Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Detection of Respiratory Viruses
2.3. Detection of Bacteria and Fungi
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Patients with COVID-19
3.2. Coinfection with Respiratory Viruses
3.3. Nosocomial Infection with Bacteria
3.4. Nosocomial Infection with Fungus
3.5. Risk Factors for Mortality in Patients with COVID-19
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronnavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 9 December 2021).
- Kim, J.Y.; Choe, P.G.; Oh, Y.; Oh, K.J.; Kim, J.; Park, S.J.; Park, J.H.; Na, H.K.; Oh, M.D. The First Case of 2019 Novel Coronavirus Pneumonia Imported into Korea from Wuhan, China: Implication for Infection Prevention and Control Measures. J. Korean Med. Sci. 2020, 35, e61. [Google Scholar] [CrossRef] [PubMed]
- Korea Centers for Disease Control and Prevention. KCDC Coronnavirus (COVID-19) Dashboard. Available online: http://ncov.mohw.go.kr/ (accessed on 9 December 2021).
- Bordi, L.; Nicastri, E.; Scorzolini, L.; Di Caro, A.; Capobianchi, M.R.; Castilletti, C.; Lalle, E.; COVID-19 Study Group and Collaborating Centers. Differential diagnosis of illness in patients under investigation for the novel coronavirus (SARS-CoV-2), Italy, February 2020. Eur. Surv. 2020, 25, 2000170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wee, L.E.; Ko, K.K.K.; Ho, W.Q.; Kwek, G.T.C.; Tan, T.T.; Wijaya, L. Community-acquired viral respiratory infections amongst hospitalized inpatients during a COVID-19 outbreak in Singapore: Co-infection and clinical outcomes. J. Clin. Virol. 2020, 128, 104436. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, C.; Della-Torre, E.; Cavalli, G.; De Luca, G.; Ripa, M.; Boffini, N.; Tomelleri, A.; Baldissera, E.; Rovere-Querini, P.; Ruggeri, A.; et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: A single-centre retrospective cohort study. Eur. J. Intern. Med. 2020, 76, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Du, R.H.; Liu, L.M.; Yin, W.; Wang, W.; Guan, L.L.; Yuan, M.L.; Li, Y.L.; Hu, Y.; Li, X.Y.; Sun, B.; et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann. Am. Thorac. Soc. 2020, 17, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, H.; Zhang, M.; Xing, L.; Wang, K.; Rao, X.; Liu, H.; Tian, J.; Zhou, P.; Deng, Y.; Shang, J. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J. Med. Virol. 2020, 92, 2870–2873. [Google Scholar] [CrossRef]
- Wang, L.; Amin, A.K.; Khanna, P.; Aali, A.; McGregor, A.; Bassett, P.; Gopal Rao, G. An observational cohort study of bacterial co-infection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London. J. Antimicrob. Chemother. 2021, 76, 796–803. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Punjabi Katiyar, C.; Jain, R.; Aldrich, M.; Weston, G.; et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef]
- Pettit, N.N.; Nguyen, C.T.; Mutlu, G.M.; Wu, D.; Kimmig, L.; Pitrak, D.; Pursell, K. Late onset infectious complications and safety of tocilizumab in the management of COVID-19. J. Med. Virol. 2021, 93, 1459–1464. [Google Scholar] [CrossRef]
- White, P.L.; Dhillon, R.; Cordey, A.; Hughes, H.; Faggian, F.; Soni, S.; Pandey, M.; Whitaker, H.; May, A.; Morgan, M.; et al. A National Strategy to Diagnose Coronavirus Disease 2019-Associated Invasive Fungal Disease in the Intensive Care Unit. Clin. Infect. Dis. 2021, 73, e1634–e1644. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Lee, N.; Park, M.J.; Jeon, K.; Kim, H.S.; Kim, H.S.; Kim, J.S.; Song, W. Genotypic Distribution and Antimicrobial Susceptibilities of Carbapenemase-Producing Enterobacteriaceae Isolated from Rectal and Clinical Samples in Korean University Hospitals Between 2016 and 2019. Ann. Lab. Med. 2022, 42, 36–46. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoints—Breakpoints and Guidance. Available online: http://www.eucast.org/clinical_breakpoints (accessed on 9 December 2021).
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Kim, Y.G.; Park, H.; Kim, S.Y.; Hong, K.H.; Kim, M.J.; Lee, J.S.; Park, S.S.; Seong, M.W. Rates of Coinfection Between SARS-CoV-2 and Other Respiratory Viruses in Korea. Ann. Lab. Med. 2022, 42, 110–112. [Google Scholar] [CrossRef]
- Roh, K.H.; Kim, Y.K.; Kim, S.W.; Kang, E.R.; Yang, Y.J.; Jung, S.K.; Lee, S.H.; Sung, N. Coinfections with Respiratory Pathogens among COVID-19 Patients in Korea. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6651045. [Google Scholar] [CrossRef]
- Peci, A.; Tran, V.; Guthrie, J.L.; Li, Y.; Nelson, P.; Schwartz, K.L.; Eshaghi, A.; Buchan, S.A.; Gubbay, J.B. Prevalence of Co-Infections with Respiratory Viruses in Individuals Investigated for SARS-CoV-2 in Ontario, Canada. Viruses 2021, 13, 130. [Google Scholar] [CrossRef]
- Alvares, P.A. SARS-CoV-2 and Respiratory Syncytial Virus Coinfection in Hospitalized Pediatric Patients. Pediatr. Infect. Dis. J. 2021, 40, e164–e166. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, E.J.; Lee, N.J.; Woo, S.H.; Kim, J.M.; Rhee, J.E.; Kim, E.J. Impact of coronavirus disease 2019 on respiratory surveillance and explanation of high detection rate of human rhinovirus during the pandemic in the Republic of Korea. Influenza Other Respir. Viruses 2021, 15, 721–731. [Google Scholar] [CrossRef]
- Fendrick, A.M.; Monto, A.S.; Nightengale, B.; Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med. 2003, 163, 487–494. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Elabbadi, A.; Turpin, M.; Gerotziafas, G.T.; Teulier, M.; Voiriot, G.; Fartoukh, M. Bacterial coinfection in critically ill COVID-19 patients with severe pneumonia. Infection 2021, 49, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestana, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial Coinfections in Coronavirus Disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Wongsurakiat, P.; Tulatamakit, S. Clinical pulmonary infection score and a spot serum procalcitonin level to guide discontinuation of antibiotics in ventilator-associated pneumonia: A study in a single institution with high prevalence of nonfermentative gram-negative bacilli infection. Ther. Adv. Respir. Dis. 2018, 12, 1753466618760134. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.L.; Oliver, K.B. Antibiotic resistance threats in the United States: Stepping back from the brink. Am. Fam. Physician 2014, 89, 938–941. [Google Scholar] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, S.; Innes, G.K.; Walters, M.S.; Mehr, J.; Arias, J.; Greeley, R.; Chew, D. Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. MMWR Morb. Mortal. Wkly Rep. 2020, 69, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Rangel, K.; Chagas, T.P.G.; De-Simone, S.G. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021, 10, 1006. [Google Scholar] [CrossRef]
- Bengoechea, J.A.; Bamford, C.G. SARS-CoV-2, bacterial co-infections, and AMR: The deadly trio in COVID-19? EMBO Mol. Med. 2020, 12, e12560. [Google Scholar] [CrossRef]
- Barrasa, H.; Rello, J.; Tejada, S.; Martin, A.; Balziskueta, G.; Vinuesa, C.; Fernandez-Miret, B.; Villagra, A.; Vallejo, A.; San Sebastian, A.; et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth. Crit. Care. Pain. Med. 2020, 39, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Moser, D.; Biere, K.; Han, B.; Hoerl, M.; Schelling, G.; Chouker, A.; Woehrle, T. COVID-19 Impairs Immune Response to Candida albicans. Front. Immunol. 2021, 12, 640644. [Google Scholar] [CrossRef] [PubMed]
- Segrelles-Calvo, G.; de S. Araújo, G.R.; Llopis-Pastor, E.; Carrillo, J.; Hernandez-Hernandez, M.; Rey, L.; Melean, N.R.; Escribano, I.; Anton, E.; Zamarro, C.; et al. Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respir. Med. 2021, 188, 106619. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-Garcia, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Wilson, R.C.; Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 2021, 27, 9–11. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Liang, X.; Du, J.; He, Z.; Wang, Y.; Lyu, M.; Yue, L.; Zhang, F.; Xue, Z.; Xu, L.; et al. Proteomic and metabolomic investigation of serum lactate dehydrogenase elevation in COVID-19 patients. Proteomics 2021, 21, e2100002. [Google Scholar] [CrossRef]
Characteristics | Total (n = 436) | Coinfection (n = 35) | SARS-CoV-2 Only (n = 401) | p† |
---|---|---|---|---|
Median age, years | 48.0 (31.0–59.0) | 70.0 (56.2–77.0) | 46.0 (30.0–58.0) | <0.001 |
Age group | ||||
<20 years | 37 (8.5) | 0 (0.0) | 37 (9.2) | <0.001 |
20–39 years | 120 (27.5) | 3 (8.6) | 117 (29.2) | |
40–59 years | 173 (39.7) | 9 (25.7) | 164 (40.9) | |
>60 years | 106 (24.3) | 23 (65.7) | 83 (20.7) | |
Sex | ||||
Male | 220 (50.5) | 18 (51.4) | 202 (50.4) | 0.905 |
Female | 216 (49.5) | 17 (48.6) | 199 (49.6) | |
Hospitalization | ||||
Inpatient | 57 (13.1) | 30 (85.7) | 27 (6.7) | <0.001 |
Outpatient | 379 (86.9) | 5 (14.3) | 374 (93.3) | |
Ct value | ||||
E gene | 20.6 (15.3–29.0) | 24.3 (20.1–28.0) | 19.9 (15.1–29.1) | 0.045 |
RdRP gene | 20.5 (15.0–29.0) | 24.1 (19.8–27.6) | 20.1 (14.6–29.1) | 0.046 |
Laboratory finding | ||||
Procalcitonin (ng/mL) | 0.2 (0.1–0.9) | 0.3 (0.1–3.9) | 0.1 (0.0–0.1) | <0.001 |
CRP (mg/L) | 64.3 (20.9–139.7) | 117.7 (47.4–151.0) | 35.3 (15.0–100.7) | 0.019 |
WBC (109/L) | 8.5 (5.6–11.3) | 9.0 (5.5–14.8) | 7.8 (5.8–8.9) | 0.051 |
Neutrophil (%) | 86.6 (78.5–91.7) | 88.7 (81.5–93.0) | 83.5 (76.2–89.2) | 0.055 |
Lymphocyte (%) | 7.0 (4.5–14.1) | 6.0 (3.0–12.0) | 10.2 (5.3–16.8) | 0.033 |
Glucose (mg/dL) | 157.5 (126.3–200.4) | 147.0 (117.0–204.2) | 158.0 (128.5–195.3) | 0.602 |
LD (IU/L) | 444.5 (320.8–527.0) | 493.0 (366.7–547.3) | 358.0 (310.0–495.2) | 0.024 |
Variable | Univariate | Multivariate * | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Age | 1.060 (1.014–1.107) | 0.010 | 1.089 (1.017–1.166) | 0.015 |
Sex ‡ | ||||
Male | Reference | |||
Female | 0.500 (0.158–1.583) | 0.239 | ||
Comorbidity ‡ | 0.661 (0.270–2.293) | 0.787 | ||
HTN | 0.818 (0.252–2.660) | 0.739 | ||
DM | 0.978 (0.889–1.076) | 0.646 | ||
Infection with other pathogens ‡ | 13.818 (3.369–56.678) | <0.001 | 6.095 (1.160–32.028) | 0.033 |
Coinfection, virus | NA † | 0.998 | ||
Nosocomial infection, bacteria | 11.250 (3.041–41.624) | <0.001 | ||
Nosocomial infection, resistant bacteria | 11.667 (1.863–73.068) | 0.009 | ||
Nosocomial infection, fungus | 2.605 (0.399–17.008) | 0.317 | ||
Multiple coinfection | 10.667 (2.505–45.419) | 0.001 | ||
Laboratory finding | ||||
Procalcitonin (ng/mL) | 0.998 (0.983–1.013) | 0.797 | ||
CRP (mg/L) | 1.005 (0.998–1.012) | 0.135 | ||
WBC (109/L) | 1.097 (0.979–1.228) | 0.111 | ||
Neutrophil (%) | 1.077 (1.005–1.154) | 0.035 | 1.115 (0.970–1.282) | 0.125 |
Lymphocyte (%) | 0.905 (0.821–0.996) | 0.042 | 1.072 (0.883–1.302) | 0.480 |
Glucose (mg/dL) | 1.002 (0.996–1.007) | 0.544 | ||
LD (IU/L) | 1.005 (1.001–1.010) | 0.022 | 1.006 (1.000–1.012) | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.; Lee, N.; Park, Y.; Kim, J.; Jeon, K.; Park, M.-J.; Song, W. Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea. Viruses 2022, 14, 446. https://doi.org/10.3390/v14020446
Jeong S, Lee N, Park Y, Kim J, Jeon K, Park M-J, Song W. Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea. Viruses. 2022; 14(2):446. https://doi.org/10.3390/v14020446
Chicago/Turabian StyleJeong, Seri, Nuri Lee, Yeeun Park, Jaehong Kim, Kibum Jeon, Min-Jeong Park, and Wonkeun Song. 2022. "Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea" Viruses 14, no. 2: 446. https://doi.org/10.3390/v14020446
APA StyleJeong, S., Lee, N., Park, Y., Kim, J., Jeon, K., Park, M.-J., & Song, W. (2022). Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea. Viruses, 14(2), 446. https://doi.org/10.3390/v14020446