VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessments
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Antiretroviral Therapy
3.3. Measurement of VCAM-1 Concentration in Healthy Volunteers
3.4. VCAM-1 Concentration in Examined Groups of Patients
3.5. Coinfections
3.6. Age Correlation
3.7. Smoking Cigarettes
4. Discussion
4.1. VCAM-1 Concentration According to Patients’ Age
4.2. Smoking Cigarettes and VCAM-1 Concentration
4.3. Impact of Coinfections on VCAM-1 Concentration
4.4. Dyslipidemia and Endothelial Dysfunction
4.5. Severity of HIV Infection
4.6. VCAM-1 Targeting Molecules
4.7. The Role of Hyaluronic Acid in the Imrpovement of Endothelial Function
4.8. Limitations of the Study
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. Fact Sheet—Latest Statistics on the Status of the AIDS Epidemic. 2019. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 31 January 2020).
- National AIDS Centre. Basic Epidemiologic Information. 2019. Available online: https://aids.gov.pl/hiv_aids/450-2-2/ (accessed on 31 January 2020).
- Rosenson, R.S.; Hubbard, D.; Monda, K.L.; Reading, S.R.; Chen, L.; Dluzniewski, P.J.; Burkholder, G.A.; Muntner, P.; Colantonio, L.D. Excess Risk for Atherosclerotic Cardiovascular Outcomes among US Adults with HIV in the Current Era. J. Am. Hear. Assoc. 2020, 9, e013744. [Google Scholar] [CrossRef] [PubMed]
- Kralj, V.; Bilos, I.B. Morbidity and mortality from cardiovascular diseases. Cardiol. Croat. 2013, 8, 373–378. [Google Scholar] [CrossRef]
- Feinstein, M.J.; Bahiru, E.; Achenbach, C.; Longenecker, C.T.; Hsue, P.; So-Armah, K.; Freiberg, M.S.; Lloyd-Jones, D. Patterns of Cardiovascular Mortality for HIV-Infected Adults in the United States: 1999 to 2013. Am. J. Cardiol. 2016, 117, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Barnes, A.E.; Guest, J.L.; Shah, A.; Shao, I.Y.; Marconi, V. HIV Infection and Incidence of Cardiovascular Diseases: An Analysis of a Large Healthcare Database. J. Am. Hear. Assoc. 2019, 8, e012241. [Google Scholar] [CrossRef] [Green Version]
- Grinspoon, S. Novel mechanisms and anti-inflammatory strategies to reduce cardiovascular risk in human immunodeficiency virus. Trans. Am. Clin. Clim. Assoc. 2018, 129, 140–154. [Google Scholar]
- Hsue, P.Y.; Giri, K.; Erickson, S.; MacGregor, J.S.; Younes, N.; Shergill, A.; Waters, D.D. Clinical Features of Acute Coronary Syndromes in Patients with Human Immunodeficiency Virus Infection. Circulation 2004, 109, 316–319. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.A.; Chang, C.-C.; Kuller, L.; Goetz, M.B.; Leaf, D.; Rimland, D.; Gibert, C.L.; Oursler, K.K.; Rodriguez-Barradas, M.C.; Lim, J.; et al. Risk of Heart Failure with Human Immunodeficiency Virus in the Absence of Prior Diagnosis of Coronary Heart Disease. Arch. Intern. Med. 2011, 171, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Freiberg, M.S.; Chang, C.C.H.; Kuller, L.H.; Skanderson, M.; Lowy, E.; Kraemer, K.L.; Butt, A.A.; Goetz, M.B.; Leaf, D.; Oursler, K.A.; et al. HIV Infection and the Risk of Acute Myocardial Infarction. JAMA Intern. Med. 2013, 173, 614–622. [Google Scholar] [CrossRef]
- Womack, J.A.; Chang, C.H.; So-Armah, K.; Alcorn, C.; Baker, J.V.; Brown, S.T.; Budoff, M.; Butt, A.; Gibert, C.; Goetz, M.; et al. HIV Infection and Cardiovascular Disease in Women. J. Am. Hear. Assoc. 2014, 3, e001035. [Google Scholar] [CrossRef] [Green Version]
- Cybulsky, M.; Fries, J.W.; Williams, A.J.; Sultan, P.; Eddy, R.L.; Byers, M.G.; Shows, T.B.; Gimbrone, M.A., Jr.; Collins, T. The human VCAM1 gene is assigned to chromosome 1p31–p32. Cytogenet. Genome Res. 1991, 58, 1852. [Google Scholar]
- VCAM1 Vascular Cell Adhesion Molecule 1. Available online: https://www.ncbi.nlm.nih.gov/gene/7412 (accessed on 31 January 2020).
- Cook-Mills, J.M.; Marchese, M.E.; Abdala-Valencia, H. Vascular Cell Adhesion Molecule-1 Expression and Signaling during Disease: Regulation by Reactive Oxygen Species and Antioxidants. Antioxid. Redox Signal. 2011, 15, 1607–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefferson, A.; Ruparelia, N.; Choudhury, R.P. Exogenous Microparticles of Iron Oxide Bind to Activated Endothelial Cells but, Unlike Monocytes, Do Not Trigger an Endothelial Response. Theranostics 2013, 3, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares-Silva, F.; Landaeta, R.; Aránguiz, P.; Bolivar, S.; Humeres, C.; Anfossi, R.; Vivar, R.; Boza, P.; Muñoz, C.; Pardo-Jiménez, V.; et al. Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Yang, Y.; Wang, Q.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.-F.; Yu, T.; Chu, X.-M. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020, 11, 776. [Google Scholar] [CrossRef]
- Figueras-Aloy, J.; Gómez-López, L.; Rodríguez-Miguélez, J.-M.; Salvia-Roiges, M.D.; Jordán-García, I.; Ferrer-Codina, I.; Carbonell-Estrany, X.; Jiménez-González, R. Serum Soluble ICAM-1, VCAM-1, L-Selectin, and P-Selectin Levels as Markers of Infection and their Relation to Clinical Severity in Neonatal Sepsis. Am. J. Perinatol. 2007, 24, 331–338. [Google Scholar] [CrossRef]
- Quantikine® ELISA Human VCAM-1/CD106 Immunoassay Catalog Number DVC00, SVC00, PDVC00; For the Quantitative Determination of Human Vascular Cell Adhesion Molecule-1 (VCAM-1) Concentrations in Cell Culture Supernates, Serum, and Plasma. 2017, R&D Systems 1-2,9. Available online: https://www.antibodies-online.com/kit/366645/Vascular+Cell+Adhesion+Molecule+1+VCAM1+ELISA+Kit/ (accessed on 14 February 2022).
- Kingery, J.R.; Alfred, Y.; Smart, L.; Nash, E.; Todd, J.; Naguib, M.R.; Downs, J.; Kalluvya, S.; Kataraihya, J.B.; Peck, R. Short-term and long-term cardiovascular risk, metabolic syndrome and HIV in Tanzania. Heart 2016, 102, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- O’Halloran, J.; Dunne, E.; Gurwith, M.; Lambert, J.S.; Sheehan, G.; Feeney, E.; Pozniak, A.; Reiss, P.; Kenny, D.; Mallon, P. The effect of initiation of antiretroviral therapy on monocyte, endothelial and platelet function in HIV-1 infection. HIV Med. 2015, 16, 608–619. [Google Scholar] [CrossRef]
- Sutton, S.S.; Magagnoli, J.; Cummings, T.H.; Hardin, J.W.; Edun, B.; Beaubrun, A. Chronic kidney disease, cardiovascular disease, and osteoporotic fractures in patients with and without HIV in the US Veteran’s Affairs Administration System. Curr. Med. Res. Opin. 2019, 35, 117–125. [Google Scholar] [CrossRef]
- Wang, T.; Yi, R.; Green, L.A.; Chelvanambi, S.; Seimetz, M.; Clauss, M. Increased cardiovascular disease risk in the HIV-positive population on ART: Potential role of HIV-Nef and Tat. Cardiovasc. Pathol. 2015, 24, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Sandesara, P.; Hirsh, B.; Shaw, L.; Lewis, W.; Quyyumi, A.; Schinazi, R.; Post, W.; Sperling, L. HIV, highly active antiretroviral therapy and the heart: A cellular to epidemiological review. HIV Med. 2016, 17, 411–424. [Google Scholar] [CrossRef]
- Francisci, D.; Giannini, S.; Baldelli, F.; Leone, M.; Belfiori, B.; Guglielmini, G.; Malincarne, L.; Gresele, P. HIV type 1 infection, and not short-term HAART, induces endothelial dysfunction. AIDS 2009, 23, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.C.; Sereti, I. Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs 2016, 76, 533–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaluz, S.; Tan, C.; Van Meir, E.G. Taking a HIF pill for old age diseases? Aging 2018, 10, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Friis-Moller, N.; Reiss, P.; Sabin, C.; Weber, R.; Monforte, A.D.; El-Sadr, W.; Thiebaut, R.; De Wit, S.; Kirk, O.; Fontas, E.E.; et al. Class of Antiretroviral Drugs and the Risk of Myocardial Infarction. N. Engl. J. Med. 2007, 356, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Wallet, M.A.; Buford, T.W.; Joseph, A.-M.; Sankuratri, M.; Leeuwenburgh, C.; Pahor, M.; Manini, T.M.; Sleasman, J.W.; Goodenow, M.M. Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol. 2015, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Jaquet, A.; Dabis, F. Smoking status and HIV in low-income and middle-income countries. Lancet Glob. Health 2017, 5, e557–e558. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.S.; Cole, J.W. Smoking and stroke: The more you smoke the more you stroke. Expert Rev. Cardiovasc. Ther. 2010, 8, 917–932. [Google Scholar] [CrossRef]
- Ahlström, M.; Knudsen, A.; Ullum, H.; Gerstoft, J.; Kjaer, A.; Lebech, A.-M.; Hasbak, P.; Obel, N. Association between smoking status assessed with plasma-cotinine and inflammatory and endothelial biomarkers in HIV-positive and HIV-negative individuals. HIV Med. 2018, 19, 679–687. [Google Scholar] [CrossRef]
- McCarron, B.; Main, J.; Thomas, H.C. HIV and hepatotropic viruses: Interactions and treatments. Int. J. STD AIDS 1997, 8, 739–746. [Google Scholar] [CrossRef]
- Horvath, J.; Raffanti, S.P. Clinical Aspects of the Interactions between Human Immunodeficiency Virus and the Hepatotropic Viruses. Clin. Infect. Dis. 1994, 18, 339–347. [Google Scholar] [CrossRef]
- Babiker, A.; Hassan, M.; Muhammed, S.; Taylor, G.; Poonia, B.; Shah, A.; Bagchi, S. Inflammatory and cardiovascular diseases biomarkers in chronic hepatitis C virus infection: A review. Clin. Cardiol. 2019, 43, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Maida, M.F.; Macaluso, F.S.; Barbara, M.; Licata, A.; Craxì, A.; Cammà, C. Hepatitis C Virus Infection Is Associated with Increased Cardiovascular Mortality: A Meta-Analysis of Observational Studies. Gastroenterology 2016, 150, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddi, M.; Abbate, R.; Chellini, B.; Giusti, B.; Solazzo, V.; Sofi, F.; Pratesi, G.; Pratesi, C.; Gensini, G.; Zignego, A.L. HCV infection facilitates asymptomatic carotid atherosclerosis: Preliminary report of HCV RNA localization in human carotid plaques. Dig. Liver Dis. 2007, 39, S55–S60. [Google Scholar] [CrossRef]
- Gillis, J.; the OHTN Cohort Study Group; Smieja, M.; Cescon, A.; Rourke, S.B.; Burchell, A.N.; Cooper, C.; Raboud, J.M. Risk of cardiovascular disease associated with HCV and HBV co-infection among antiretroviral-treated HIV-infected individuals. Antivir. Ther. 2014, 19, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Guha, S.K.; Sarkar, J.; Saha, D.; Bandyopadhyay, B.; Saha, B.; Kedia, D.; Mazumder, D.G.; Chakravarty, R. Baseline characteristics of HIV & hepatitis B virus (HIV/HBV) co-infected patients from Kolkata, India. Indian J. Med. Res. 2016, 143, 636–642. [Google Scholar] [CrossRef]
- Smith, C.C.; Sabin, C.; Lundgren, J.; Thiebaut, R.; Weber, R.; Monforte, A.D.; Kirk, O.; Friis-Moller, N.; Phillips, A.N.; Reiss, P.; et al. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D study. AIDS 2010, 24, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, N.E. Lipid Abnormalities in Patients Infected with Human Immunodeficiency Virus. Endocr. Pract. 2008, 14, 492–500. [Google Scholar] [CrossRef]
- Mussini, C.; Lorenzini, P.; Cozzi-Lepri, A.; Lapadula, G.; Marchetti, G.; Nicastri, E.; Cingolani, A.; Lichtner, M.; Antinori, A.; Gori, A.; et al. CD4/CD8 ratio normalisation and non-AIDS-related events in individuals with HIV who achieve viral load suppression with antiretroviral therapy: An observational cohort study. Lancet HIV 2015, 2, e98–e106. [Google Scholar] [CrossRef]
- Blum, A.; Hadas, V.; Burke, M.; Yust, I.; Kessler, A. Viral load of the human immunodeficiency virus could be an independent risk factor for endothelial dysfunction. Clin. Cardiol. 2005, 28, 149–153. [Google Scholar] [CrossRef]
- Dubé, M.P.; Shen, C.; Mather, K.J.; Waltz, J.; Greenwald, M.; Gupta, S.K. Relationship of Body Composition, Metabolic Status, Antiretroviral Use, and HIV Disease Factors to Endothelial Dysfunction in HIV-Infected Subjects. AIDS Res. Hum. Retrovir. 2010, 26, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Van der Vieren, M.; Crowe, D.T.; Hoekstra, D.; Vazeux, R.; Hoffman, P.A.; Grayson, M.H.; Bochner, B.S.; Gallatin, W.M.; Staunton, D.E. The leukocyte integrin αDβ2 binds VCAM-1: Evidence for a binding interface between I domain and VCAM-1. J. Immunol. 1999, 163, 1984–1990. [Google Scholar]
- Belcastro, E.; Rehman, A.U.; Remila, L.; Park, S.-H.; Gong, D.S.; Anton, N.; Auger, C.; Lefebvre, O.; Goetz, J.G.; Collot, M.; et al. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. Nanomed. Nanotechnol. Biol. Med. 2021, 34, 102379. [Google Scholar] [CrossRef]
- Sachdeva, V.; Roy, A.; Bharadvaja, N. Current Prospects of Nutraceuticals: A Review. Curr. Pharm. Biotechnol. 2020, 21, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; Armenia, E.; Aurilio, C.; Rosso, F.; Clemente, O.; de Sena, G.; Barbarisi, M.; Barbarisi, A. New Treatment of Medullary and Papillary Human Thyroid Cancer: Biological Effects of Hyaluronic Acid Hydrogel Loaded with Quercetin Alone or in Combination to an Inhibitor of Aurora Kinase. J. Cell. Physiol. 2016, 231, 1784–1795. [Google Scholar] [CrossRef]
- Gomez, K.E.; Wu, F.; Keysar, S.B.; Morton, J.J.; Miller, B.; Chimed, T.-S.; Le, P.N.; Nieto, C.; Chowdhury, F.N.; Tyagi, A.; et al. Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells. Cancer Res. 2020, 80, 4185–4198. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Rosso, F.; Quagliariello, V.; Tortora, C.; Di Lazzaro, A.; Barbarisi, A.; Iaffaioli, R.V. Cross-linked hyaluronic acid sub-micron particles: In vitro and in vivo biodistribution study in cancer xenograft model. J. Mater. Sci. Mater. Med. 2013, 24, 1473–1481. [Google Scholar] [CrossRef]
- Li, P.; Fujimoto, K.; Bourguingnon, L.; Yukl, S.; Deeks, S.; Wong, J.K. Exogenous and endogenous hyaluronic acid reduces HIV infection of CD4 + T cells. Immunol. Cell Biol. 2014, 92, 770–780. [Google Scholar] [CrossRef]
Characteristics of the Patients | ART-Naïve Patients | ≤1 Year of ART Therapy | >1 Year of ART Treatment | p |
---|---|---|---|---|
Age (years) | 34.3 (25–49) | 34.4 (21–74) | 45.6 (30–70) | 0.000 |
VCAM-1 (ng/mL) | 2392 (534–5198) | 1552 (662–3364) | 1442 (246–7166) | 0.008 |
Total cholesterol (mmol/L) | 3.66 (1.28–4.94) | 4.36 (2.74–7.18) | 4.42 (2.17–6.25) | 0.032 |
LDL-cholesterol (mmol/L) | 1.94 (0.47–4.48) | 2.53 (1.36–4.94) | 2.53 (1.22–4.44) | 0.041 |
HDL-cholesterol (mmol/L) | 1.09 (0.4–2.1) | 1.22 (0.68–1.9) | 1.39 (0.32–2.9) | 0.108 |
Triglyceride (mmol/L) | 1.61 (0.82–2.9) | 1.61 (0.93–2.57) | 1.93 (0.88–5.29) | 0.305 |
CD4 (cells/µL) | 212 (6–482) | 282 (27–704) | 413 (103–791) | 0.003 |
CD4 (%) | 24.6 (3–58) | 25.5 (6–56) | 34 (11–67) | 0.056 |
CD8 (cells/µL) | 537 (71–1391) | 831 (65–1770) | 921 (78–2666) | 0.041 |
CD8 (%) | 73.7 (41–92) | 71.1 (45–89) | 67 (40–91) | 0.233 |
CD4:CD8 | 0.398 (0.04–0.9) | 0.399 (0.07–1.26) | 0.597 (0.09–1.7) | 0.117 |
Viral load (copies/mL) | 901,160 (0–10,000,000) | 83,557 (0–746,695) | 11,499 (0–226,006) | 0.031 |
Co-infections | 2 patients–HBV 5 patients–HCV 2 patients–HBV/HCV | 2 patients–HBV 2 patients–HCV 2 patients–HBV/HCV | 5 patients–HBV 11 patients-HCV | 0.047 |
Smoking cigarettes | 16 | 9 | 22 | 0.185 |
Length of therapy (weeks) | 0 | 3–52 | 76–988 | 0.000 |
Average length of therapy (weeks) | 0 | 21.6 | 300.4 | 0.000 |
Median length of therapy (weeks) | 0 | 20 | 222.5 | 0.000 |
Applied Antiretroviral Therapy | (n) |
---|---|
Nucleoside Reverse Transcriptase Inhibitors (NRTI) | 92 |
Protease Inhibitors (PI) | 39 1 |
Non-nucleoside Reverse Transcriptase Inhibitors (NNRTI) | 9 |
Integrase Inhibitors (II) | 2 |
Compared Groups -Length of the Antiretroviral Therapy (Years) | Average Differential in VCAM-1 Concentration (ng/mL) | p |
---|---|---|
Naïve vs. treated ≤1 year | 840 (−180–1800) | 0.096 |
≤1 year vs. treated >1 year | 200 (−740–1120) | 0.871 |
Naïve vs. treated >1 year | 1040 (240–1840) | 0.007 |
No Coinfection | HCV Coinfection | HBV Coinfection | HCV and HBV Coinfections | p | |
---|---|---|---|---|---|
VCAM-1 concentration | 1453.8 (246–3826) | 2497.8 (628–7166) | 2265.4 (664–5198) | 2207.6 (1122–3130) | 0.047 |
Compared Groups of Patients-Coinfections | Average Differential in VCAM-1 Concentration (ng/mL) | p |
---|---|---|
No coinfections vs. HCV coinfection | 1044 (9.2–2078.8) | 0.047 |
No coinfections vs. HBV coinfection | 811.6 (−503.2–2126.4) | 0.371 |
No coinfections vs. HCV and HBV coinfections | 753.8 (−1110.6–2618) | 0.689 |
HCV coinfection vs. HBV coinfection | −232.4 (−1694.4–1229.6) | 0.9 |
HCV coinfection vs. HCV and HBV coinfections | −290.2 (−2261.2–1680.6) | 0.9 |
HBV coinfection vs. HCV and HBV coinfections | −57.8 (−2189–2073.4) | 0.9 |
The Group of Patients–Length of Antiretroviral Therapy | r-Value | p-Value |
---|---|---|
All patients | −0.14 | 0.244 |
ARV-naive patients | 0.20 | 0.334 |
ARV ≤ 1 year | 0.06 | 0.818 |
ARV > 1 year | −0.08 | 0.672 |
VCAM-1 Concentration in Smoking Patients | VCAM-1 Concentration in Non-Smoking Patients | p | |
---|---|---|---|
VCAM-1 concentration | 2017.2 (246–7166) | 1529.2 (528–5198) | 0.185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lembas, A.; Zawartko, K.; Sapuła, M.; Mikuła, T.; Kozłowska, J.; Wiercińska-Drapało, A. VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy. Viruses 2022, 14, 578. https://doi.org/10.3390/v14030578
Lembas A, Zawartko K, Sapuła M, Mikuła T, Kozłowska J, Wiercińska-Drapało A. VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy. Viruses. 2022; 14(3):578. https://doi.org/10.3390/v14030578
Chicago/Turabian StyleLembas, Agnieszka, Katarzyna Zawartko, Mariusz Sapuła, Tomasz Mikuła, Joanna Kozłowska, and Alicja Wiercińska-Drapało. 2022. "VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy" Viruses 14, no. 3: 578. https://doi.org/10.3390/v14030578
APA StyleLembas, A., Zawartko, K., Sapuła, M., Mikuła, T., Kozłowska, J., & Wiercińska-Drapało, A. (2022). VCAM-1 as a Biomarker of Endothelial Function among HIV-Infected Patients Receiving and Not Receiving Antiretroviral Therapy. Viruses, 14(3), 578. https://doi.org/10.3390/v14030578