Evaluation of Rapid Lateral-Flow Tests Directed against the SARS-CoV-2 Nucleoprotein Using Viral Suspensions Belonging to Different Lineages of SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viral Strains
2.2. Titration of Viral Strains in Cell Culture
2.3. Quantitative RT-PCR
2.4. Rapid Antigen Tests (RFLT)
2.5. Sequence and Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 10 October 2022).
- Mina, M.J.; Parker, R.; Larremore, D.B. Rethinking COVID-19 test sensitivity. A strategy for containment. N. Engl. J. Med. 2020, 383, e120. [Google Scholar] [CrossRef] [PubMed]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef] [PubMed]
- European Commission. COVID-19 In Vitro Diagnostic Medical Devices. Available online: https://covid-19-diagnostics.jrc.ec.europa.eu/devices/3?manufacturer=&text_name=&marking=Yes&rapid_diag=1&format=&target_type=6&search_method=AND#form_content (accessed on 10 November 2022).
- Caruana, G.; Croxatto, A.; Kampouri, E.; Kritikos, A.; Opota, O.; Foerster, M.; Brouillet, R.; Senn, L.; Lienhard, R.; Egli, A. Implementing SARS-CoV-2 Rapid antigen testing in the emergency ward of a Swiss University Hospital: The INCREASE study. Microorganisms 2021, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- Okoye, G.A.; Kamara, H.I.; Strobeck, M.; Mellman, T.A.; Kwagyan, J.; Sullivan, A.; Byrd, A.S.; Shokrani, B.; Mighty, H.E. Diagnostic accuracy of a rapid diagnostic test for the early detection of COVID-19. J. Clin. Virol. 2022, 147, 105023. [Google Scholar] [CrossRef] [PubMed]
- Karon, B.S.; Donato, L.J.; Bridgeman, A.R.; Blommel, J.H.; Kipp, B.; Maus, A.; Renuse, S.; Kemp, J.; Madugundu, A.K.; Vanderboom, P.M.; et al. Vanderboom PMAnalytical sensitivity and specificity of four point of care rapid antigen diagnostic tests for SARS-CoV-2 using real-time quantitative PCR, quantitative droplet digital PCR, and a mass spectrometric antigen assay as comparator methods. Clin. Chem. 2021, 67, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Bekliz, M.; Adea, K.; Essaidi-Laziosi, M.; Sacks, J.A.; Escadafal, C.; Kaiser, L.; Eckerle, I. SARS-CoV-2 antigen-detecting rapid tests for the delta variant. Lancet Microbe 2022, 3, e90. [Google Scholar] [CrossRef] [PubMed]
- Schuit, E.; Veldhuijzen, I.K.; Venekamp, R.P.; van den Bijllaardt, W.; Pas, S.D.; Lodder, E.B.; Molenkamp, R.; GeurtsvanKessel, C.H.; Velzing, J.; Huisman, R.C.; et al. Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: Cross sectional study. BMJ 2021, 374, n1676. [Google Scholar] [CrossRef] [PubMed]
- Deerain, J.; Druce, J.; Tran, T.; Batty, M.; Yoga, Y.; Fennell, M.; Dwyer, D.E.; Kok, J.; Williamson, D.A. Assessment of the analytical sensitivity of 10 lateral flow devices against the SARS-CoV-2 Omicron variant. J. Clin. Microbiol. 2022, 60, e0247921. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.F.; Selvam, K.; Jeffry, A.J.N.; Salmi, M.F.; Najib, M.A.; Norhayati, M.N.; Aziah, I. Performance of rapid antigen tests for COVID-19 diagnosis: A systematic review and meta-analysis. Diagnostics 2022, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Bekliz, M.; Adea, K.; Puhach, O.; Perez-Rodriguez, F.; Marques Melancia, S.; Baggio, S.; Corvaglia, A.R.; Jacquerioz, F.; Alvarez, C.; Essaidi-Laziosi, M.; et al. Analytical sensitivity of eight different SARS-CoV-2 antigen-detecting rapid tests for Omicron-BA.1 variant. Microbiol. Spectr. 2022, 10, e0085322. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Sharma, P.; Berhane, S.; van Wyk, S.S.; Nyaaba, N.; Domen, J.; Taylor, M.; Cunningham, J.; Davenport, C.; Dittrich, S.; et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2022, 7, CD013705. [Google Scholar] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Jaafar, R.; Aherfi, S.; Wurtz, N.; Grimaldier, C.; van Hoang, T.; Colson, P.; Raoult, D.; la Scola, B. Correlation between 3790 quantitative polymerase chain reaction-positives samples and positive cell cultures, including 1941 severe acute respiratory syndrome coronavirus 2 isolates. Clin. Infect. Dis. 2021, 72, e921, Erratum in Clin. Infect. Dis. 2021, 73, 1745. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; A Spencer, E.; Brassey, J.; Heneghan, C. Viral cultures for Coronavirus Disease 2019 infectivity assessment: A systematic review. Clin. Infect. Dis. 2021, 73, e3884-99. [Google Scholar] [CrossRef] [PubMed]
- Kanji, J.N.; Proctor, D.T.; Stokes, W.; Berenger, B.M.; Silvius, J.; Tipples, G.; Joffe, A.M.; Venner, A.A. Multicenter postimplementation assessment of the positive predictive value of SARS-CoV-2 antigen-based point-of-care tests used for screening of asymptomatic continuing care staff. J. Clin. Microbiol. 2021, 59, e0141121. [Google Scholar] [CrossRef] [PubMed]
- Ollier, Q.; Pillet, S.; Mory, O.; Gagnaire, J.; Thuiller, C.; Annino, N.; Gagneux-Brunon, A.; Botelho-Nevers, E.; Bourlet, T.; Pozzetto, B.; et al. Prospective evaluation of the point-of-care use of a rapid antigenic SARS-CoV-2 immunochromatographic test in a paediatric emergency department. Clin. Microbiol. Infect. 2022, 28, e1–e734. [Google Scholar] [CrossRef] [PubMed]
- Gagnaire, J.; Bonjean, P.; Verot, E.; Boulamail, B.; Labetoulle, R.; Gonzalo, S.; Hilliquin, D.; Pillet, S.; Michaud, P.; Brebion, A.; et al. SARS-CoV-2 rapid test versus RT-qPCR on noninvasive respiratory self-samples during a city mass testing campaign. J. Infect. 2022, 85, 90–122. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, R.; Ghosh, A.; Mohindra, R.; Singla, V.; Goyal, K.; Gudisa, R.; Sharma, V.; Mohan, L.; Kaur, N.; Mohi, G.K.; et al. Rapid antigen detection kit for the diagnosis of SARS-CoV-2: Are we missing asymptomatic patients? Indian J. Med. Microbiol. 2021, 39, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.; Realegeno, S.; Pride, D.T. Comparison of two nucleic acid amplification tests (NAATs) and two antigen tests for detection of SARS-CoV-2 from upper respiratory specimens. J. Clin. Virol. Plus. 2021, 1, 100011. [Google Scholar] [CrossRef] [PubMed]
Manufacturer | Commercial Name | Device Identification Number | Clinical Performance (Independent Results) (Tested Specimens Were NP If Unspecified) | Clinical Performance (Manufacturer) | Countries of Completed Validation Studies | SARS-CoV-2 Target Protein | Specimen | Date of Inclusion in EU Common List |
---|---|---|---|---|---|---|---|---|
AAZ-LMB | COVID-Viro | 1833 | Prospective clinical field study
| Nasal swab, NP swab ss: 96.6%; sp: 100% | France Switzerland | Nucleoprotein | Nasal swab NP swab | 10 May 2021 |
Abbott Rapid Diagnostics | Panbio™ COVID-19 Ag Rapid Test | 1232 | Prospective clinical field studies
| NP swab (CT ≤ 33) ss: 91.4%; sp: 99.8% Nasal swab (CT ≤ 33) ss: 98.1%; sp: 99.8% | Belgium Germany (2) Spain Finland Netherlands (5) Portugal Sweden Switzerland India Norway UK | Nucleoprotein | Nasal swab NP swab | 17 February 2021 |
Becton-Dickinson | BD Veritor™ System for Rapid Detection of SARS-CoV-2 | 1065 | Prospective clinical field studies
| Nasal swab ss: 91.1 % sp: 99.6 % | Germany (2) Spain Netherlands Sweden | Nucleoprotein | Nasal swab | 7 July 2021 |
BioSpeedia International | COVID19 Speed-Antigen Test BSD_0503 | 2380 | Prospective clinical field study
| NP swab ss: 97.5% sp: 99.3% | France | Nucleocapsid protein | NP swab | 21 January 2022 |
Tested Strains | Sensitivity Ranking |
---|---|
19A | AAZ > BS = Ab > BD |
20A | BS = Ab > AAZ > BD |
Alpha | BS = Ab > AAZ = BD |
Beta | BS = Ab = AAZ > BD |
Gamma | BS > AAZ = Ab > BD |
Delta | BS = Ab > BD > AAZ |
Omicron | BS = Ab = AAZ > BD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillet, S.; Courtieux, J.; Gonzalo, S.; Bechri, I.; Bourlet, T.; Valette, M.; Bal, A.; Pozzetto, B. Evaluation of Rapid Lateral-Flow Tests Directed against the SARS-CoV-2 Nucleoprotein Using Viral Suspensions Belonging to Different Lineages of SARS-CoV-2. Viruses 2022, 14, 2628. https://doi.org/10.3390/v14122628
Pillet S, Courtieux J, Gonzalo S, Bechri I, Bourlet T, Valette M, Bal A, Pozzetto B. Evaluation of Rapid Lateral-Flow Tests Directed against the SARS-CoV-2 Nucleoprotein Using Viral Suspensions Belonging to Different Lineages of SARS-CoV-2. Viruses. 2022; 14(12):2628. https://doi.org/10.3390/v14122628
Chicago/Turabian StylePillet, Sylvie, Julien Courtieux, Sylvie Gonzalo, Issam Bechri, Thomas Bourlet, Martine Valette, Antonin Bal, and Bruno Pozzetto. 2022. "Evaluation of Rapid Lateral-Flow Tests Directed against the SARS-CoV-2 Nucleoprotein Using Viral Suspensions Belonging to Different Lineages of SARS-CoV-2" Viruses 14, no. 12: 2628. https://doi.org/10.3390/v14122628
APA StylePillet, S., Courtieux, J., Gonzalo, S., Bechri, I., Bourlet, T., Valette, M., Bal, A., & Pozzetto, B. (2022). Evaluation of Rapid Lateral-Flow Tests Directed against the SARS-CoV-2 Nucleoprotein Using Viral Suspensions Belonging to Different Lineages of SARS-CoV-2. Viruses, 14(12), 2628. https://doi.org/10.3390/v14122628