The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. Negative Stain EM
2.3. Cryo-EM Sample Preparation
2.4. Cryo-EM Data Acquisition Parameters
2.5. Three-Dimensional Reconstruction
2.6. AlphaFold2 Prediction
2.7. Model Building and Refinement
3. Results
3.1. Domain Structure of D5
3.2. DNA Binding of D5323–785
4. Discussion
4.1. Domain Structure of D5
4.2. The AAA+ Helicase Domain
4.3. DNA Binding of D5323–785
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Eid, R.; Allaw, F.; Haddad, S.F.; Kanj, S.S. Human Monkeypox: A Review of the Literature. PLoS Pathog. 2022, 18, e1010768. [Google Scholar] [CrossRef] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox-A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, R.C.; Wang, C.; Hatcher, E.L.; Lefkowitz, E.J. Orthopoxvirus Genome Evolution: The Role of Gene Loss. Viruses 2010, 2, 1933–1967. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Kondas, A.V.; Mauldin, M.R.; Doty, J.B.; Grossi, I.M.; Morgan, C.N.; Ostergaard, S.D.; Hughes, C.M.; Nakazawa, Y.; Kling, C.; et al. Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus Animal Model. mSphere 2021, 6, e00927-20. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.T.; Grosenbach, D.W.; Chinsangaram, J.; Honeychurch, K.M.; Long, P.G.; Lovejoy, C.; Maiti, B.; Meara, I.; Hruby, D.E. An Overview of Tecovirimat for Smallpox Treatment and Expanded Anti-Orthopoxvirus Applications. Expert Rev. Anti Infect. Ther. 2021, 19, 331–344. [Google Scholar] [CrossRef]
- Delaune, D.; Iseni, F. Drug Development against Smallpox: Present and Future. Antimicrob. Agents Chemother. 2020, 64, e01683-19. [Google Scholar] [CrossRef]
- Hutin, S.; Ling, W.L.; Round, A.; Effantin, G.; Reich, S.; Iseni, F.; Tarbouriech, N.; Schoehn, G.; Burmeister, W.P. Domain Organization of Vaccinia Virus Helicase-Primase D5. J. Virol. 2016, 90, 4604–4613. [Google Scholar] [CrossRef] [Green Version]
- Boyle, K.A.; Arps, L.; Traktman, P. Biochemical and Genetic Analysis of the Vaccinia Virus D5 Protein: Multimerization-Dependent ATPase Activity Is Required to Support Viral DNA Replication. J. Virol. 2007, 81, 844–859. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.; Klemperer, N.; Ghosh, R.; Traktman, P. The Vaccinia Virus D5 Protein, Which Is Required for DNA Replication, Is a Nucleic Acid-Independent Nucleoside Triphosphatase. J. Virol. 1995, 69, 5353–5361. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Iyer, L.M.; Koonin, E.V.; Leipe, D.D.; Aravind, L. Origin and Evolution of the Archaeo-Eukaryotic Primase Superfamily and Related Palm-Domain Proteins: Structural Insights and New Members. Nucleic Acids Res. 2005, 33, 3875–3896. [Google Scholar] [CrossRef] [PubMed]
- Iyer, L.M.; Aravind, L.; Koonin, E.V. Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses. J. Virol. 2001, 75, 11720–11734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegelin, G.; Scherzinger, E.; Lurz, R.; Lanka, E. Phage P4 Alpha Protein Is Multifunctional with Origin Recognition, Helicase and Primase Activities. EMBO J. 1993, 12, 3703–3708. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.; Drechsler, M.; Stark, H.; Lipps, G. DNA Translocation Activity of the Multifunctional Replication Protein ORF904 from the Archaeal Plasmid PRN1. Nucleic Acids Res. 2009, 37, 6831–6848. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.J.; Berger, J.M. Mechanisms of Hexameric Helicases. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Enemark, E.J.; Joshua-Tor, L. Mechanism of DNA Translocation in a Replicative Hexameric Helicase. Nature 2006, 442, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Santosh, V.; Musayev, F.N.; Jaiswal, R.; Zárate-Pérez, F.; Vandewinkel, B.; Dierckx, C.; Endicott, M.; Sharifi, K.; Dryden, K.; Henckaerts, E.; et al. The Cryo-EM Structure of AAV2 Rep68 in Complex with SsDNA Reveals a Malleable AAA+ Machine That Can Switch between Oligomeric States. Nucleic Acids Res. 2020, 48, 12983–12999. [Google Scholar] [CrossRef] [PubMed]
- Gai, D.; Zhao, R.; Li, D.; Finkielstein, C.V.; Chen, X.S. Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen. Cell 2004, 119, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, E.; Dhindwal, S.; Popp, M.; Hussain, S.; Khayat, R. Mechanism of DNA Interaction and Translocation by the Replicase of a Circular Rep-Encoding Single-Stranded DNA Virus. mBio 2021, 12, e0076321. [Google Scholar] [CrossRef]
- Kilcher, S.; Schmidt, F.I.; Schneider, C.; Kopf, M.; Helenius, A.; Mercer, J. SiRNA Screen of Early Poxvirus Genes Identifies the AAA+ ATPase D5 as the Virus Genome-Uncoating Factor. Cell Host Microbe 2014, 15, 103–112. [Google Scholar] [CrossRef]
- McCraith, S.; Holtzman, T.; Moss, B.; Fields, S. Genome-Wide Analysis of Vaccinia Virus Protein-Protein Interactions. Proc. Natl. Acad. Sci. USA 2000, 97, 4879–4884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New Tools for Automated High-Resolution Cryo-EM Structure Determination in RELION-3. Elife 2018, 7, e42166. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H.W. RELION: Implementation of a Bayesian Approach to Cryo-EM Structure Determination. J. Struct. Biol. 2012, 180, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheres, S.H.W. Single-Particle Processing in Relion-3.1 2019. Available online: https://hpc.nih.gov/apps/RELION/relion31_tutorial.pdf (accessed on 10 August 2022).
- Rohou, A.; Grigorieff, N. CTFFIND4: Fast and Accurate Defocus Estimation from Electron Micrographs. J. Struct. Biol. 2015, 192, 216–221. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Casañal, A.; Lohkamp, B.; Emsley, P. Current Developments in Coot for Macromolecular Model Building of Electron Cryo-Microscopy and Crystallographic Data. Protein Sci. 2020, 29, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Afonine, P.V.; Klaholz, B.P.; Moriarty, N.W.; Poon, B.K.; Sobolev, O.V.; Terwilliger, T.C.; Adams, P.D.; Urzhumtsev, A. New Tools for the Analysis and Validation of Cryo-EM Maps and Atomic Models. Acta Crystallogr. D Struct. Biol. 2018, 74, 814–840. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-Space Refinement in PHENIX for Cryo-EM and Crystallography. Acta Crystallogr. D Struct. Biol. 2018, 74, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Morin, A.; Eisenbraun, B.; Key, J.; Sanschagrin, P.C.; Timony, M.A.; Ottaviano, M.; Sliz, P. Collaboration Gets the Most out of Software. Elife 2013, 2, e01456. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, L.L.C. The PyMOL Molecular Graphics System; Version 1.8 2015; Schrödinger LLC: Somerdale, NJ, USA, 2015. [Google Scholar]
- Tan, Y.Z.; Baldwin, P.R.; Davis, J.H.; Williamson, J.R.; Potter, C.S.; Carragher, B.; Lyumkis, D. Addressing Preferred Specimen Orientation in Single-Particle Cryo-EM through Tilting. Nat. Methods 2017, 14, 793–796. [Google Scholar] [CrossRef]
- Stagg, S.M.; Noble, A.J.; Spilman, M.; Chapman, M.S. ResLog Plots as an Empirical Metric of the Quality of Cryo-EM Reconstructions. J. Struct. Biol. 2014, 185, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, L.; Sander, C. Protein Folds and Families: Sequence and Structure Alignments. Nucleic Acids Res. 1999, 27, 244–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Su, S.; Chen, Y.; Gao, Y.; Li, Y.; Shao, Z.; Zhang, Y.; Shao, Q.; Liu, H.; Li, J.; et al. Structural Studies Reveal a Ring-Shaped Architecture of Deep-Sea Vent Phage NrS-1 Polymerase. Nucleic Acids Res. 2020, 48, 3343–3355. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, M.; Wu, H.; Wang, W.; Yu, F.; He, J. Crystal Structures of Phage NrS-1 N300-DNTPs-Mg2+ Complex Provide Molecular Mechanisms for Substrate Specificity. Biochem. Biophys. Res. Commun. 2019, 515, 551–557. [Google Scholar] [CrossRef]
- Gai, D.; Wang, D.; Li, S.-X.; Chen, X.S. Retraction: The Structure of SV40 Large T Hexameric Helicase in Complex with AT-Rich Origin DNA. Elife 2019, 8, 910. [Google Scholar] [CrossRef]
- Ameismeier, M.; Zemp, I.; van den Heuvel, J.; Thoms, M.; Berninghausen, O.; Kutay, U.; Beckmann, R. Structural Basis for the Final Steps of Human 40S Ribosome Maturation. Nature 2020, 587, 683–687. [Google Scholar] [CrossRef]
- Gajiwala, K.S.; Chen, H.; Cornille, F.; Roques, B.P.; Reith, W.; Mach, B.; Burley, S.K. Structure of the Winged-Helix Protein HRFX1 Reveals a New Mode of DNA Binding. Nature 2000, 403, 916–921. [Google Scholar] [CrossRef]
- Ye, Y.; Godzik, A. FATCAT: A Web Server for Flexible Structure Comparison and Structure Similarity Searching. Nucleic Acids Res. 2004, 32, W582–W585. [Google Scholar] [CrossRef]
- Shen, J.; Gai, D.; Patrick, A.; Greenleaf, W.B.; Chen, X.S. The Roles of the Residues on the Channel Beta-Hairpin and Loop Structures of Simian Virus 40 Hexameric Helicase. Proc. Natl. Acad. Sci. USA 2005, 102, 11248–11253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enemark, E.J.; Joshua-Tor, L. On Helicases and Other Motor Proteins. Curr. Opin. Struct. Biol. 2008, 18, 243–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, A.; Major, B.; Stead, J.A.; Sanders, C.M.; Orlova, E.V. Unwinding of a DNA Replication Fork by a Hexameric Viral Helicase. Nat. Commun. 2021, 12, 5535. [Google Scholar] [CrossRef] [PubMed]
Parameter | Cryo-EM Data Collection on D5323–785 |
---|---|
Microscope | Technai F30 Polara |
High tension (kV) | 300 |
Cs (mm) | 2 |
Detector | Gatan K2 Summit (4k × 4k) |
Mode | Counting |
Energy filter | No |
Magnification | 42,000× |
Calibrated pixel size | 1.21 Å |
No. of frames per micrograph | 40 |
Nominal defocus range (µm) | −1.5–3.0 |
Dose par frame (e·Å−2) | 1 |
No. of micrographs | 830 |
C6 | C1 | Alphafold2 1 | |
---|---|---|---|
EMDB accession codes | EMD-15574 | EMD-15575 | |
Number of particles used | 28425 | 26710 | |
Map resolution from Phenix (Å) | 3.7 | 4.6 | |
FSC resolution 2 (Å) | 4.1 | 6.6 | |
Model composition | |||
PDB entry | 8APL | 8APM | |
Prot. Res/ Nucleotides | 2694/0 | 2514/16 | |
Non-hydrogen atoms | 21888 | 20723 | |
Map correlation within mask | 0.73 | 0.69 | |
Temperature factor (Å2) | 207 | 309 | |
R.m.s. | |||
Bond length deviations (Å) | 0.002 | 0.002 | 0.012 |
Bond angles (°) | 0.476 | 0.414 | 1.669 |
Validation | |||
Molprobity score | 1.94 | 1.96 | 0.86 |
All-atom Clashscore | 10.3 | 13.2 | 1.33 |
Rotamer outliers (%) | 1.9 | 2.4 | 0.24 |
Ramachandran plot | |||
Outliers | 0.0 | 0.0 | 0.0 |
Favored (%) | 96.8 | 97.8 | 98.5 |
Allowed (%) | 3.2 | 2.2 | 1.5 |
PDB Entry | Dali Score | rms (Å) | Aligned Residues | out of N Residues | % Sequence Identity | |
---|---|---|---|---|---|---|
Collar domain | ||||||
S17 ribosomal protein | 6zxh | 6.0 | 2.7 | 55 | 132 | 7 |
Papillomavirus E1 | 2v9p | 4.0 | 3.7 | 56 | 269 | 11 |
MCM2 (before others) | 5v8f | 3.9 | 3.1 | 64 | 603 | 6 |
Polyomavirus S40 LTA | 1svl | 3.1 | 3.4 | 58 | 362 | 7 |
AAA+ helicase domain | ||||||
Primpol-helicase NrS-1 | 6k9c | 16.2 | 3.2 | 214 | 416 | 17 |
Papillomavirus E1 | 5a9k | 11.2 | 3.5 | 183 | 269 | 13 |
Polyomavirus LTA | 4e2i | 10.0 | 4.1 | 197 | 362 | 16 |
AAV Rep68 | 7jsi | 9.9 | 4.4 | 187 | 276 | 11 |
PCV2 Rep | 7las | 6.3 | 4.3 | 130 | 183 | 15 |
C-terminal domain | ||||||
Human RFX-DBD | 1dp7 | 4.4 | 3.1 | 60 | 76 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutin, S.; Ling, W.L.; Tarbouriech, N.; Schoehn, G.; Grimm, C.; Fischer, U.; Burmeister, W.P. The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses 2022, 14, 2206. https://doi.org/10.3390/v14102206
Hutin S, Ling WL, Tarbouriech N, Schoehn G, Grimm C, Fischer U, Burmeister WP. The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses. 2022; 14(10):2206. https://doi.org/10.3390/v14102206
Chicago/Turabian StyleHutin, Stephanie, Wai Li Ling, Nicolas Tarbouriech, Guy Schoehn, Clemens Grimm, Utz Fischer, and Wim P. Burmeister. 2022. "The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction" Viruses 14, no. 10: 2206. https://doi.org/10.3390/v14102206
APA StyleHutin, S., Ling, W. L., Tarbouriech, N., Schoehn, G., Grimm, C., Fischer, U., & Burmeister, W. P. (2022). The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses, 14(10), 2206. https://doi.org/10.3390/v14102206