Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adil, M.T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-Taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J. 2021, 97, 110–116. [Google Scholar] [CrossRef]
- Synowiec, A.; Szczepański, A.; Barreto-Duran, E.; Lie, L.K.; Pyrc, K. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Systemic Infection. Clin. Microbiol. Rev. 2021, 34, e00133-20. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Y.; Wang, G.Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J. Med. Virol. 2020, 92, 726–730. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Cook, J.R.; Ausiello, J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev. Endocr. Metab. Disord. 2021, 23, 151–170. [Google Scholar] [CrossRef]
- Mayrink, J.; Costa, M.L.; Cecatti, J.G. Preeclampsia in 2018: Revisiting Concepts, Physiopathology, and Prediction. Sci. World J. 2018, 2018, 6268276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, C.R.V.; Costa, L.B.; Ferreira, G.C.; Ferreira, A.M.; Reis, F.M.; Simões ESilva, A.C. Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens. 2022, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.R.; Cockrell, K. Regulation of soluble fms-like tyrosine kinase-1 production in response to placental ischemia/hypoxia: Role of angiotensin II. Physiol. Rep. 2015, 3, e12310. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.B.; Zheng, J. Regulation of placental angiogenesis. Microcirculation 2014, 21, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Bardin, N.; Murthi, P.; Alfaidy, N. Normal and pathological placental angiogenesis. BioMed Res. Int. 2015, 2015, 354359. [Google Scholar] [CrossRef]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr. Res. 2005, 57, 1R–7R. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.M.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E.; et al. Pre-eclampsia-like syndrome induced by severe COVID-19: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg, M.; Neovius, M.; Saltvedt, S.; Söderling, J.; Pettersson, K.; Brandkvist, C.; Stephansson, O. Association of SARS-CoV-2 Test Status and Pregnancy Outcomes. JAMA 2020, 324, 1782–1785. [Google Scholar] [CrossRef] [PubMed]
- Papageorghiou, A.T.; Deruelle, P.; Gunier, R.B.; Rauch, S.; García-May, P.K.; Mhatre, M.; Usman, M.A.; Abd-Elsalam, S.; Etuk, S.; Simmons, L.E.; et al. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021, 225, 289.e1–289.e17. [Google Scholar] [CrossRef] [PubMed]
- Giardini, V.; Carrer, A.; Casati, M.; Contro, E.; Vergani, P.; Gambacorti-Passerini, C. Increased sFLT-1/PlGF ratio in COVID-19: A novel link to angiotensin II-mediated endothelial dysfunction. Am. J. Hematol. 2020, 95, E188–E191. [Google Scholar] [CrossRef]
- Negro, A.; Fama, A.; Penna, D.; Belloni, L.; Zerbini, A.; Giuri, P.G. SFLT-1 levels in COVID-19 patients: Association with outcome and thrombosis. Am. J. Hematol. 2021, 96, E41–E43. [Google Scholar] [CrossRef]
- Bujold, E.; Romero, R.; Chaiworapongsa, T.; Kim, Y.M.; Kim, G.J.; Kim, M.R.; Espinoza, J.; Gonçalves, L.F.; Edwin, S.; Mazor, M. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J. Matern.-Fetal Neonatal Med. 2005, 18, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Espino-Y-Sosa, S.; Martinez-Portilla, R.J.; Torres-Torres, J.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; Hernandez-Pacheco, J.A.; Espejel-Nuñez, A.; Mateu-Rogell, P.; Juarez-Reyes, A.; Lopez-Ceh, F.E.; et al. Novel Ratio Soluble Fms-like Tyrosine Kinase-1/Angiotensin-II (sFlt-1/ANG-II) in Pregnant Women Is Associated with Critical Illness in COVID-19. Viruses 2021, 13, 1906. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, J.; Espino-Y-Sosa, S.; Poon, L.C.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; Espejel-Nuñez, A.; Juarez-Reyes, A.; Etchegaray-Solana, A.; Alfonso-Guillen, Y.; Aguilar-Andrade, L.; et al. Increased levels of soluble fms-like tyrosine kinase-1 are associated with adverse outcome in pregnant women with COVID-19. Ultrasound Obstet. Gynecol. 2022, 59, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Zeisler, H.; Calda, P.; Sabria, J.; Markfeld-Erol, F.; Galindo, A.; Schoofs, K.; et al. New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension 2014, 63, 346–352. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Bertino, E.; Di Nicola, P.; Varalda, A.; Occhi, L.; Giuliani, F.; Coscia, A. Neonatal growth charts. J. Matern.-Fetal Neonatal Med. 2012, 25 (Suppl. S1), 67–69. [Google Scholar] [CrossRef]
- Jung, E.; Romero, R.; Yeo, L.; Gomez-Lopez, N.; Chaemsaithong, P.; Jaovisidha, A.; Gotsch, F.; Erez, O. The etiology of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S844–S866. [Google Scholar] [CrossRef]
- Giardini, V.; Gambacorti-Passerini, C.; Casati, M.; Carrer, A.; Vergani, P. Can similarities between the pathogenesis of preeclampsia and COVID-19 increase the understanding of COVID-19? Int. J. Transl. Med. 2022, 2, 186–197. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 226, 68–89.e3. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Giardini, V.; Ornaghi, S.; Acampora, E.; Vasarri, M.V.; Arienti, F.; Gambacorti-Passerini, C.; Casati, M.; Carrer, A.; Vergani, P. Letter to the Editor: SFlt-1 and PlGF Levels in Pregnancies Complicated by SARS-CoV-2 Infection. Viruses 2021, 13, 2377. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.; Baczyk, D.; Potts, A.; Hladunewich, M.; Parker, J.D.; Kingdom, J.C. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia. Hypertension 2017, 69, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; do Vale, M.S.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women with and without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. CMAJ Can. Med. Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef] [PubMed]
- Blitz, M.J.; Gerber, R.P.; Gulersen, M.; Shan, W.; Rausch, A.C.; Prasannan, L.; Meirowitz, N.; Rochelson, B. Preterm birth among women with and without severe acute respiratory syndrome coronavirus 2 infection. Acta Obstet. Gynecol. Scand. 2021, 100, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
Completed Weeks of Gestation | |||||||
---|---|---|---|---|---|---|---|
Centiles | 10–14 | 15–19 | 20–23 | 24–28 | 29–33 | 34–36 | ≥37 |
sFlt-1 | |||||||
Q 10 | 776 | 844 | 718 | 722 | 967 | 1220 | 1899 |
Median | 1328 | 1355 | 1299 | 1355 | 1742 | 2552 | 3485 |
Q 90 | 2174 | 2453 | 2605 | 2557 | 3650 | 5620 | 7901 |
PlGF | |||||||
Q 10 | 31.3 | 80.9 | 143 | 200 | 139 | 98.2 | 68.6 |
Median | 52.6 | 135 | 264 | 465 | 471 | 284 | 191 |
Q 90 | 100 | 251 | 500 | 921 | 1073 | 831 | 620 |
sFlt-1/PlGF ratio | |||||||
Q 10 | 11.6 | 4.67 | 2.22 | 1.22 | 1.22 | 2.15 | 3.81 |
Median | 24.8 | 10.5 | 4.92 | 3.06 | 3.75 | 9.03 | 19.6 |
Q 90 | 46.6 | 20.5 | 11.0 | 7.49 | 16.1 | 43.4 | 85.7 |
SARS-CoV-2 Pregnant Women | Asymptomatic | Symptomatic | p Value |
n—% | 37 (65) | 20 (35) | |
Variables | |||
Age (years) | 33 ± 5 | 33 ± 4 | 0.667 |
Italian | 20 (54) | 10 (50) | 0.788 |
Nulliparous | 14 (38) | 6 (30) | 0.772 |
Obesity (BMI ≥ 30 kg/m2) | 7 (19) | 5 (25) | 0.736 |
Diabetes/gestational diabetes mellitus | 10 (27) | 5 (25) | 0.580 |
Chronic hypertension | 2 (5) | 0 (0) | 0.536 |
Low-dose Aspirin use during pregnancy | 6 (16) | 2 (10) | 0.699 |
SARS-CoV-2 Pregnant Women | Asymptomatic | Symptomatic | p Value |
n—% | 37 (65) | 20 (35) | |
Variables | |||
Infection in 2020 | 34 (92) | 9 (45) | 0.0001 |
Infection in 2021 | 3 (8) | 11 (55) | |
GA at positive swab (weeks.days ± weeks) | 37.5 ± 5 | 32 ± 6 | 0.089 |
Weakly positive swab | 9 (24) | 0 (0) | 0.020 |
Positivity at the surveillance swab | 32 (86) | 0 (0) | 0.0001 |
SARS-CoV-2 close contact exposure | 9 (24) | 6 (30) | 0.755 |
GA at COVID-19 symptoms onset (weeks.days ± weeks) | 33.4 ± 7 | 31.3 ± 6 | 0.873 |
Respiratory symptoms at admission | 0 (0) | 16 (80) | 0.0001 |
Pneumonia on chest X-ray | 4 (11) | 16 (80) | 0.0001 |
GA at diagnosis of pneumonia on chest X-ray (weeks.days ± weeks) | 39.5 ± 1 | 30.4 ± 6 | 0.035 |
Latency time between COVID-19 symptoms—pneumonia (days) | 11 ± 5 | 6 ± 3 | NA |
High dependency unit admission | 0 (0) | 6 (30) | 0.001 |
ICU admission | 0 (0) | 3 (15) | 0.039 |
Enoxaparin sodium therapy | 37 (100) | 20 (100) | 1.000 |
Steroid therapy | 0 (0) | 14 (70) | 0.0001 |
Hydroxychloroquine therapy | 3 (8) | 2 (10) | 1.000 |
Antibiotic therapy | 1 (3) | 8 (40) | 0.001 |
Oxygen supplementation | 0 (0) | 14 (70) | 0.0001 |
Continuous positive airway pressure (CPAP) | 0 (0) | 5 (25) | 0.004 |
Intubation | 0 (0) | 3 (15) | 0.039 |
Maternal/fetal/neonatal death | 0 (0) | 0 (0) | NA |
SARS-CoV-2 Pregnant Women | Asymptomatic | Symptomatic | p Value |
n—% | 37 (65) | 20 (35) | |
Variables | |||
Hypertensive disorders in pregnancy/post-partum | 4 (11) | 1 (5) | 0.647 |
Preeclampsia (preE) | 2 (5) | 0 (0) | 0.536 |
Fetal growth restriction (FGR) | 3 (8) | 0 | 0.545 |
Premature birth < 37 weeks | 0 (0) | 4 (20) | 0.012 |
GA at delivery (weeks.days ± weeks) | 39.2 ± 2 | 38.2 ± 2 | 0.704 |
Latency time between COVID-19 symptoms—delivery (days) | 48 ± 44 | ||
Latency time between COVID-19 pneumonia—delivery (days) | 52 ± 44 | ||
Latency time between blood tests—delivery (days) | 6 ± 21 | 43 ± 43 | 0.041 |
Vaginal delivery | 23 (62) | 12 (60) | 1.000 |
Cesarean section | 14 (38) | 8 (40) | 1.000 |
Urgent cesarean section for maternal respiratory distress | 0 (0) | 2 (10) | 0.119 |
Induced labor | 18 (49) | 6 (30) | 0.261 |
RDS prophylaxis for COVID-19 | 0 (0) | 3 (15) | 0.039 |
Birthweight (grams) | 3205 ± 649 | 3070 ± 459 | 0.373 |
Small for gestational age (SGA) | 6 (16) | 0 (0) | 0.081 |
SARS-CoV-2 Pregnant Women | Asymptomatic | Symptomatic | p Value |
n—% | 37 (65) | 20 (35) | |
Variables | |||
GA at blood tests (weeks.days ± weeks) | 38.3 ± 4 | 32.1 ± 6 | 0.208 |
Latency time between COVID-19 symptoms—blood tests (days) | 27 ± 34 | 5 ± 4 | 0.038 |
Angiogenic factors | |||
sFlt-1 (pg/mL) | 4899 ± 4357 | 3187 ± 2426 | 0.005 |
PlGF (pg/mL) | 178 ± 104 | 346 ± 232 | 0.099 |
sFlt1/PlGF | 50 ± 58 | 17 ± 23 | 0.099 |
sFlt1/PlGF < 38 | 22 (59) | 18 (90) | 0.018 |
sFlt1/PlGF 38-85/110 * (* after 34 weeks) | 11 (30) | 2 (10) | 0.111 |
sFlt1/PlGF > 85/110 * (* after 34 weeks) | 4 (11) | 0 (0) | 0.286 |
Other laboratory tests | |||
Leukocytes (×103/μL) | 9.2 ± 2.5 | 8.4 ± 3.3 | 0.889 |
Neutrophils (×103/μL) | 8.7 ± 12.8 | 6.7 ± 3.0 | 0.795 |
Lymphocytes (×103/μL) | 1.8 ± 0.6 | 1.5 ± 1.5 | 0.542 |
Platelets (×103/μL) | 217 ± 65 | 190 ± 48 | 0.119 |
Creatinine (mg/dL) | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.920 |
Uric acid (mg/dL) | 4.7 ± 1.3 | 4.1 ± 1.3 | 0.764 |
AST (U/L) | 24 ± 15 | 30 ± 22 | 0.529 |
ALT (U/L) | 27 ± 36 | 23 ± 20 | 0.857 |
LDH (U/L) | 195 ± 45 | 204 ± 57 | 0.889 |
PTT (ratio) | 0.87 ± 0.08 | 0.96 ± 0.08 | 0.317 |
PT (ratio) | 0.93 ± 0.07 | 0.95 ± 0.06 | 0.719 |
Fibrinogen (mg/dL) | 469 ± 115 | 480 ± 78 | 0.147 |
D-dimer (ng/mL) | 801 ± 663 | 621 ± 479 | 0.156 |
Antithrombin III (%) | 98 ± 18 | 95 ± 22 | 0.441 |
NT-proBNP | 63 ± 53 | 97 ± 132 | 0.928 |
Total calcium (mg/dL) | 8.8 ± 0.4 | 8.4 ± 0.3 | 0.719 |
Albumin (g/dL) | 3.5 ± 0.3 | 3.3 ± 0.2 | 0.171 |
D Vitamin (ng/mL) | 20.0 ± 12.2 | 19.3 ± 11.2 | 0.412 |
C-RP (mg/dL) | 0.96 ± 1.3 | 4.9 ± 4.3 | 0.018 |
Procalcitonin (ng/mL) | 0.08 ± 0.08 | 0.21 ± 0.31 | 0.242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giardini, V.; Ornaghi, S.; Gambacorti-Passerini, C.; Casati, M.; Carrer, A.; Acampora, E.; Vasarri, M.V.; Arienti, F.; Vergani, P. Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection. Viruses 2022, 14, 2207. https://doi.org/10.3390/v14102207
Giardini V, Ornaghi S, Gambacorti-Passerini C, Casati M, Carrer A, Acampora E, Vasarri MV, Arienti F, Vergani P. Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection. Viruses. 2022; 14(10):2207. https://doi.org/10.3390/v14102207
Chicago/Turabian StyleGiardini, Valentina, Sara Ornaghi, Carlo Gambacorti-Passerini, Marco Casati, Andrea Carrer, Eleonora Acampora, Maria Viola Vasarri, Francesca Arienti, and Patrizia Vergani. 2022. "Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection" Viruses 14, no. 10: 2207. https://doi.org/10.3390/v14102207
APA StyleGiardini, V., Ornaghi, S., Gambacorti-Passerini, C., Casati, M., Carrer, A., Acampora, E., Vasarri, M. V., Arienti, F., & Vergani, P. (2022). Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection. Viruses, 14(10), 2207. https://doi.org/10.3390/v14102207