—Vaccinia | no protection | [55] | |
Viral vector—Modified Vaccinia Ankara (MVA) | Viral vector—Adenovirus | no protection | [60] |
protection | [61] | ||
Viral vector—Adenovirus | Viral vector—Adenovirus | no protection | [58,59] |
DNA | Recombinant Protein | no protection | [56] |
Clinical Model—Safety | |||||||
---|---|---|---|---|---|---|---|
Breed | Age/Weight | Route | N | Immunizing Dose | Observation Period (dpv) | Readouts | Comments |
Yorkshire (Y) crossbreed | 80–90 lb | IM | 10 | 102 HAD50 | 28 | CS, T | [63] |
5 | 104 HAD50 | ||||||
5 | 106 HAD50 | ||||||
Y × Landrace (L) crossbreed | 20–30 kg | IM | 5 | 106 HAD50 | 28 | CS, T | [64] |
25 | 102.6 HAD50 | CS | |||||
Vietnamese Mong Cai crossbreed | 20–30 kg | IM | 5 | 101 HAD50 | 28 | CS, T | |
5 | 102 HAD50 | ||||||
5 | 103 HAD50 | ||||||
5 | 104 HAD50 | ||||||
20 | 102.6 HAD50 | CS | |||||
Y × L crossbreed | 7–8 wks. | IM | 4 | 102.6 HAD50 | 28 | CS, T, V NS | [64] |
N/A | 4 | contacts | |||||
10 wks. | IM | 50 | 102.6 HAD50 | 49 | CS, V | field study; 2 doses (D0, 21) [65] | |
N/A | 10 | contacts | |||||
7–8 wks. | IM | 10 | 102.6 HAD50 | 28 | CS, T | 2 doses (D0, 14) [65] | |
6 | 103.3 HAD50 | 14 | 5× overdose [65] | ||||
14 | 10.3.6 HAD50 | 10× overdose [65] | |||||
Y × L crossbreed | 7–8 wks. | IM | 22 | 102.6 HAD50 | 28 | CS | |
Vietnamese Mong Cai crossbreed | 7 wks. | 25 | 2 doses (D0, 14) [65] | ||||
Y × L crossbreed | 6–8 wks. | IM | 17 | 102.6 HAD50 | 28 | backpassage/reversion to virulence [65] |
Clinical Model—Efficacy | |||||||
---|---|---|---|---|---|---|---|
N | Challenge Route | Challenge Dose | Challenge Strain | Challenge Timpoint (dpv) | Observation Period (dpc) | Readouts | Comments |
5 | IM | 103 HAD50 | Georgia | 28 | 21 | CS, T, V, TqPCR | proof-of concept [63] |
5 | |||||||
5 | |||||||
5 | 102 HAD50 | TTKN/ASFV/ DN/2019 | 28 | 15 | CS, T, V NS | efficacy in Yorkshire × Landrace crossbreed [64] | |
25 | CS, T | ||||||
5 | CS, T, V, NS | efficacy in Vietnamese Mong Cai crossbreed [64] | |||||
5 | |||||||
5 | |||||||
5 | |||||||
20 | CS, T | ||||||
18 | 14 | 14 | CS, T | efficacy in Yorkshire × Landrace and Vietnamese Mong Cai crossbreed [64] | |||
5 | 21 | ||||||
10 | 28 |
Primary Laboratory | MLV Vaccine Candidate | Lab Production Method (Manufacturing/Purity) | Analytical Method (Potency) | Refs. |
---|---|---|---|---|
CReSA, IRTA-UAB | BA71ΔCD2 | COS-1 | PFU/mL on COS-1 | [92,93] |
Changchun Veterinary Research Institute | SY18ΔI226R * | Pulmonary alveolar macrophages (PAMs) [ASFV, CSFV, PRRSV, PRV, PPV, PCV 1/2 free by RT-PCR] | TCID50/mL on PAMs | [98] |
USDA ARS | ASFV-G-Δ9GL/ΔUK * | blood monocyte-derived macrophages (MDMs) from commercial breed; excludes study that used proprietary/unnamed continuous cell line [110] | HAD50/mL on MDMs | [99] |
ASFV-G-ΔMGF * | [101] | |||
ASFV-G-ΔI177L/ΔLVR * | [102] | |||
Harbin Veterinary Research Institute | ASFV-SY18-∆CD2v/UK * | PAMs from SPF pigs | TCID50/mL on PAMs | [100] |
HLJ/18-7GD * | [103] | |||
Navetco | ASFV-G-ΔI177L * | PAMs form SPF pigs | HAD50/mL on MDMs | [64,65] |
Complutense University of Madrid; INIA-CISA | Lv17/WB/Rie1 * | blood monocyte-derived macrophages (MDMs) | TCID50/mL on PAMs | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brake, D.A. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022, 14, 2619. https://doi.org/10.3390/v14122619
Brake DA. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses. 2022; 14(12):2619. https://doi.org/10.3390/v14122619
Chicago/Turabian StyleBrake, David A. 2022. "African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines" Viruses 14, no. 12: 2619. https://doi.org/10.3390/v14122619
APA StyleBrake, D. A. (2022). African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses, 14(12), 2619. https://doi.org/10.3390/v14122619