Catching the Wave: Detecting Strain-Specific SARS-CoV-2 Peptides in Clinical Samples Collected during Infection Waves from Diverse Geographical Locations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Datasets
2.2. Discovery Workflow
2.3. Peptide Verification Workflow
3. Results
3.1. Discovery Workflow Results
3.2. Verification Workflow Results
4. Discussion and Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Home—Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu (accessed on 24 June 2022).
- Dyer, O. COVID-19: Variants Are Spreading in Countries with Low Vaccination Rates. BMJ 2021, 373, n1359. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kang, L.; Guo, Z.; Liu, J.; Liu, M.; Liang, W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2228008. [Google Scholar] [CrossRef] [PubMed]
- Mantas, J. The Importance of Health Informatics in Public Health During the COVID-19 Pandemic. Stud. Health Technol. Inform. 2020, 272, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An MRNA Vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A Global Survey of Potential Acceptance of a COVID-19 Vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef]
- Lukas, H.; Xu, C.; Yu, Y.; Gao, W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano 2020, 14, 16180–16193. [Google Scholar] [CrossRef]
- Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells 2021, 10, 821. [Google Scholar] [CrossRef]
- Nagura-Ikeda, M.; Imai, K.; Tabata, S.; Miyoshi, K.; Murahara, N.; Mizuno, T.; Horiuchi, M.; Kato, K.; Imoto, Y.; Iwata, M.; et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-QPCR), Direct RT-QPCR, Reverse Transcription–Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test to Diagnose COVID-19. J. Clin. Microbiol. 2020, 58, e01438–e1520. [Google Scholar] [CrossRef]
- Kriegova, E.; Fillerova, R.; Kvapil, P. Direct-RT-QPCR Detection of SARS-CoV-2 without RNA Extraction as Part of a COVID-19 Testing Strategy: From Sample to Result in One Hour. Diagnostics 2020, 10, 605. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef]
- Foster, M.W.; Gerhardt, G.; Robitaille, L.; Plante, P.L.; Boivin, G.; Corbeil, J.; Moseley, M.A. Targeted Proteomics of Human Metapneumovirus in Clinical Samples and Viral Cultures. Anal. Chem. 2015, 87, 10247–10254. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, K.H.M.; Lebkuchen, A.; Okai, G.G.; Schuch, R.A.; Viana, L.G.; Olive, A.N.; dos Lazari, C.S.; Fraga, A.M.; Granato, C.F.H.; Pintão, M.C.T.; et al. Establishing a Mass Spectrometry-Based System for Rapid Detection of SARS-CoV-2 in Large Clinical Sample Cohorts. Nat. Commun. 2020, 11, 6201. [Google Scholar] [CrossRef] [PubMed]
- Rajczewski, A.T.; Mehta, S.; Nguyen, D.D.A.; Grüning, B.; Johnson, J.E.; McGowan, T.; Griffin, T.J.; Jagtap, P.D. A Rigorous Evaluation of Optimal Peptide Targets for MS-Based Clinical Diagnostics of Coronavirus Disease 2019 (COVID-19). Clin. Proteom. 2021, 18, 15. [Google Scholar] [CrossRef]
- Thuy-Boun, P.S.; Mehta, S.; Gruening, B.; Mcgowan, T.; Nguyen, A.; Rajczewski, A.T.; Johnson, J.E.; Griffin, T.J.; Wolan, D.W.; Jagtap, P.D. Metaproteomics Analysis of SARS-CoV-2-Infected Patient Samples Reveals Presence of Potential Coinfecting Microorganisms. J. Proteome Res. 2021, 20, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; Syme, A.; et al. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W34. [Google Scholar] [CrossRef]
- Hiltemann, S.; Rasche, H.; Gladman, S.; Hotz, H.-R.; Larivière, D.; Blankenberg, D.; Jagtap, P.D.; Wollmann, T.; Bretaudeau, A.; Goué, N.; et al. Galaxy Training: A Powerful Framework for Teaching! bioRxiv 2022. [Google Scholar] [CrossRef]
- COVID-19 Analysis on Usegalaxy ★. Available online: https://covid19.galaxyproject.org (accessed on 3 July 2022).
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 3 July 2022).
- Wen, B.; Wang, X.; Zhang, B. PepQuery Enables Fast, Accurate, and Convenient Proteomic Validation of Novel Genomic Alterations. Genome Res. 2019, 29, 485–493. [Google Scholar] [CrossRef]
- Gouveia, D.; Miotello, G.; Gallais, F.; Gaillard, J.C.; Debroas, S.; Bellanger, L.; Lavigne, J.P.; Sotto, A.; Grenga, L.; Pible, O.; et al. Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window. J. Proteome Res. 2020, 19, 4407–4416. [Google Scholar] [CrossRef]
- Bankar, R.; Suvarna, K.; Ghantasala, S.; Banerjee, A.; Biswas, D.; Choudhury, M.; Palanivel, V.; Salkar, A.; Verma, A.; Singh, A.; et al. Proteomic Investigation Reveals Dominant Alterations of Neutrophil Degranulation and MRNA Translation Pathways in Patients with COVID-19. iScience 2021, 24, 102135. [Google Scholar] [CrossRef]
- Ihling, C.; Tänzler, D.; Hagemann, S.; Kehlen, A.; Hüttelmaier, S.; Arlt, C.; Sinz, A. Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. J. Proteome Res. 2020, 19, 4389–4392. [Google Scholar] [CrossRef]
- Chavan, S.; Mangalaparthi, K.K.; Singh, S.; Renuse, S.; Vanderboom, P.M.; Madugundu, A.K.; Budhraja, R.; McAulay, K.; Grys, T.E.; Rule, A.D.; et al. Mass Spectrometric Analysis of Urine from COVID-19 Patients for Detection of SARS-CoV-2 Viral Antigen and to Study Host Response. J. Proteome Res. 2021, 20, 3404–3413. [Google Scholar] [CrossRef] [PubMed]
- Barsnes, H.; Vaudel, M. SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines. J. Proteome Res. 2018, 17, 2552–2555. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef] [PubMed]
- St-Germain, J.R.; Astori, A.; Raught, B. A SARS-CoV-2 Peptide Spectral Library Enables Rapid, Sensitive Identification of Virus Peptides in Complex Biological Samples. J. Proteome Res. 2021, 20, 2187–2194. [Google Scholar] [CrossRef] [PubMed]
- Mcgowan, T.; Johnson, J.E.; Kumar, P.; Sajulga, R.; Mehta, S.; Jagtap, P.D.; Griffin, T.J. Multi-Omics Visualization Platform: An Extensible Galaxy Plug-in for Multi-Omics Data Visualization and Exploration. Gigascience 2020, 9, giaa025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Toole, Á.; Pybus, O.G.; Abram, M.E.; Kelly, E.J.; Rambaut, A. Pango Lineage Designation and Assignment Using SARS-CoV-2 Spike Gene Nucleotide Sequences. BMC Genomics 2022, 23, 121. [Google Scholar] [CrossRef]
- Cov-Lineages. Available online: https://cov-lineages.org/constellations.html (accessed on 3 July 2022).
- Zeng, H.L.; Chen, D.; Yan, J.; Yang, Q.; Han, Q.Q.; Li, S.S.; Cheng, L. Proteomic Characteristics of Bronchoalveolar Lavage Fluid in Critical COVID-19 Patients. FEBS J. 2021, 288, 5190–5200. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, T.; Zhang, S.; Wang, L.; Wu, X.; Liu, J. The Genetic Sequence, Origin, and Diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1629–1635. [Google Scholar] [CrossRef]
- World Health Organization. Enhancing Response to Omicron SARS-CoV-2 Variant: Technical Brief and Priority Actions for Member States; View Most Current Version A. Context; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Rauniyar, N. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int. J. Mol. Sci. 2015, 16, 28566–28581. [Google Scholar] [CrossRef]
- Callaway, E. Beyond Omicron: What’s next for COVID’s Viral Evolution. Nature 2021, 600, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Proteomics | COVID-19 Analysis on Usegalaxy ★. Available online: https://covid19.galaxyproject.org/proteomics (accessed on 3 July 2022).
- Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Islam, M.R.; Alam, A.S.M.R.U.; Islam, I.; Hoque, M.N.; Akter, S.; Rahaman, M.M.; Sultana, M.; Hossain, M.A. Evolutionary Dynamics of SARS-CoV-2 Nucleocapsid Protein and Its Consequences. J. Med. Virol. 2021, 93, 2177–2195. [Google Scholar] [CrossRef] [PubMed]
- Brumfield, K.D.; Leddy, M.; Usmani, M.; Cotruvo, J.A.; Tien, C.-T.; Dorsey, S.; Graubics, K.; Fanelli, B.; Zhou, I.; Registe, N.; et al. Microbiome Analysis for Wastewater Surveillance during COVID-19. MBio 2022, 13, e00591-22. [Google Scholar] [CrossRef] [PubMed]
- Galaxy | Tool Shed. Available online: https://toolshed.g2.bx.psu.edu (accessed on 3 July 2022).
PEPTIDE | WT SEQUENCE | Variant (WHO Name) | BLASTP IDENTITY (WT) | BLASTP IDENTITY (NR) |
---|---|---|---|---|
GQGVPINTNSSR (P80R) | GQGVPINTNSSP | P.1.(Gamma) | 88.00 | 100.00 |
AYETQALPQR(D377Y) | ADETQALPQR | B.1.617.2 (Delta) | 80.00 | 100.00 |
GEGVPINTNSSPDDQIGYYR (Q69E) | GQGVPINTNSSPDDQIGYYR | B.1.1.7 (Delta) | 95.00 | 100.00 |
SMGTSPTRMAGNGGDAALALLLLDR (R203M & A208T) | SRGTSPARMAGNGGDAALALLLLDR | B.1.617.2 (Delta) | 86.67 | 96.00 |
PGNGCDAALALLLLDR (A211P &G215C) | AGNGGDAALALLLLDR | AY.4 (Delta) | 93.33 | 100.00 |
ITFGGPSDSTGSNQNGG|AR (∆31–33) | ITFGGPSDSTGSNQNGERSGAR | BA.1 (Omicron) | 86.36 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, S.; Carvalho, V.M.; Rajczewski, A.T.; Pible, O.; Grüning, B.A.; Johnson, J.E.; Wagner, R.; Armengaud, J.; Griffin, T.J.; Jagtap, P.D. Catching the Wave: Detecting Strain-Specific SARS-CoV-2 Peptides in Clinical Samples Collected during Infection Waves from Diverse Geographical Locations. Viruses 2022, 14, 2205. https://doi.org/10.3390/v14102205
Mehta S, Carvalho VM, Rajczewski AT, Pible O, Grüning BA, Johnson JE, Wagner R, Armengaud J, Griffin TJ, Jagtap PD. Catching the Wave: Detecting Strain-Specific SARS-CoV-2 Peptides in Clinical Samples Collected during Infection Waves from Diverse Geographical Locations. Viruses. 2022; 14(10):2205. https://doi.org/10.3390/v14102205
Chicago/Turabian StyleMehta, Subina, Valdemir M. Carvalho, Andrew T. Rajczewski, Olivier Pible, Björn A. Grüning, James E. Johnson, Reid Wagner, Jean Armengaud, Timothy J. Griffin, and Pratik D. Jagtap. 2022. "Catching the Wave: Detecting Strain-Specific SARS-CoV-2 Peptides in Clinical Samples Collected during Infection Waves from Diverse Geographical Locations" Viruses 14, no. 10: 2205. https://doi.org/10.3390/v14102205
APA StyleMehta, S., Carvalho, V. M., Rajczewski, A. T., Pible, O., Grüning, B. A., Johnson, J. E., Wagner, R., Armengaud, J., Griffin, T. J., & Jagtap, P. D. (2022). Catching the Wave: Detecting Strain-Specific SARS-CoV-2 Peptides in Clinical Samples Collected during Infection Waves from Diverse Geographical Locations. Viruses, 14(10), 2205. https://doi.org/10.3390/v14102205