Sequences Encoding a Novel Toursvirus Identified from Southern and Northern Corn Rootworms (Coleoptera: Chrysomelidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCR and NCR Sample Collection and DNA Isolation
2.2. Sequencing Library Preparation and Illumina Sequencing
2.3. Sequence Assembly and Annotation
2.4. Viral Sequence Analysis
2.5. Analysis of Similairy between Toursvirus, Ascovirus and Other Invertebrate DNA Viruses
3. Results
3.1. Novel Toursvirus-like Sequences Identified from SCR and NCR
3.2. Toursvirus Sequences Identified from SCR and NCR Derived from the Same Virus
3.3. Annotation of the Novel Toursvirus Sequences
3.4. Analysis of the Putative DiTV3a Genes
3.5. Putative DiTV3a Genes Associated with Retrotransposon Elements
3.6. Toursvirus Proteins Are More Similar to Those of Iridoviruses Than Ascoviruses
3.7. Phylogenetic Analyses Indicate That Toursviruses form a Distinct Clade
4. Discussion
4.1. Genome Assembly
4.2. Sequence Integration
4.3. Evolutionary Relationships
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krysan, J.L.; Smith, R.F. Systematics of the virgifera species group of Diabrotica (Coleoptera: Chrysomelidae: Galerucinae). Entomography 1987, 5, 375–484. [Google Scholar]
- Wechsler, S.; Smith, D. Has resistance taken root in U.S. corn fields? Demand for insect control. Am. J. Agric. Econ. 2018, 100, 1136–1150. [Google Scholar] [CrossRef]
- Sammons, A.E.; Edwards, C.R.; Bledsoe, L.W.; Boeve, P.J.; Stuart, J.J. Behavioral and feeding assays reveal a western corn rootworm (Coleoptera: Chyromelidae) variant that is attracted to soybean. Environ. Entomol. 1997, 26, 1336–1342. [Google Scholar] [CrossRef]
- Levine, E.; Oloumi-Sadeghi, H.; Fisher, J.R. Discovery of multiyear diapause in Illinois and South Dakota northern corn rootworm (Coleoptera: Chrysomelidae) eggs and incidence of the prolonged diapause trait in Illinois. J. Econ. Entomol. 1992, 85, 262–267. [Google Scholar] [CrossRef]
- Souza, D.; Peterson, J.A.; Wright, R.J.; Meinke, L.J. Field efficacy of soil insecticides on pyrethroid-resistant western corn rootworms (Diabrotica virgifera virgifera LeConte). Pest Manag. Sci. 2020, 76, 827–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 2011, 6, e22629. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, A.J. Resistance to Bt maize by western corn rootworm: Insights from the laboratory and the field. Curr. Opin. Insect Sci. 2016, 15, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassmann, A.J.; Shrestha, R.B.; Kropf, A.L.; St Clair, C.R.; Brenizer, B.D. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Pest Manag. Sci. 2020, 76, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Calles-Torrez, V.; Knodel, J.J.; Boetel, M.A.; French, B.W.; Fuller, B.W.; Ransom, J.K. Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota. J. Econ. Entomol. 2019, 112, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J. Resistance to Bt Maize by western corn rootworm: Effects of pest biology, the pest-crop interaction and the agricultural landscape on resistance. Insects 2021, 12, 136. [Google Scholar] [CrossRef]
- Bedford, G.O. Biology and management of palm dynastid beetles: Recent advances. Annu. Rev. Entomol. 2013, 58, 353–372. [Google Scholar] [CrossRef]
- Jackson, T.A.; Crawford, A.M.; Glare, T.R. Oryctes virus—Time for a new look at a useful biocontrol agent. J. Invertebr. Pathol. 2005, 89, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kitajima, E.W. Nonoccluded baculovirus-like and filamentous virus-like particles in the spotted cucumber beetle, Diabrotica-undecimpunctata (Coleoptera, Chrysomelid). J. Invertebr. Pathol. 1984, 43, 234–241. [Google Scholar] [CrossRef]
- Degrugillier, M.E.; Degrugillier, S.S.; Jackson, J.J. Nonoccluded, cytoplasmic virus-particles and Rickettsia-like organisms in testes and spermathecae of Diabrotica-virgifera. J. Invertebr. Pathol. 1991, 57, 50–58. [Google Scholar] [CrossRef]
- Kim, K.S. Cytopathology of spotted cucumber beetle hemocytes containing virus-like particles. J. Invertebr. Pathol. 1980, 36, 292–301. [Google Scholar] [CrossRef]
- Kim, K.S.; Scott, H.A.; Fulton, J.P. Viruses discovered in beetle pests. Ark. Farm Res. 1981, 30, 19. [Google Scholar]
- Asgari, S.; Bideshi, D.K.; Bigot, Y.; Federici, B.A.; Cheng, X.W.; ICTV Report, C. ICTV Virus Taxonomy Profile: Ascoviridae. J. Gen. Virol. 2017, 98, 4–5. [Google Scholar] [CrossRef]
- Piegu, B.; Asgari, S.; Bideshi, D.; Federici, B.A.; Bigot, Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol. Phylogenet. Evol. 2015, 84, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Bideshi, D.K.; Demattei, M.V.; Rouleux-Bonnin, F.; Stasiak, K.; Tan, Y.; Bigot, S.; Bigot, Y.; Federici, B.A. Genomic sequence of Spodoptera frugiperda Ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J. Virol. 2006, 80, 11791–11805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xue, J.; Seaborn, C.P.; Arif, B.M.; Cheng, X.W. Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology 2006, 354, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Asgari, S.; Davis, J.; Wood, D.; Wilson, P.; McGrath, A. Sequence and organization of the Heliothis virescens ascovirus genome. J. Gen. Virol. 2007, 88, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.H.; Wang, Y.S.; Wang, X.; Garretson, T.A.; Dai, L.Y.; Zhang, C.X.; Cheng, X.W. Genomic sequence of Heliothis virescens ascovirus 3g isolated from Spodoptera exigua. J. Virol. 2012, 86, 12467–12468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.H.; Garretson, T.A.; Cheng, X.H.; Holztrager, M.S.; Li, S.J.; Wang, X.; Cheng, X.W. Phylogenetic position and replication kinetics of Heliothis virescens ascovirus 3h (HvAV-3h) isolated from Spodoptera exigua. PLoS ONE 2012, 7, e40225. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.S.; Hou, D.H.; Cheng, X.W.; Wang, X.; Huang, G.H. Genomic analysis of a novel isolate Heliothis virescens ascovirus 3i (HvAV-3i) and identification of ascoviral repeat ORFs (aros). Arch. Virol. 2018, 163, 2849–2853. [Google Scholar] [CrossRef]
- Bigot, Y.; Renault, S.; Nicolas, J.; Moundras, C.; Demattei, M.V.; Samain, S.; Bideshi, D.K.; Federici, B.A. Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses. PLoS ONE 2009, 4, e6397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, M.; Xiao, H.; Huang, G.H.; Deng, F.; Hu, Z. Genome analysis of Dasineura jujubifolia toursvirus 2, a novel Ascovirus. Virol. Sin. 2020, 35, 134–142. [Google Scholar] [CrossRef]
- Bigot, Y.; Rabouille, A.; Periquet, G. Particle and genomic characteristics of a new member of the Ascoviridae: Diadromus pulchellus ascovirus. J. Gen. Virol. 1997, 78, 5. [Google Scholar] [CrossRef]
- Federici, B.A.; Bideshi, D.K.; Tan, Y.; Spears, T.; Bigot, Y. Ascoviruses: Superb manipulators of apoptosis for viral replication and transmission. Curr. Top. Microbiol. Immunol. 2009, 328, 171–196. [Google Scholar]
- Bigot, Y.; Rabouille, A.; Periquet, G. Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host, Acrolepiopsis assectella. J. Gen. Virol. 1997, 78, 5. [Google Scholar] [CrossRef]
- Bonning, B.C. The insect virome: Opportunities and challenges. Curr. Issues Mol. Biol. 2020, 34, 1–12. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Sappington, T.W.; Bonning, B.C. Genome sequence of a novel positive-sense, single-stranded RNA virus isolated from western corn rootworm, Diabrotica virgifera virgifera LeConte. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Chen, Y.; Sappington, T.W.; Bonning, B.C. Genome sequence of Diabrotica virgifera virgifera virus2, a novel small RNA virus of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Y.; Sappington, T.W.; Bonning, B.C. Genome sequence of the first coleopteran iflavirus isolated from western corn rootworm, Diabrotica virgifera virgifera LeConte. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Sappington, T.W.; Coates, B.S.; Bonning, B.C. Nudivirus sequences identified from the southern and western corn rootworms (Coleoptera: Chrysomelidae). Viruses 2021, 13, 269. [Google Scholar] [CrossRef] [PubMed]
- Coates, B.S. Assembly and annotation of full mitochondrial genomes for the corn rootworm species, Diabrotica virgifera virgifera and Diabrotica barberi (Insecta: Coleoptera: Chrysomelidae), using Next Generation Sequence data. Gene 2014, 542, 190–197. [Google Scholar] [CrossRef]
- Liu, S.; Coates, B.S.; Bonning, B.C. Endogenous viral elements integrated into the genome of the soybean aphid, Aphis glycines. Insect Biochem. Mol. Biol. 2020, 123, 103405. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.M.; Eyers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovlic, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bideshi, D.K.; Renault, S.; Stasiak, K.; Federici, B.A.; Bigot, Y. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J. Gen. Virol. 2003, 84, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, N.; Linial, M. Viral proteins acquired from a host converge to simplified domain architectures. PLoS Comput. Biol. 2012, 8, e1002364. [Google Scholar] [CrossRef] [Green Version]
- Bezier, A.; Annaheim, M.; Herbiniere, J.; Wetterwald, C.; Gyapay, G.; Bernard-Samain, S.; Wincker, P.; Roditi, I.; Heller, M.; Belghazi, M.; et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 2009, 323, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Desfarges, S.; Ciuffi, A. Viral integration and consequences on host gene expression. In Viruses: Essential Agents of Life; Witzany, G., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Desfarges, S.; Ciuffi, A. Retroviral integration site selection. Viruses 2010, 2, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Stasiak, K.; Demattei, M.V.; Federici, B.A.; Bigot, Y. Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. J. Gen. Virol. 2000, 81, 3059–3072. [Google Scholar] [CrossRef]
Virus | Abbr. | % G+C | Accession | Length (bp) | Putative CDS | Host | Ref |
---|---|---|---|---|---|---|---|
Genus Ascovirus | |||||||
Spodoptera frugiperda ascovirus 1a | SfAV1a | 49.26 | NC_008361.1 | 156922 | 123 | Spodoptera frugiperda | [19] |
Trichoplusia ni ascovirus 2c | TNAV2c | 35.24 | NC_008518.1 | 174059 | 165 | [20] | |
Heliothis virescens ascovirus 3e | HVAV3e | 45.88 | NC_009233.1 | 186262 | 178 | [21] | |
Heliothis virescens ascovirus 3f | HVAV3f | 46 | NC_044938.1 | 198157 | 190 | Helicoverpa zea | |
Heliothis virescens ascovirus 3g | TnAV3g | 45.85 | JX491653.1 | 199721 | 194 | Spodoptera exigua | [22] |
Heliothis virescens ascovirus 3h | HvAV3h | 45.5 | KU170628.1 | 190519 | 185 | Spodoptera exigua | [23] |
Heliothis virescens ascovirus 3i | HvAV3i | 45.42 | MF781070.1 | 185650 | 181 | Spodoptera frugiperda | [24] |
Heliothis virescens ascovirus 3j | HvAV3j | 45.62 | LC332918.1 | 191718 | 189 | Spodoptera litura | |
Trichoplusia ni ascovirus 6b | TnAV6b | 35.43 | KY434117.1 | 185664 | 178 | Helicoverpa zea | |
Genus Toursvirus | |||||||
Diadromus pulchellus toursvirus 1a * | DpTV1a | 49.16 | NC_011335.1 | 119343 | 119 | Diadromus puchellus | [25] |
Dasineura jujubifolia toursvirus 2a | DjTV2a | 45.97 | MK867691.1 | 142600 | 141 | Dasineura jujubifolia | [26] |
Fragment | Length (bp) | % G+C | No. Putative CDS | Total Reads Mapped | Average Base Coverage | ||
---|---|---|---|---|---|---|---|
SCR | NCR | SCR | NCR | ||||
F1 | 9099 | 30.02 | 9 | 4775 | 2333 | 52.48 | 25.64 |
F2 | 19,537 | 29.5 | 22 | 10,479 | 2763 | 53.64 | 14.14 |
F3 | 10,800 | 29.88 | 12 | 5553 | 1494 | 51.42 | 13.83 |
F4 | 9493 | 28.68 | 13 | 4941 | 1670 | 52.05 | 17.59 |
F5 | 6898 | 31.01 | 4 | 3533 | 880 | 51.22 | 12.76 |
F6 | 5330 | 30.17 | 5 | 2746 | 733 | 51.52 | 13.75 |
F7 | 4680 | 28.44 | 7 | 2022 | 636 | 43.21 | 13.59 |
F8 | 4514 | 30.24 | 4 | 2275 | 590 | 50.40 | 13.07 |
F9 | 4062 | 30.66 | 4 | 2048 | 800 | 50.42 | 19.69 |
F10 | 3943 | 30.97 | 2 | 2057 | 520 | 52.17 | 13.19 |
F11 | 3641 | 30.82 | 5 | 1794 | 655 | 49.27 | 17.99 |
F12 | 2725 | 27.78 | 4 | 1390 | 348 | 51.01 | 12.77 |
F13 | 2590 | 28.3 | 4 | 1346 | 346 | 51.97 | 13.36 |
F14 | 2473 | 26.97 | 3 | 1252 | 440 | 50.63 | 17.79 |
F15 | 2445 | 30.35 | 1 | 1234 | 274 | 50.47 | 11.21 |
F16 | 2273 | 30.23 | 2 | 1122 | 344 | 49.36 | 15.13 |
F17 | 1970 | 28.63 | 3 | 994 | 196 | 50.46 | 9.95 |
F18 | 1606 | 27.21 | 3 | 813 | 178 | 50.62 | 11.08 |
F19 | 1586 | 31.97 | 2 | 725 | 164 | 45.71 | 10.34 |
F20 | 1487 | 31.07 | 2 | 698 | 182 | 46.94 | 12.24 |
F21 | 1327 | 24.86 | 2 | 714 | 220 | 53.81 | 16.58 |
F22 | 1135 | 29.46 | 2 | 623 | 156 | 54.89 | 13.74 |
F23 | 1305 | 32.43 | 1 | 604 | 274 | 46.28 | 21.00 |
F24 | 1270 | 29.53 | 1 | 600 | 316 | 47.24 | 24.88 |
F25 | 1135 | 29.53 | 2 | 510 | 242 | 44.93 | 21.32 |
F26 | 826 | 40.56 | 1 | 357 | 266 | 43.22 | 32.20 |
108,150 | 29.9719231 | 120 | 55,205 | 17,020 | 51.94 | 15.74 |
ORF | Length (aa) | Mr (kDa) | Gene | Similar ORFs | Functional Category † |
---|---|---|---|---|---|
F1_ORF1 | 166 * | 18.7 | hypothetical protein | IIV6_404L (Invertebrate iridovirus 6) | |
F1_ORF2 | 154 | 18.5 | hypothetical protein | N/A | |
F1_ORF3 | 386 | 45 | ribonucleoside-diphosphate reductase subunit M2 | DjTV_ORF44/AV955_gp066 | |
F1_ORF4 | 124 | 15.4 | hypothetical protein | N/A | |
F1_ORF5 | 181 | 21.1 | casein kinase 1, delta | none from viruses | |
F1_ORF6 | 941 | 109.1 | DNA polymerase | DjTV_ORF1/AV955_gp001 | 1 |
F1_ORF7 | 59 | 6.8 | hypothetical protein | N/A | |
F1_ORF8 | 109 | 12.8 | mobilome: prophages, transposons | phage anti-repressor protein | |
F1_ORF9 | 580 | 66.5 | hypothetical protein | DjTV_ORF30/AV955_gp054 | |
F2_ORF1 | 85 | 9.9 | hypothetical protein | N/A | |
F2_ORF2 | 774 | 90.5 | lipopolysaccharide-modifying enzyme | DjTV_ORF114/AV955_gp105 | 7 |
F2_ORF3 | 151 | 17.5 | hypothetical protein | DjTV_ORF2/AV955_gp039 | |
F2_ORF4 | 197 | 22.4 | hypothetical protein | DjTV_ORF98/AV955_gp024 | |
F2_ORF5 | 280 | 33.9 | hypothetical protein (hit CDD pfam08793, 2c_adapt [cl07414], PTZ00449 [cl33186]) | none from viruses | |
F2_ORF6 | 136 | 15.6 | hypothetical protein | DjTV_ORF100 | |
F2_ORF7 | 800 | 93.7 | hypothetical protein | DjTV_ORF57/AV955_gp094 | |
F2_ORF8 | 158 | 18.9 | putative zinc-finger DNA binding protein | DjTV_ORF129/AV955_gp108 | 7 |
F2_ORF9 | 195 | 21.9 | hypothetical protein | N/A | |
F2_ORF10 | 871 | 101.1 | DEAD-like helicase | DjTV_ORF81/AV955_gp020 | 1 |
F2_ORF11 | 226 | 26.9 | UMP-CMP kinase 2, mitochondrial-like (thymidylate kinase) | none from viruses | |
F2_ORF12 | 196 | 22.5 | thymidylate kinase | ORF of Fowlpox virus | |
F2_ORF13 | 181 | 20.5 | hypothetic protein histone-lysine N-methyltransferase 2C-like | none from viruses | |
F2_ORF14 | 117 | 13.3 | hypothetical protein | N/A | |
F2_ORF15 | 459 | 52.6 | DNA ligase | R303 (Acanthamoeba polyphaga mimivirus) | |
F2_ORF16 | 50 | 6.1 | hypothetical protein | N/A | |
F2_ORF17 | 278 | 32 | hypothetical protein | DjTV_ORF90/AV955_gp035 | 7 |
F2_ORF18 | 250 | 29.4 | acetyltransferase | DjTV_ORF115/AV955_gp081 | 5 |
F2_ORF19 | 108 | 13.2 | hypothetical protein | N/A | |
F2_ORF20 | 146 | 17 | acyl-CoA-binding protein domain containing protein | none from viruses | |
F2_ORF21 | 91 | 10.9 | hypothetical protein | N/A | |
F2_ORF22 | 164 | 19.2 | hypothetical protein | DjTV_ORF58/AV955_gp095 | |
F3_ORF1 | 135 | 16.1 | hypothetical protein | DjTV_ORF19/AV955_gp071 | |
F3_ORF2 | 328 | 37.8 | DNA repair exonuclease | DjTV_ORF18/AV955_gp026 | 1 |
F3_ORF3 | 87 | 10.4 | hypothetical protein | N/A | |
F3_ORF4 | 240 | 28.4 | hypothetical protein | DjTV_ORF28/AV955_gp013 | |
F3_ORF5 | 1031 | 122.2 | dynein-like beta chain protein | DjTV_ORF94/AV955_gp085 | 7 |
F3_ORF6 | 464 | 54.6 | hypothetical protein | DjTV_ORF94/AV955_gp079 | |
F3_ORF7 | 263 | 31.1 | RNaseIII | DjTV_ORF22/AV955_gp003 | 2 |
F3_ORF8 | 349 | 41.3 | flap structure-specific endonuclease | DH26_gp060 (Anopheles minimus irodovirus) | 1 |
F3_ORF9 | 162 | 19.4 | hypothetical protein | N/A | |
F3_ORF10 | 67 | 7.9 | hypothetical protein | N/A | |
F3_ORF11 | 71 | 7.9 | hypothetical protein | N/A | |
F3_ORF12 | 60 * | 7.1 | hypothetical protein | N/A | |
F4_ORF1 | 117 | 13.6 | hypothetical protein | DjTV_ORF107/AV955_gp045 | |
F4_ORF2 | 130 | 15.5 | hypothetical protein | DjTV_ORF118/AV955_gp072 | |
F4_ORF3 | 345 | 41.4 | DNA binding/packing protein | DjTV_ORF99/AV955_gp103 | 3 |
F4_ORF4 | 123 | 14.9 | hypothetical protein | N/A | |
F4_ORF5 | 455 | 51.8 | major capsid protein | DjTV_ORF83/AV955_gp019 | 3 |
F4_ORF6 | 132 | 15.5 | thioredoxin-like protein | DjTV_ORF116/AV955_gp104 | |
F4_ORF7 | 365 | 43.3 | immediate early protein ICP-46 | DjTV_ORF97/AV955_gp043 | 7 |
F4_ORF8 | 104 | 12.4 | yabby-like transcription factor | DjTV_ORF110/AV_955_gp022 | 2 |
F4_ORF9 | 207 | 23.6 | hypothetical protein | DjTV_ORF92/AV955_gp023 | |
F4_ORF10 | 146 | 17.3 | putative RING finger protein | IIV22_063R (Invertebrate iridovirus 22) | |
F4_ORF11 | 98 | 11.4 | hypothetical protein | putative protein 4 (Dougjudy virga-like virus) | |
F4_ORF12 | 239 | 28.5 | casein kinase 1-like protein 5/major virion DNA-binding protein | DjTV_ORF54/AV955_gp115 | 3 |
F4_ORF13 | 277 | 31.4 | hypothetical protein | N/A | |
F5_ORF1 | 1029 | 116.2 | DdRp II | DjTV_ORF111/AV955_gp073 | 2 |
F5_ORF2 | 60 | 7.2 | hypothetical protein | N/A | |
F5_ORF3 | 650 | 76.1 | hypothetical protein | DjTV_ORF105 | |
F5_ORF4 | 287 | 33.4 | hypothetical protein | N/A | |
F6_ORF1 | 66 * | 8.1 | hypothetical protein | N/A | |
F6_ORF2 | 143 | 16.2 | hypothetical protein | N/A | |
F6_ORF3 | 982 | 115 | RHS repeat protein | none from viruses | |
F6_ORF4 | 122 | 14.5 | hypothetical protein | DjTV_ORF69 | |
F6_ORF5 | 279 | 32.7 | hypothetical protein | DjTV_ORF46/AV955_gp109 | |
F7_ORF1 | 50 | 5.8 | hypothetical protein | N/A | |
F7_ORF2 | 61 | 7 | hypothetical protein | N/A | |
F7_ORF3 | 176 | 21.1 | uyr/REP helicase | DjTV_ORF89/AV955_gp028 | |
F7_ORF4 | 622 | 72.8 | ATPase | DjTV_ORF4/AV955_gp033 | 1 |
F7_ORF5 | 123 | 14.3 | hypothetical protein | N/A | |
F7_ORF6 | 170 | 19.5 | hydrolase, NUDIX family | DjTV_ORF83/AV955_gp005 | |
F7_ORF7 | 81 * | 9.7 | putative RING finger protein | MIV027R (Invertebrate iridescent virus 3) | 7 |
F8_ORF1 | 836 | 97.6 | ATPase | DjTV_ORF63/AV955_gp093 | 1 |
F8_ORF2 | 84 | 9.6 | hypothetical protein | DjTV_ORF91/AV955_gp030 | |
F8_ORF3 | 189 | 22.6 | thymidine kinase | DjTV_ORF12/AV955_gp055 | 1 |
F8_ORF4 | 224 | 27.2 | fatty acids protein | DjTV_ORF127/AV955_gp015 | 5 |
F9_ORF1 | 408 | 46.9 | RNA polymerase II | DjTV_ORF10/AV955_gp070 | 2 |
F9_ORF2 | 126 | 14.6 | thiredoxin-like | DjTV_ORF128/AV955_gp044 | |
F9_ORF3 | 290 | 33.8 | myristylated membrane protein-like protein | DjTV_ORF40/AV955_gp065 | 7 |
F9_ORF4 | 353 * | 40 | dUTP diphosphatase | none from viruses | |
F10_ORF1 | 877 * | 116.2 | DdRp | DjTV_ORF7/AV955_gp089 | 2 |
F10_ORF2 | 356 | 42.4 | hypothetical protein | IIV31_072L (Armadillidium vulgare iridescent virus) | |
F11_ORF1 | 254 * | 29.6 | myristylated membrane protein-like protein | DjTV_ORF40/AV955_gp065 | 5 |
F11_ORF2 | 126 | 14.6 | thiredoxin-like | DjTV_ORF128/AV955_gp044 | |
F11_ORF3 | 289 | 33.3 | thymidylate synthase | none from viruses | |
F11_ORF4 | 216 | 25 | hypothetical protein | DjTV_ORF77/AV955_gp031 | |
F11_ORF5 | 133 | 15.6 | transcription elongation factor S-II | DjTV_ORF78/AV955_gp082 | |
F12_ORF1 | 152 | 18.5 | hypothetical protein | DjTV_ORF26/AV955_gp010 | |
F12_ORF2 | 519 | 60.7 | hypothetical protein | DjTV_ORF25/AV955_gp036 | 4 |
F12_ORF3 | 57 | 6.5 | hypothetical protein | N/A | |
F12_ORF4 | 83 * | 9.3 | hypothetical protein | N/A | |
F13_ORF1 | 79 | 9.5 | hypothetical protein | N/A | |
F13_ORF2 | 104 | 11.9 | IIV22A_144R-like | IIV22A_144R (Invertebrate iridescent virus 22) | |
F13_ORF3 | 206 | 24.3 | zinc-dependent metalloprotease | DjTV_ORF119/AV955_gp029 | 7 |
F13_ORF4 | 360 | 40.8 | major virion DNA-binding protein | DjTV_ORF98/AV955_gp008 | 3 |
F14_ORF1 | 117 | 136 | DNA-directed RNA polymerases I, II, and III | DjTV_ORF66/AV955_gp058 | |
F14_ORF2 | 202 | 23.5 | hypothetical protein | DjTV_ORF103/AV955_gp051 | |
F14_ORF3 | 264 | 31.2 | hypothetical protein | DjTV_ORF59/AV955_gp009 | |
F15_ORF1 | 728 | 83.9 | serine/threonine protein kinase | DjTV_ORF55/AV955_gp046 | 4 |
F16_ORF1 | 269 | 31 | hypothetical protein | DjTV_ORF87/AV955_gp025 | |
F16_ORF2 | 384 | 44.1 | hypothetical protein | DjTV_ORF86/AV955_gp064 | |
F17_ORF1 | 260 | 29.8 | patatin-like phospholipase | DjTV_ORF140/AV955_gp087 | 5 |
F17_ORF2 | 118 | 13.4 | hypothetical protein | AV955_gp107 | |
F17_ORF3 | 174 | 20.4 | hypothetical protein | DjTV_ORF9/AV955_gp116 | |
F18_ORF1 | 95 * | 11.4 | hypothetical protein | N/A | |
F18_ORF2 | 214 | 25.9 | hypothetical protein | DjTV_ORF121/AV955_gp060 | |
F18_ORF3 | 140 | 16.9 | hypothetical protein | N/A | |
F19_ORF1 | 79 * | 9.3 | hypothetical protein | N/A | |
F19_ORF2 | 445 | 49 | lipid membrane protein | DjTV_ORF61/AV955_gp040 | |
F20_ORF1 | 348 | 39.9 | putative myristylated membrane protein | AV955_gp065 | 7 |
F20_ORF2 | 62 * | 6.9 | hypothetical protein | DjTV_ORF67/AV955_gp063 | |
F21_ORF1 | 170 | 20.5 | CDT phosphatase transcription factor | DjTV_ORF81/AV955_gp117 | 2 |
F21_ORF2 | 148 | 17.2 | hypothetical protein | DjTV_ORF82/AV955_gp097 | |
F22_ORF1 | 104 | 12.3 | sulfhydry1 oxidase Erv1 like protein | DjTV_ORF62/AV955_gp041 | |
F22_ORF2 | 257 | 30 | ATPase 3 | DjTV_ORF137/AV955_gp086 | |
F23_ORF1 | 358 | 40.9 | cathepsin B | DjTV_ORF50/AV955_gp048 | 6 |
F24_ORF1 | 406 | 47.8 | hypothetical protein | DjTV_ORF72/AV955_gp096 | |
F25_ORF1 | 193 * | 22.7 | iap-3 | DjTV_ORF108/AV955_gp007 | 6 |
F25_ORF2 | 73 | 8.5 | hypothetical protein | N/A | |
F26_ORF1 | 234 | 27.1 | hypothetical protein | MIV075R (Invertebrate iridescent virus 3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sappington, T.W.; Coates, B.S.; Bonning, B.C. Sequences Encoding a Novel Toursvirus Identified from Southern and Northern Corn Rootworms (Coleoptera: Chrysomelidae). Viruses 2022, 14, 397. https://doi.org/10.3390/v14020397
Liu S, Sappington TW, Coates BS, Bonning BC. Sequences Encoding a Novel Toursvirus Identified from Southern and Northern Corn Rootworms (Coleoptera: Chrysomelidae). Viruses. 2022; 14(2):397. https://doi.org/10.3390/v14020397
Chicago/Turabian StyleLiu, Sijun, Thomas W. Sappington, Brad S. Coates, and Bryony C. Bonning. 2022. "Sequences Encoding a Novel Toursvirus Identified from Southern and Northern Corn Rootworms (Coleoptera: Chrysomelidae)" Viruses 14, no. 2: 397. https://doi.org/10.3390/v14020397
APA StyleLiu, S., Sappington, T. W., Coates, B. S., & Bonning, B. C. (2022). Sequences Encoding a Novel Toursvirus Identified from Southern and Northern Corn Rootworms (Coleoptera: Chrysomelidae). Viruses, 14(2), 397. https://doi.org/10.3390/v14020397