Four Waves of the COVID-19 Pandemic: Comparison of Clinical and Pregnancy Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Study Setting
2.3. Study Variables
2.4. Signs, Symptoms, and Characteristics of the COVID-19 Infection
2.5. Clinical Endpoints
2.6. Maternal, Newborns Parameters, and Obstetrical Characteristics
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, V.M.; Nikolić, N.; Radovanović Nenadić, U.; Öcal, A.; Noji, K.E.; Zečević, M. Preparedness and Preventive Behaviors for a Pandemic Disaster Caused by COVID-19 in Serbia. Int. J. Environ. Res. Public Health 2020, 17, 4124. [Google Scholar] [CrossRef]
- Vujčić, I.; Safiye, T.; Milikić, B.; Popović, E.; Dubljanin, D.; Dubljanin, E.; Dubljanin, J.; Čabarkapa, M. Coronavirus Disease 2019 (COVID-19) Epidemic and Mental Health Status in the General Adult Population of Serbia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 1957. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.; Chandra Ravula, P.; Devi, S.; Yerubandi, S. The effect of the Covid pandemic and lockdown on stillbirth rates in a South Indian perinatal centre. J. Perinat. Med. 2022, 50, 660–667. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://covid19.who.int/region/euro/country/rs (accessed on 17 November 2022).
- Tekelab, T.; Chojenta, C.; Smith, R.; Loxton, D. The impact of antenatal care on neonatal mortality in sub-Saharan Africa: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0222566. [Google Scholar] [CrossRef] [Green Version]
- Konje, J.C. Antenatal and prepregnancy care—Prevention of perinatal morbidity and mortality. J. Perinat. Med 2018, 46, 697–700. [Google Scholar] [CrossRef]
- Antonelli, M.; Pujol, J.C.; Spector, T.D.; Ourselin, S.; Steves, C.J. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 2022, 399, 2263–2264. [Google Scholar] [CrossRef] [PubMed]
- Vasireddy, D.; Vanaparthy, R.; Mohan, G.; Malayala, S.V.; Atluri, P. Review of COVID-19 Variants and COVID-19 Vaccine Efficacy: What the Clinician Should Know? J. Clin. Med. Res. 2021, 13, 317–325. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Singh, I.; Patra, G. Aerosol transmission of SARS-CoV-2: The unresolved paradox. Travel. Med. Infect. Dis. 2020, 37, 101869. [Google Scholar]
- Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Jacquérioz, F.; Kaiser, L.; Vetter, P.; Eckerle, I.; et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 2022, 28, 1491–1500. [Google Scholar] [CrossRef]
- Del Rio, C.; Malani, P.N.; Omer, S.B. Confronting the Delta variant of SARS-CoV-2, summer 2021. JAMA 2021, 326, 1001–1002. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Tang, X.; He, D. The Disease Severity and Clinical Outcomes of the SARS-CoV-2 Variants of Concern. Front. Public Health 2021, 9, 775224. [Google Scholar] [CrossRef]
- Andeweg, S.P.; Vennema, H.; Veldhuijzen, I.; Smorenburg, N.; Schmitz, D.; Zwagemaker, F.; van Gageldonk-Lafeber, A.B.; Hahné, S.J.M.; Reusken, C.; Knol, M.J.; et al. Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variant compared to Alpha variant in vaccinated individuals. Sci. Transl. Med. 2022, eabn4338. [Google Scholar] [CrossRef]
- Shiehzadegan, S.; Alaghemand, N.; Fox, M.; Venketaraman, V. Analysis of the Delta Variant B.1.617.2 COVID-19. Clin. Pract. 2021, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Dyer, O. COVID-19: Omicron is causing more infections but fewer hospital admissions than delta, South African data show. BMJ 2021, 375, n3104. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Ha, E.H.; Choe, K.W.; Lee, S.; Jo, D.H.; Lee, W.J. Persistent Symptoms After Acute COVID-19 Infection in Omicron Era. J. Korean Med. Sci. 2022, 37, e213. [Google Scholar] [CrossRef]
- Tiecco, G.; Storti, S.; Degli Antoni, M.; Focà, E.; Castelli, F.; Quiros-Roldan, E. Omicron Genetic and Clinical Peculiarities That May Overturn SARS-CoV-2 Pandemic: A Literature Review. Int. J. Mol. Sci. 2022, 23, 1987. [Google Scholar] [CrossRef]
- Cantwell, R.; Clutton-Brock, T.; Cooper, G.; Dawson, A.; Drife, J.; Garrod, D.; Harper, A.; Hulbert, D.; Lucas, S.; McClure, J.; et al. Saving Mothers’ Lives: Reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG 2011, 118 (Suppl. S1), 1–203. [Google Scholar] [PubMed]
- Vousden, N.; Ramakrishnan, R.; Bunch, K.; Morris, E.; Simpson, N.; Gale, C.; O’Brien, P.; Quigley, M.; Brocklehurst, P.; Kurinczuk, J.J.; et al. Management and implications of severe COVID-19 in pregnancy in the UK: Data from the UK Obstetric Surveillance System national cohort. Acta Obstet. Gynecol. Scand. 2022, 101, 461–470. [Google Scholar] [CrossRef]
- Adhikari, E.H.; SoRelle, J.A.; McIntire, D.D.; Spong, C.Y. Increasing severity of COVID-19 in pregnancy with Delta (B.1.617.2) variant surge. Am. J. Obstet. Gynecol. 2022, 226, 149–151. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Mak, T.M.; Cui, L.; Toh, M.P.H.S.; Lim, Y.D.; Lee, P.H.; Lee, T.H.; Chia, P.Y.; et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. 2022, 75, e1128–e1136. [Google Scholar] [CrossRef]
- Despotovic, A.; Milosevic, B.; Cirkovic, A.; Vujovic, A.; Cucanic, K.; Cucanic, T.; Stevanovic, G. The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics 2021, 10, 1146. [Google Scholar] [CrossRef] [PubMed]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybyciński, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Łos, M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updates 2021, 59, 100794. [Google Scholar] [CrossRef]
- Lee, K.H.; Yoon, S.; Jeong, G.H.; Kim, J.Y.; Han, Y.J.; Hong, S.H.; Ryu, S.; Kim, J.S.; Lee, J.Y.; Yang, J.W.; et al. Efficacy of Corticosteroids in Patients with SARS, MERS and COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2392. [Google Scholar] [CrossRef]
- Magala Ssekandi, A.; Sserwanja, Q.; Olal, E.; Kawuki, J.; Bashir Adam, M. Corticosteroids Use in Pregnant Women with COVID-19: Recommendations from Available Evidence. J. Multidiscip. Healthc. 2021, 14, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Zhaori, G. Further standardization and safety issues for antiviral therapy during pregnancy. Pediatr. Investig. 2020, 4, 148–149. [Google Scholar] [CrossRef]
- Louchet, M.; Sibiude, J.; Peytavin, G.; Picone, O.; Tréluyer, J.M.; Mandelbrot, L. Placental transfer and safety in pregnancy of medications under investigation to treat coronavirus disease 2019. Am. J. Obstet. Gynecol. MFM 2020, 2, 100159. [Google Scholar] [CrossRef]
- Budi, D.S.; Pratama, N.R.; Wafa, I.A.; Putra, M.; Wardhana, M.P.; Wungu, C.D.K. Remdesivir for pregnancy: A systematic review of antiviral therapy for COVID-19. Heliyon 2022, 8, e08835. [Google Scholar] [CrossRef] [PubMed]
- RCOG. Coronavirus (COVID-19) Infection in Pregnancy. In Information for Health Care Professionals; Royal College of Obstetricians and Gynaecologists: London, UK; Available online: https://www.rcog.org.uk/guidance/coronavirus-covid-19-pregnancy-and-women-s-health/coronavirus-covid-19-infection-in-pregnancy (accessed on 20 June 2021).
- Righini, M.; Robert-Ebadi, H.; Le Gal, G. Diagnosis of acute pulmonary embolism. J. Thromb. Haemost. 2017, 15, 1251–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merli, G.J. Low-molecular-weight heparins versus unfractionated heparin in the treatment of deep vein thrombosis and pulmonary embolism. Am. J. Phys. Med. Rehabil. 2000, 79 (Suppl. S5), 9–16. [Google Scholar]
- Van der Pol, L.M.; Mairuhu, A.T.; Tromeur, C.; Couturaud, F.; Huisman, M.V.; Klok, F.A. Use of clinical prediction rules and D-dimer tests in the diagnostic management of pregnant patients with suspected acute pulmonary embolism. Blood Rev. 2017, 31, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Van der Pol, L.M.; Tromeur, C.; Bistervels, I.M.; Ni Ainle, F.; van Bemmel, T.; Bertoletti, L.; Couturaud, F.; van Dooren, Y.P.A.; Elias, A.; Faber, L.M.; et al. Pregnancy-Adapted YEARS Algorithm for Diagnosis of Suspected Pulmonary Embolism. N. Engl. J. Med. 2019, 380, 1139–1149. [Google Scholar] [CrossRef]
- Caci, G.; Albini, A.; Malerba, M.; Noonan, D.M.; Pochetti, P.; Polosa, R. COVID-19 and Obesity: Dangerous Liaisons. J. Clin. Med. 2020, 9, 2511. [Google Scholar] [CrossRef] [PubMed]
- Demeulemeester, F.; de Punder, K.; van Heijningen, M.; van Doesburg, F. Obesity as a Risk Factor for Severe COVID-19 and Complications: A Review. Cells 2021, 10, 933. [Google Scholar] [CrossRef]
- Sanoudou, D.; Hill, M.A.; Belanger, M.J.; Arao, K.; Mantzoros, C.S. Editorial: Obesity, metabolic phenotypes and COVID-19. Metabolism 2022, 128, 155121. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, M.; Filimonovic, D.; Mihajlovic, S.; Milicic, B.; Filipovic, I.; Rovcanin, M.; Dimitrijevic, D.; Nikolic, D. The Influence of Increased Prepregnancy Body Mass Index and Excessive Gestational Weight Gain on Pregnancy Course and Fetal and Maternal Perinatal Outcomes. Healthcare 2020, 4, 362. [Google Scholar] [CrossRef]
- Pathirathna, M.L.; Samarasekara, B.P.P.; Dasanayake, T.S.; Saravanakumar, P.; Weerasekara, I. Adverse Perinatal Outcomes in COVID-19 Infected Pregnant Women: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Papapanou, M.; Papaioannou, M.; Petta, A.; Routsi, E.; Farmaki, M.; Vlahos, N.; Siristatidis, C. Maternal and Neonatal Characteristics and Outcomes of COVID-19 in Pregnancy: An Overview of Systematic Reviews. Int. J. Environ. Res. Public Health 2021, 18, 596. [Google Scholar] [CrossRef]
- Teixeira, M.L.B.; Costa Ferreira Júnior, O.D.; João, E.; Fuller, T.; Silva Esteves, J.; Mendes-Silva, W.; Carvalho Mocarzel, C.; Araújo Maia, R.; Theodoro Boullosa, L.; Gonçalves, C.C.A.; et al. Maternal and Neonatal Outcomes of SARS-CoV-2 Infection in a Cohort of Pregnant Women with Comorbid Disorders. Viruses 2021, 13, 1277. [Google Scholar] [CrossRef]
- Vimercati, A.; De Nola, R.; Trerotoli, P.; Metta, M.E.; Cazzato, G.; Resta, L.; Malvasi, A.; Lepera, A.; Ricci, I.; Capozza, M.; et al. COVID-19 Infection in Pregnancy: Obstetrical Risk Factors and Neonatal Outcomes—A Monocentric, Single-Cohort Study. Vaccines 2022, 10, 166. [Google Scholar] [CrossRef]
- Harrison, M.S.; Goldenberg, R.L. Global burden of prematurity. Semin. Fetal Neonatal Med. 2016, 2, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, K.; Bogdanović, D.; Stošić, L. Trends and Causes of Neonatal Mortality in Serbia, 1997–2016. Balkan Med. J. 2020, 37, 144–149. [Google Scholar] [CrossRef]
- Cruz Melguizo, S.; de la Cruz Conty, M.L.; Carmona Payán, P.; Abascal-Saiz, A.; Pintando Recarte, P.; González Rodríguez, L.; Cuenca Marín, C.; Martínez Varea, A.; Oreja Cuesta, A.B.; Rodríguez, P.P.; et al. On Behalf of The Spanish Obstetric Emergency Group S O E G. Pregnancy Outcomes and SARS-CoV-2 Infection: The Spanish Obstetric Emergency Group Study. Viruses 2021, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- DeSisto, C.L.; Wallace, B.; Simeone, R.M.; Polen, K.; Ko, J.Y.; Meaney-Delman, D.; Ellington, S.R. Risk for Stillbirth Among Women with and Without COVID-19 at Delivery Hospitalization—United States, March 2020–September 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
Wave 1 n = 61 | Wave 2 n = 38 | Wave 3 n = 47 | Wave 4 n = 46 | p-Value | ||
---|---|---|---|---|---|---|
Age, MV ± SD (95% CI) | 29.62 ± 5.87 (28.12–31.13) | 31.47 ± 4.29 (30.07–32.88) | 31.60 ± 5.33 (30.03–33.16) | 30.52 ± 5.28 (28.95–32.09) | 0.199 * | |
BMI, N (%) | Normal weight | 14 (23%) | 8 (21%) | 12 (25.5%) | 19 (41.3%) | <0.001 ** |
Overweight | 39 (63.9%) | 21 (55.3%) | 23 (48.9%) | 9 (19.6%) | ||
Obese | 8 (13.1%) | 9 (23.7%) | 12 (25.5%) | 18 (39.1%) | ||
Parity | 1 | 31 (50.8%) | 20 (52.7%) | 20 (42.6%) | 21 (45.7%) | 0.442 ** |
2 | 21 (34.4%) | 11 (28.9%) | 23 (48.9%) | 13 (28.3%) | ||
3 | 8 (13.1%) | 6 (15.8%) | 3 (6.4%) | 11 (23.9%) | ||
4 | 1 (1.6%) | 1 (2.6%) | 1 (2.1%) | 1 (2.1%) | ||
Gestational age at admission MV ± SD (95% CI) | 266.64 ± 5.05 (256.55–276.73) | 252.53 ± 10.39 (231.48–273.57) | 244.80 ± 10.21 (224.23–265.37) | 254.7 ± 4.99 (244.63–264.78) | 0.011 *** | |
Prematurity | Preterm | 11 (18.6%) | 8 (21.1%) | 7 (16.3%) | 22 (50%) | 0.002 ** |
Term | 48 (81.4%) | 30 (78.9%) | 35 (81.4%) | 22 (50%) | ||
Postterm | 0 (0%) | 0 (0%) | 1 (2.3%) | 0 (0%) | ||
Gestational hypertension | Yes | 5 (8.2%) | 4 (10.5%) | 5 (10.6%) | 8 (17.4%) | 0.513 ** |
No | 56 (91.8%) | 34 (89.5%) | 42 (89.4%) | 38 (82.6%) | ||
Preeclampsia | Yes | 1 (1.6%) | 2 (5.3%) | 3 (6.4%) | 5 (10.9%) | 0.241 ** |
No | 60 (98.4%) | 36 (94.7%) | 44 (93.6%) | 41 (89.1%) | ||
Gestational diabetes | Yes | 0 (0%) | 3 (7.9%) | 8 (17%) | 3 (6.5%) | 0.010 ** |
No | 61 (100%) | 35 (92.1%) | 39 (83%) | 43 (93.5%) | ||
Anemia in pregnancy | Yes | 22 (36.1%) | 14 (36.8%) | 19 (40.4%) | 16 (34.8%) | 0.949 ** |
No | 39 (63.9%) | 24 (63.2%) | 28 (59.6%) | 30 (65.2%) | ||
PROM | Yes | 2 (3.3%) | 11 (28.9%) | 3 (6.5%) | 2 (4.5%) | <0.001 ** |
No | 53 (86.9%) | 25 (65.8%) | 41 (89.1%) | 41 (93.2%) | ||
Pregnancy outcome, N (%) | Livebirth | 58 (96.7%) | 37 (97.4%) | 44 (93.6%) | 38 (82.6%) | 0.019 ** |
Stillbirth | 1 (1.7%) | 1 (2.6%) | 1 (2.1%) | 8 (17.4%) | ||
Miscarriage | 1 (1.7%) | 0 (0%) | 2 (4.3%) | 0 (0%) | ||
Abnormal uterine bleeding | Yes | 1 (1.6%) | 1 (2.6%) | 0 (0%) | 1 (2.6%) | 0.767 ** |
No | 60 (98.4%) | 37 (97.4%) | 61 (100%) | 37 (97.4%) | ||
Amniotic fluid index MV ± SD (95% CI) | 117.38 ± 4.39 (108.59–126.16) | 109 ± 5.35 (98.37–120.06) | 116.25 ± 5.96 (104.24–128.26) | 126 ± 5.18 (116.44–137.37) | 0.049 *** | |
Placental maturity grading MV ± SD (95% CI) | 2.45 ± 0.10 (2.25–2.66) | 2.66 ± 0.13 (2.39–2.93) | 2.44 ± 0.14 (2.15–2.73) | 2.21 ± 0.12 (1.97–2.45) | 0.013 *** | |
Intrauterine growth restriction | Yes | 4 (6.6%) | 1 (2.6%) | 1 (2.2%) | 2 (4.7%) | 0.681 * |
No | 57 (93.4%) | 37 (97.4%) | 44 (97.8%) | 41 (95.3%) | ||
Large for gestational age | Yes | 1 (1.6%) | 2 (5.3%) | 1 (2.2%) | 1 (2.3%) | 0.733 * |
No | 60 (98.4%) | 36 (94.7%) | 44 (97.8%) | 42 (97.7%) | ||
Fetal antenatal maturation | Yes | 6 (9.8%) | 2 (5.3%) | 4 (8.9%) | 13 (29.5%) | 0.004 * |
No | 55 (90.2%) | 36 (94.7%) | 41 (91.1%) | 31 (70.5%) | ||
Delivery mode | Spontaneous | 6 (10%) | 4 (10.5) | 5 (10.9%) | 7 (16.3%) | 0.200 * |
Stimulated | 22 (36.7%) | 15 (39.5%) | 17 (37%) | 14 (32.6%) | ||
Induction of labor | 9 (15%) | 3 (7.9%) | 0 (0%) | 6 (14%) | ||
Elective Cesarean Section | 12 (20%) | 2 (5.3%) | 11 (23.9%) | 3 (7%) | ||
Emergency Cesarean Section | 8 (13.3%) | 10 (26.3%) | 11 (23.9%) | 12 (27.9%) | ||
Assisted birth | 2 (3.3%) | 2 (5.3%) | 1 (2.2%) | 1 (2.3%) | ||
Apgar score 1st min MV ± SD (95% CI) | 8.25 ± 0.22 (7.8–8.7) | 7.63 ± 0.41 (6.8–8.46) | 7.53 ± 0.45 (6.62–8.44) | 7.02 ± 0.49 (6.04–8.01) | 0.262 *** | |
Apgar score 5th min MV ± SD (95% CI) | 9.23 ± 0.25 (8.74–9.72) | 8.79 ± 0.43 (7.93–9.65) | 8.53 ± 0.49 (7.54–9.52) | 7.95 ± 0.54 (6.86–9.05) | 0.215 *** |
Wave 1 n = 61 | Wave 2 n = 38 | Wave 3 n = 47 | Wave 4 n = 46 | p-Value | ||
---|---|---|---|---|---|---|
Number of days of hospitalization MV ± SD (95% CI) | 5.16 ± 0.36 (4.45–5.88) | 6.26 ± 0.80 (4.65–7.88) | 6.23 ± 0.55 (5.13–7.34) | 10.67 ± 1.42 (7.82–13.53) | 0.007 * | |
Number of days in intensive care unit MV ± SD (95% CI) | 0.34 ± 0.23 (0.11–0.80) | 0.82–0.52 (0.23–1.86) | 0.68 ± 0.35 (0.03–1.39) | 3.65 ± 1.27 (1.09–6.22) | 0.014 * | |
X-ray confirmed pneumonia | Yes | 10 (16.4%) | 8 (21.1%) | 19 (40.4%) | 26 (57.8%) | <0.001 ** |
No | 51 (83.6%) | 30 (78.9%) | 28 (59.6%) | 19 (42.2%) | ||
CT performed | Yes | 7 (11.5%) | 12 (31.6%) | 16 (34%) | 15 (32.6%) | 0.019 ** |
No | 54 (88.5%) | 26 (68.4%) | 31 (66%) | 31 (67.4%) | ||
Non-invasive oxygen therapy requirement | Yes | 3 (4.9%) | 6 (15.8%) | 9 (19.1%) | 17 (37%) | <0.001 ** |
No | 58 (95.1%) | 32 (84.2%) | 38 (80.9%) | 29 (63%) | ||
Number of days of non-invasive oxygen MV ± SD (95% CI) | 0.26 ± 0.201 (0.14–0.66) | 1.24 ± 0.609 (0.00–2.47) | 1.52 ± 0.663 (0.19–2.86) | 5.68 ± 1.45 (2.75–8.61) | <0.001 * | |
Progression of COVID infection | Yes | 5 (8.2%) | 7 (18.4%) | 7 (14.9%) | 13 (28.9%) | 0.043 ** |
No | 56 (91.8%) | 31 (81.6%) | 40 (85.1%) | 32 (71.1%) | ||
The peak of deterioration from begging of hospitalization (day) | 3.16 ± 2.57 (2.51–3.82) | 6.78 ± 4.97 (5.13–8.44) | 7.51 ± 3.68 (6.43–8.59) | 7.52 ± 5.61 (5.86–9.19) | <0.001 * | |
Number of prescribed antibiotics MV ± SD (95% CI) | 1.26 ± 0.114 (1.03–1.49) | 1.68 ± 0.239 (1.20–2.17) | 1.74 ± 0.179 (1.39–2.10) | 2.35 ± 0.28 (1.79–2.91) | <0.001 * | |
Corticosteroids | Yes | 2 (3.3%) | 4 (10.5%) | 3 (6.4%) | 16 (34.8%) | <0.001 ** |
No | 59 (96.7%) | 34 (89.5%) | 44 (93.6%) | 30 (65.2%) | ||
Antiviral drugs | Yes | 6 (9.8%) | 0 (0%) | 0 (0%) | 3 (6.5%) | 0.045 ** |
No | 55 (90.2%) | 38 (100%) | 46 (100%) | 43 (93.5%) | ||
Low-molecular-weight heparin | Yes | 20 (32.8%) | 32 (84.2%) | 45 (95.7%) | 36 (78.3%) | <0.001 ** |
No | 41 (67.2%) | 6 (15.8%) | 2 (4.3%) | 10 (21.7%) | ||
Nosocomial infection | Yes | 3 (4.9%) | 4 (10.5%) | 3 (6.4%) | 10 (21.7%) | 0.028 ** |
No | 58 (95.1%) | 34 (89.5%) | 44 (93.6%) | 36 (78.3%) | ||
ARDS N (%) | Yes | 4 (6.6%) | 2 (5.3%) | 1 (2.1%) | 5 (10.9%) | 0.375 ** |
No | 57 (93.4%) | 36 (94.7%) | 46 (97.9%) | 41 (89.1%) | ||
SIRS N (%) | Yes | 1 (1.6%) | 2 (5.3%) | 2 (4.3%) | 2 (4.3%) | 0.778 ** |
No | 60 (98.4%) | 36 (94.7%) | 45 (95.7%) | 44 (95.7%) | ||
Shock | Yes | 1 (1.6%) | 2 (5.3%) | 1 (2.1%) | 2 (4.3%) | 0.705 ** |
No | 60 (98.4%) | 36 (94.7%) | 46 (97.9%) | 44 (95.7%) | ||
MOF | Yes | 1 (1.6%) | 2 (5.3%) | 1 (2.1%) | 2 (4.3%) | 0.705 ** |
No | 60 (98.4%) | 36 (94.7%) | 46 (97.9%) | 44 (95.7%) | ||
Pulmonary embolism | Yes | 0 (0%) | 0 (0%) | 1 (2.2%) | 1 (2.2%) | 0.554 ** |
No | 60 (100%) | 34 (100%) | 44 (97.8%) | 45 (97.8%) | ||
Lethal outcome | Yes | 0 (0%) | 1 (2.6%) | 2 (4.3%) | 4 (8.7%) | 0.121 ** |
No | 61 (100%) | 37 (97.4%) | 45 (95.7%) | 42 (91.3%) |
Wave 1 n = 61 | Wave 2 n = 38 | Wave 3 n = 47 | Wave 4 n = 46 | p-Value | ||
---|---|---|---|---|---|---|
Number of days from symptom onset to hospitalization MV ± SD (95% CI) | 3.07 ± 0.582 (1.90–4.23) | 5.16 ± 0.63 (3.88–6.43) | 5.64 ± 0.55 (4.52–6.75) | 5.63 ± 0.84 (3.94–7.32) | <0.001 * | |
Antibiotics used before hospitalization N (%) | Yes | 17 (27.9 %) | 23 (60.5%) | 35 (74.5%) | 28 (60.9%) | 0.847 ** |
No | 44 (72.1%) | 15 (39.5%) | 12 (25.5%) | 18 (39.1%) | ||
Red or irritated eyes N (%) | Yes | 5 (8.2%) | 0 (0%) | 0 (0%) | 2 (4.3%) | 0.076 ** |
No | 56 (91.8%) | 38 (100%) | 47 (100%) | 44 (95.7%) | ||
Sore throat N (%) | Yes | 13 (21.3%) | 7 (18.4%) | 6 (12.8%) | 14 (30.4%) | 0.206 ** |
No | 48 (78.7%) | 31 (81.6%) | 41 (87.2%) | 32 (69.6%) | ||
Cough N (%) | Yes | 21 (34.4%) | 16 (43.2%) | 26 (55.3%) | 25 (54.3%) | 0.096 ** |
No | 40 (65.6%) | 21 (56.8%) | 21 (44.7%) | 21 (45.7%) | ||
Difficulty breathing or shortness of breath N (%) | Yes | 9 (14.8%) | 7 (18.4%) | 9 (19.1%) | 14 (30.4%) | 0.241 ** |
No | 52 (85.2%) | 31 (81.6%) | 38 (80.9%) | 32 (69.6%) | ||
Headache N (%) | Yes | 6 (9.8%) | 10 (26.3%) | 6 (12.8%) | 6 (13%) | 0.138 ** |
No | 55 (90.2%) | 28 (73.7%) | 41 (87.2%) | 40 (87%) | ||
Loss of smell N (%) | Yes | 10 (16.4%) | 23 (60.5%) | 9 (19.1%) | 15 (32.6%) | <0.001 ** |
No | 51 (83.6%) | 15 (39.5%) | 38 (80.9%) | 31 (67.4%) | ||
Loss of taste N (%) | Yes | 7 (11.5%) | 23 (60.5%) | 9 (19.1%) | 14 (30.4%) | <0.001 ** |
No | 54 (88.5%) | 15 (39.5%) | 38 (80.9%) | 32 (69.6%) | ||
Tiredness N (%) | Yes | 18 (29.5%) | 16 (42.1%) | 27 (57.4%) | 26 (56.5%) | 0.010 ** |
No | 43 (70.5%) | 22 (57.9) | 20 (42/6%) | 20 (43.5%) | ||
Diarrhea N (%) | Yes | 1 (1.6%) | 2 (5.3%) | 1 (2.1%) | 2 (4.3%) | 0.705 ** |
No | 60 (98.4%) | 36 (94.7%) | 46 (97.9%) | 44 (95.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihajlovic, S.; Nikolic, D.; Santric-Milicevic, M.; Milicic, B.; Rovcanin, M.; Acimovic, A.; Lackovic, M. Four Waves of the COVID-19 Pandemic: Comparison of Clinical and Pregnancy Outcomes. Viruses 2022, 14, 2648. https://doi.org/10.3390/v14122648
Mihajlovic S, Nikolic D, Santric-Milicevic M, Milicic B, Rovcanin M, Acimovic A, Lackovic M. Four Waves of the COVID-19 Pandemic: Comparison of Clinical and Pregnancy Outcomes. Viruses. 2022; 14(12):2648. https://doi.org/10.3390/v14122648
Chicago/Turabian StyleMihajlovic, Sladjana, Dejan Nikolic, Milena Santric-Milicevic, Biljana Milicic, Marija Rovcanin, Andjela Acimovic, and Milan Lackovic. 2022. "Four Waves of the COVID-19 Pandemic: Comparison of Clinical and Pregnancy Outcomes" Viruses 14, no. 12: 2648. https://doi.org/10.3390/v14122648
APA StyleMihajlovic, S., Nikolic, D., Santric-Milicevic, M., Milicic, B., Rovcanin, M., Acimovic, A., & Lackovic, M. (2022). Four Waves of the COVID-19 Pandemic: Comparison of Clinical and Pregnancy Outcomes. Viruses, 14(12), 2648. https://doi.org/10.3390/v14122648