Therapeutic Strategies against Ebola Virus Infection
Abstract
:1. Introduction
2. Antiviral Strategies against EBOV
2.1. EBOV VP35 Inhibitors
2.2. EBOV VP40 Inhibitors
2.3. EBOV GP Inhibitors
2.4. EBOV VP30 Inhibitors
2.5. EBOV VP24 Inhibitors
2.6. EBOV Polymerase Inhibitors
2.7. Host-Targeting Agents
2.8. Combination Treatments
3. Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kuhn, J.H.; Amarasinghe, G.K.; Perry, D.L. Filoviridae. In Fields Virology, 7th ed.; Howley, P.M., Knipe, D.M., Whelan, S., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2021; Volume 1, pp. 449–503. [Google Scholar]
- Kuhn, J.H.; Amarasinghe, G.K.; Basler, C.F.; Bavari, S.; Bukreyev, A.; Chandran, K.; Crozier, I.; Dolnik, O.; Dye, J.M.; Formenty, P.B.H.; et al. ICTV Virus Taxonomy Profile: Filoviridae. J. Gen. Virol. 2019, 100, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A.; Hewlett, A.; Kraft, C.S.; Vega, M.-A.d.L.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudas, G.; Carvalho, L.M.; Bedford, T.; Tatem, A.J.; Baele, G.; Faria, N.R.; Park, D.J.; Ladner, J.T.; Arias, A.; Asogun, D. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 2017, 544, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietzel, E.; Schudt, G.; Krähling, V.; Matrosovich, M.; Becker, S. Functional characterization of adaptive mutations during the West African Ebola virus outbreak. J. Virol. 2017, 91, e01913-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Ebola Virus Disease. Available online: https://www.who.int/health-topics/ebola/#tab=tab_1 (accessed on 4 January 2022).
- U.S. Centers for Disease Control and Prevention. Ebola (Ebola Virus Disease). Available online: https://www.cdc.gov/vhf/ebola/index.html (accessed on 4 January 2022).
- Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A.; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; et al. Molecular Evidence of Sexual Transmission of Ebola Virus. N. Engl. J. Med. 2015, 373, 2448–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. First Vaccine to Protect against Ebola. Available online: https://www.ema.europa.eu/en/news/first-vaccine-protect-against-ebola (accessed on 14 November 2020).
- U.S. Food and Drug Administration. First FDA-Approved Vaccine for the Prevention of Ebola Virus Disease, Marking a Critical Milestone in Public Health Preparedness and Response. Available online: https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health (accessed on 14 November 2020).
- World Health Organization. Four Countries in the African Region License Vaccine in Milestone for Ebola Prevention. Available online: https://www.who.int/news/item/14-02-2020-four-countries-in-the-african-region-license-vaccine-in-milestone-for-ebola-prevention (accessed on 14 November 2020).
- Woolsey, C.; Geisbert, T.W. Current state of Ebola virus vaccines: A snapshot. PLoS Pathog. 2021, 17, e1010078. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Approves First Treatment for Ebola Virus. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-ebola-virus (accessed on 13 January 2022).
- U.S. Food and Drug Administration. FDA Approves Treatment for Ebola Virus. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-ebola-virus (accessed on 13 January 2022).
- Côté, M.; Misasi, J.; Ren, T.; Bruchez, A.; Lee, K.; Filone, C.M.; Hensley, L.; Li, Q.; Ory, D.; Chandran, K. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature 2011, 477, 344–348. [Google Scholar] [CrossRef]
- Falasca, L.; Agrati, C.; Petrosillo, N.; Di Caro, A.; Capobianchi, M.; Ippolito, G.; Piacentini, M. Molecular mechanisms of Ebola virus pathogenesis: Focus on cell death. Cell Death. Differ. 2015, 22, 1250. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.J.; Biedenkopf, N.; Volchkova, V.; Hartlieb, B.; Alazard-Dany, N.; Reynard, O.; Becker, S.; Volchkov, V. Role of Ebola virus VP30 in transcription reinitiation. J. Virol. 2008, 82, 12569–12573. [Google Scholar] [CrossRef] [Green Version]
- Mühlberger, E.; Weik, M.; Volchkov, V.E.; Klenk, H.-D.; Becker, S. Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J. Virol. 1999, 73, 2333–2342. [Google Scholar] [CrossRef] [Green Version]
- Banadyga, L.; Hoenen, T.; Ambroggio, X.; Dunham, E.; Groseth, A.; Ebihara, H. Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci. Rep. 2017, 7, 7698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cárdenas, W.B.; Loo, Y.-M.; Gale, M.; Hartman, A.L.; Kimberlin, C.R.; Martínez-Sobrido, L.; Saphire, E.O.; Basler, C.F. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 2006, 80, 5168–5178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, M.; Leung, L.W.; Basler, C.F.; Volchkov, V.E. Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J. Virol. 2010, 84, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enterlein, S.; Warfield, K.L.; Swenson, D.L.; Stein, D.A.; Smith, J.L.; Gamble, C.S.; Kroeker, A.D.; Iversen, P.L.; Bavari, S.; Muhlberger, E. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother. 2006, 50, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daino, G.L.; Frau, A.; Sanna, C.; Rigano, D.; Distinto, S.; Madau, V.; Esposito, F.; Fanunza, E.; Bianco, G.; Taglialatela-Scafati, O. Identification of Myricetin as an Ebola Virus VP35–Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay. Biochemistry 2018, 57, 6367–6378. [Google Scholar] [CrossRef] [Green Version]
- Easton, V.; McPhillie, M.; Garcia-Dorival, I.; Barr, J.N.; Edwards, T.A.; Foster, R.; Fishwick, C.; Harris, M. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antivir. Res. 2018, 156, 46–54. [Google Scholar] [CrossRef]
- Flego, M.; Frau, A.; Accardi, L.; Mallano, A.; Ascione, A.; Gellini, M.; Fanunza, E.; Vella, S.; Di Bonito, P.; Tramontano, E. Intracellular human antibody fragments recognizing the VP35 protein of Zaire Ebola filovirus inhibit the protein activity. BMC Biotechnol. 2019, 19, 64. [Google Scholar] [CrossRef]
- Teimoori, S.; Seesuay, W.; Jittavisutthikul, S.; Chaisri, U.; Sookrung, N.; Densumite, J.; Saelim, N.; Chulanetra, M.; Maneewatch, S.; Chaicumpa, W. Human transbodies to VP40 inhibit cellular egress of Ebola virus-like particles. Biochem. Biophys. Res. Commun. 2016, 479, 245–252. [Google Scholar] [CrossRef]
- Loughran, H.M.; Han, Z.; Wrobel, J.E.; Decker, S.E.; Ruthel, G.; Freedman, B.D.; Harty, R.N.; Reitz, A.B. Quinoxaline-based inhibitors of Ebola and Marburg VP40 egress. Bioorganic Med. Chem. Lett. 2016, 26, 3429–3435. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, N.; Yapp, E.K.; Le, N.Q.K.; Yeh, H.-Y. In silico screening of sugar alcohol compounds to inhibit viral matrix protein VP40 of Ebola virus. Mol. Biol. Rep. 2019, 46, 3315–3324. [Google Scholar] [CrossRef]
- El-Din, H.M.A.; Loutfy, S.A.; Fathy, N.; Elberry, M.H.; Mayla, A.M.; Kassem, S.; Naqvi, A. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation 2016, 12, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corti, D.; Misasi, J.; Mulangu, S.; Stanley, D.A.; Kanekiyo, M.; Wollen, S.; Ploquin, A.; Doria-Rose, N.A.; Staupe, R.P.; Bailey, M. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016, 351, 1339–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascal, K.E.; Dudgeon, D.; Trefry, J.C.; Anantpadma, M.; Sakurai, Y.; Murin, C.D.; Turner, H.L.; Fairhurst, J.; Torres, M.; Rafique, A.; et al. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J. Infect. Dis. 2018, 218, S612–S626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Wong, G.; Audet, J.; Bello, A.; Fernando, L.; Alimonti, J.B.; Fausther-Bovendo, H.; Wei, H.; Aviles, J.; Hiatt, E.; et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014, 514, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Audet, J.; Lv, M.; He, S.; Wong, G.; Wei, H.; Luo, L.; Fernando, L.; Kroeker, A.; Fausther Bovendo, H.; et al. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci. Transl. Med. 2016, 8, 329ra333. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Fernando, L.; Melito, P.L.; Audet, J.; Feldmann, H.; Kobinger, G.; Alimonti, J.B.; Jones, S.M. Ebola GP-specific monoclonal antibodies protect mice and guinea pigs from lethal Ebola virus infection. PLoS Negl. Trop. Dis. 2012, 6, e1575. [Google Scholar] [CrossRef]
- Wilson, J.A.; Hevey, M.; Bakken, R.; Guest, S.; Bray, M.; Schmaljohn, A.L.; Hart, M.K. Epitopes involved in antibody-mediated protection from Ebola virus. Science 2000, 287, 1664–1666. [Google Scholar] [CrossRef]
- Zeitlin, L.; Pettitt, J.; Scully, C.; Bohorova, N.; Kim, D.; Pauly, M.; Hiatt, A.; Ngo, L.; Steinkellner, H.; Whaley, K.J.; et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. USA 2011, 108, 20690–20694. [Google Scholar] [CrossRef] [Green Version]
- Olinger, G.G., Jr.; Pettitt, J.; Kim, D.; Working, C.; Bohorov, O.; Bratcher, B.; Hiatt, E.; Hume, S.D.; Johnson, A.K.; Morton, J.; et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl. Acad. Sci. USA 2012, 109, 18030–18035. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, J.; Zeitlin, L.; Kim, D.H.; Working, C.; Johnson, J.C.; Bohorov, O.; Bratcher, B.; Hiatt, E.; Hume, S.D.; Johnson, A.K.; et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 2013, 5, 199ra113. [Google Scholar] [CrossRef] [Green Version]
- Parren, P.W.; Geisbert, T.W.; Maruyama, T.; Jahrling, P.B.; Burton, D.R. Pre- and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J. Virol. 2002, 76, 6408–6412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Gui, M.; Niu, X.; He, S.; Wang, R.; Feng, Y.; Kroeker, A.; Zuo, Y.; Wang, H.; Wang, Y.; et al. Potent neutralizing monoclonal antibodies against Ebola virus infection. Sci. Rep. 2016, 6, 25856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, P.; Chi, X.; Liu, G.; Zhang, G.; Chen, Z.; Liu, Y.; Fang, T.; Li, J.; Banadyga, L.; He, S.; et al. Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs 2020, 12, 1742457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuyama, W.; Marzi, A.; Nanbo, A.; Haddock, E.; Maruyama, J.; Miyamoto, H.; Igarashi, M.; Yoshida, R.; Noyori, O.; Feldmann, H.; et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 2016, 6, 20514. [Google Scholar] [CrossRef] [PubMed]
- Holtsberg, F.W.; Shulenin, S.; Vu, H.; Howell, K.A.; Patel, S.J.; Gunn, B.; Karim, M.; Lai, J.R.; Frei, J.C.; Nyakatura, E.K.; et al. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J. Virol. 2016, 90, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frei, J.C.; Nyakatura, E.K.; Zak, S.E.; Bakken, R.R.; Chandran, K.; Dye, J.M.; Lai, J.R. Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Sci. Rep. 2016, 6, 19193. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Howell, K.A.; He, S.; Brannan, J.M.; Wec, A.Z.; Davidson, E.; Turner, H.L.; Chiang, C.I.; Lei, L.; Fels, J.M.; et al. Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell 2017, 169, 891–904.e15. [Google Scholar] [CrossRef]
- Howell, K.A.; Qiu, X.; Brannan, J.M.; Bryan, C.; Davidson, E.; Holtsberg, F.W.; Wec, A.Z.; Shulenin, S.; Biggins, J.E.; Douglas, R.; et al. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Rep. 2016, 15, 1514–1526. [Google Scholar] [CrossRef] [Green Version]
- Rijal, P.; Elias, S.C.; Machado, S.R.; Xiao, J.; Schimanski, L.; O’Dowd, V.; Baker, T.; Barry, E.; Mendelsohn, S.C.; Cherry, C.J.; et al. Therapeutic Monoclonal Antibodies for Ebola Virus Infection Derived from Vaccinated Humans. Cell Rep. 2019, 27, 172–186.e7. [Google Scholar] [CrossRef] [Green Version]
- Wec, A.Z.; Herbert, A.S.; Murin, C.D.; Nyakatura, E.K.; Abelson, D.M.; Fels, J.M.; He, S.; James, R.M.; de La Vega, M.-A.; Zhu, W.; et al. Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell 2017, 169, 878–890.e15. [Google Scholar] [CrossRef]
- Gilchuk, P.; Murin, C.D.; Milligan, J.C.; Cross, R.W.; Mire, C.E.; Ilinykh, P.A.; Huang, K.; Kuzmina, N.; Altman, P.X.; Hui, S.; et al. Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity 2020, 52, 388–403.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounds, C.E.; Kwilas, S.A.; Kuehne, A.I.; Brannan, J.M.; Bakken, R.R.; Dye, J.M.; Hooper, J.W.; Dupuy, L.C.; Ellefsen, B.; Hannaman, D.; et al. Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses. PLoS ONE 2015, 10, e0137786. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wong, G.; Zhu, W.; He, S.; Zhao, Y.; Yan, F.; Rahim, M.N.; Bi, Y.; Zhang, Z.; Cheng, K. Equine-origin immunoglobulin fragments protect nonhuman primates from Ebola virus disease. J. Virol. 2019, 93, e01548-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelow, I.C.; Lear, C.; Scully, C.; Prugar, L.I.; Longley, C.B.; Yantosca, L.M.; Ji, X.; Karpel, M.; Brudner, M.; Takahashi, K.; et al. High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection. J. Infect. Dis. 2011, 203, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Johansen, L.M.; Brannan, J.M.; Delos, S.E.; Shoemaker, C.J.; Stossel, A.; Lear, C.; Hoffstrom, B.G.; Dewald, L.E.; Schornberg, K.L.; Scully, C.; et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci. Transl. Med. 2013, 5, 190ra179. [Google Scholar] [CrossRef] [Green Version]
- Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.; Hoffstrom, B.G.; Lear-Rooney, C.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med. 2015, 7, 290ra289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yu, F.; Xia, S.; Yu, Y.; Wang, Q.; Lv, M.; Wang, Y.; Jiang, S.; Lu, L. Chemically modified human serum albumin potently blocks entry of Ebola pseudoviruses and viruslike particles. Antimicrob. Agents Chemother. 2017, 61, e02168-16. [Google Scholar] [CrossRef] [Green Version]
- Escaffre, O.; Juelich, T.L.; Freiberg, A.N. Polyphenylene carboxymethylene (PPCM) in vitro antiviral efficacy against Ebola virus in the context of a sexually transmitted infection. Antivir. Res. 2019, 170, 104567. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, K.; Guo, Y. Discovery of sclareol and sclareolide as filovirus entry inhibitors. J. Asian Nat. Prod. Res. 2020, 22, 464–473. [Google Scholar] [CrossRef]
- Basu, A.; Li, B.; Mills, D.M.; Panchal, R.G.; Cardinale, S.C.; Butler, M.M.; Peet, N.P.; Majgier-Baranowska, H.; Williams, J.D.; Patel, I.; et al. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol. 2011, 85, 3106–3119. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.; Zhao, Y.; Alvarez, L.; Iliopoulou, M.; Lohans, C.; Schofield, C.J.; Padilla-Parra, S.; Siu, S.W.; Fry, E.E.; Ren, J. Structure-Based in silico screening identifies a potent ebolavirus inhibitor from a traditional chinese medicine library. J. Med. Chem. 2019, 62, 2928–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, C.D.; Humby, M.S.; Yi, H.A.; Rizzo, R.C.; Jacobs, A. Identification of Ebola Virus Inhibitors Targeting GP2 Using Principles of Molecular Mimicry. J. Virol. 2019, 93, e00676-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamatsu, Y.; Krähling, V.; Kolesnikova, L.; Halwe, S.; Lier, C.; Baumeister, S.; Noda, T.; Biedenkopf, N.; Becker, S.; Whelan, S.P.J.; et al. Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription. mBio 2020, 11, e02565-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, T.; Biedenkopf, N.; Hertz, E.P.T.; Dietzel, E.; Stalmann, G.; López-Méndez, B.; Davey, N.E.; Nilsson, J.; Becker, S. The Ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol. Cell 2018, 69, 136–145.e6. [Google Scholar] [CrossRef]
- Ammosova, T.; Pietzsch, C.A.; Saygideğer, Y.; Ilatovsky, A.; Lin, X.; Ivanov, A.; Kumari, N.; Jerebtsova, M.; Kulkarni, A.; Petukhov, M. Protein Phosphatase 1–Targeting Small-Molecule C31 Inhibits Ebola Virus Replication. J. Infect. Dis. 2018, 218, S627–S635. [Google Scholar] [CrossRef] [Green Version]
- Swenson, D.L.; Warfield, K.L.; Warren, T.K.; Lovejoy, C.; Hassinger, J.N.; Ruthel, G.; Blouch, R.E.; Moulton, H.M.; Weller, D.D.; Iversen, P.L.; et al. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection. Antimicrob. Agents Chemother. 2009, 53, 2089–2099. [Google Scholar] [CrossRef] [Green Version]
- Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In Silico Discovery Using Virtual Screening and Molecular Docking Studies. Interdiscip. Sci. Comput. Life Sci. 2016, 8, 132–141. [Google Scholar] [CrossRef]
- Fanunza, E.; Iampietro, M.; Distinto, S.; Corona, A.; Quartu, M.; Maccioni, E.; Horvat, B.; Tramontano, E. Quercetin Blocks Ebola Virus Infection by Counteracting the VP24 Interferon-Inhibitory Function. Antimicrob. Agents Chemother. 2020, 64, e00530-20. [Google Scholar] [CrossRef]
- Tambunan, U.; Nasution, M. Identification of novel Ebola virus (EBOV) VP24 inhibitor from Indonesian natural products through in silico drug design approach. AIP Conf. Proc. 2017, 1862, 030091. [Google Scholar] [CrossRef] [Green Version]
- Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller III, W.A.; Tiburu, E.K.; Bonney, J.H. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med. 2019, 113, 103414. [Google Scholar] [CrossRef]
- World Health Organization. Categorization and Prioritization of Drugs for Consideration for Testing or Use in Patients Infected with Ebola. Available online: https://www.who.int/medicines/ebola-treatment/2015_0703TablesofEbolaDrugs.pdf?ua=1 (accessed on 16 February 2022).
- Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir. Res. 2014, 105, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, T.K.; Wells, J.; Panchal, R.G.; Stuthman, K.S.; Garza, N.L.; Van Tongeren, S.A.; Dong, L.; Retterer, C.J.; Eaton, B.P.; Pegoraro, G.; et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014, 508, 402–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Geisbert, T.W.; Hensley, L.E.; Kagan, E.; Yu, E.Z.; Geisbert, J.B.; Daddario-DiCaprio, K.; Fritz, E.A.; Jahrling, P.B.; McClintock, K.; Phelps, J.R.; et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 2006, 193, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Dyall, J.; DeWald, L.E.; Johnson, J.C.; Postnikova, E.; Zhou, H.; Gross, R.; Rojas, O.; Alexander, I.; Josleyn, N. Evaluation of the activity of lamivudine and zidovudine against Ebola virus. PLoS ONE 2016, 11, e0166318. [Google Scholar] [CrossRef]
- van Hemert, F.J.; Zaaijer, H.L.; Berkhout, B. In silico prediction of ebolavirus RNA polymerase inhibition by specific combinations of approved nucleotide analogues. J. Clin. Virol. 2015, 73, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Gehring, G.; Rohrmann, K.; Atenchong, N.; Mittler, E.; Becker, S.; Dahlmann, F.; Pöhlmann, S.; Vondran, F.W.; David, S.; Manns, M.P. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J. Antimicrob. Chemother. 2014, 69, 2123–2131. [Google Scholar] [CrossRef] [Green Version]
- Salata, C.; Baritussio, A.; Munegato, D.; Calistri, A.; Ha, H.R.; Bigler, L.; Fabris, F.; Parolin, C.; Palù, G.; Mirazimi, A. Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process. Pathog. Dis. 2015, 73, ftv032. [Google Scholar] [CrossRef] [Green Version]
- Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect. Dis. 2015, 1, 317–326. [Google Scholar] [CrossRef]
- Dyall, J.; Johnson, J.C.; Postnikova, E.; Cong, Y.; Zhou, H.; Gerhardt, D.M.; Michelotti, J.; Honko, A.N.; Kern, S.; DeWald, L.E. In vitro and in vivo activity of amiodarone against Ebola virus. J. Infect. Dis. 2018, 218, S592–S596. [Google Scholar] [CrossRef]
- Kondratowicz, A.S.; Hunt, C.L.; Davey, R.A.; Cherry, S.; Maury, W.J. AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus. J. Virol. 2013, 87, 746–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.C.; Martinez, O.; Honko, A.N.; Hensley, L.E.; Olinger, G.G.; Basler, C.F. Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. Antivir. Res. 2014, 107, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, M.; Chatterjee, P.; Lin, D.L.; McMullan, L.K.; Shrivastava-Ranjan, P.; Bergeron, É.; Lo, M.K.; Welch, S.R.; Nichol, S.T.; Tai, A.W. A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat. Commun. 2019, 10, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Xu, M.; Lee, E.M.; Gorshkov, K.; Shiryaev, S.A.; He, S.; Sun, W.; Cheng, Y.-S.; Hu, X.; Tharappel, A.M. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Lear-Rooney, C.M.; Johansen, L.; Varhegyi, E.; Chen, Z.W.; Olinger, G.G.; Rong, L. Inhibition of Ebola and Marburg virus entry by G protein-coupled receptor antagonists. J. Virol. 2015, 89, 9932–9938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.; Du, X.; Zhang, J.; Zheng, H.; Lu, X.; Wu, Q.; Li, H.; Wang, H.; Shi, Y.; Gao, G.; et al. Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium. Sci. Rep. 2017, 7, 41226. [Google Scholar] [CrossRef]
- Mohr, E.L.; McMullan, L.K.; Lo, M.K.; Spengler, J.R.; Bergeron, É.; Albariño, C.G.; Shrivastava-Ranjan, P.; Chiang, C.-F.; Nichol, S.T.; Spiropoulou, C.F. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. Antivir. Res. 2015, 120, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Shurtleff, A.C.; Costantino, J.A.; Tritsch, S.R.; Retterer, C.; Spurgers, K.B.; Bavari, S. HSPA5 is an essential host factor for Ebola virus infection. Antivir. Res. 2014, 109, 171–174. [Google Scholar]
- Smith, D.R.; McCarthy, S.; Chrovian, A.; Olinger, G.; Stossel, A.; Geisbert, T.W.; Hensley, L.E.; Connor, J.H. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antivir. Res. 2010, 87, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antivir. Res. 2017, 137, 76–81. [Google Scholar] [CrossRef]
- Edwards, M.R.; Pietzsch, C.; Vausselin, T.; Shaw, M.L.; Bukreyev, A.; Basler, C.F. High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus Replication. ACS Infect. Dis 2015, 1, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huggins, J.; Zhang, Z.X.; Bray, M. Antiviral drug therapy of filovirus infections: S-adenosylhomocysteine hydrolase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model. J. Infect. Dis. 1999, 179, S240–S247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, J.; Hart, B.J.; Postnikova, E.; Cong, Y.; Zhou, H.; Gerhardt, D.M.; Freeburger, D.; Michelotti, J.; Honko, A.N.; DeWald, L.E.; et al. Interferon-beta and Interferon-gamma Are Weak Inhibitors of Ebola Virus in Cell-Based Assays. J. Infect. Dis. 2017, 215, 1416–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience 2019, 19, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Kinch, M.S.; Yunus, A.S.; Lear, C.; Mao, H.; Chen, H.; Fesseha, Z.; Luo, G.; Nelson, E.A.; Li, L.; Huang, Z. FGI-104: A broad-spectrum small molecule inhibitor of viral infection. Am. J. Transl. Res. 2009, 1, 87. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Hensley, L.E.; Jahrling, P.B.; Larsen, T.; Geisbert, J.B.; Paragas, J.; Young, H.A.; Fredeking, T.M.; Rote, W.E.; Vlasuk, G.P. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: A study in rhesus monkeys. Lancet 2003, 362, 1953–1958. [Google Scholar] [CrossRef] [Green Version]
- Hensley, L.E.; Stevens, E.L.; Yan, S.B.; Geisbert, J.B.; Macias, W.L.; Larsen, T.; Daddario-DiCaprio, K.M.; Cassell, G.H.; Jahrling, P.B.; Geisbert, T.W. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J. Infect. Dis. 2007, 196, S390–S399. [Google Scholar] [CrossRef] [Green Version]
- Warfield, K.L.; Swenson, D.L.; Olinger, G.G.; Nichols, D.K.; Pratt, W.D.; Blouch, R.; Stein, D.A.; Aman, M.J.; Iversen, P.L.; Bavari, S. Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog. 2006, 2, e1. [Google Scholar] [CrossRef]
- Warren, T.K.; Warfield, K.L.; Wells, J.; Swenson, D.L.; Donner, K.S.; Van Tongeren, S.A.; Garza, N.L.; Dong, L.; Mourich, D.V.; Crumley, S.; et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 2010, 16, 991–994. [Google Scholar] [CrossRef]
- Richardson, J.S.; Wong, G.; Pillet, S.; Schindle, S.; Ennis, J.; Turner, J.; Strong, J.E.; Kobinger, G.P. Evaluation of Different Strategies for Post-Exposure Treatment of Ebola Virus Infection in Rodents. J. Bioterror. Biodef. 2011, 20, 7. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Wong, G.; Fernando, L.; Audet, J.; Bello, A.; Strong, J.; Alimonti, J.B.; Kobinger, G.P. mAbs and Ad-vectored IFN-alpha therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci. Transl. Med. 2013, 5, 207ra143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.S.; Weng, T.H.; Shen, L.; Wu, X.X.; Hu, C.Y.; Wang, F.X.C.; Wu, Z.G.; Wu, H.B.; Wu, N.P.; Li, L.J.; et al. Development and Characterization of Neutralizing Antibodies Against Zaire Ebolavirus Glycoprotein and Protein 40. Cell. Physiol. Biochem. 2018, 50, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.D.; Majchrzak-Kita, B.; Racine, T.; Kozlowski, H.N.; Baker, D.P.; Hoenen, T.; Kobinger, G.P.; Fish, E.N.; Branch, D.R. A Rapid Screening Assay Identifies Monotherapy with Interferon-ss and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; He, S.; Martínez-Romero, C.; Kouznetsova, J.; Tawa, G.; Xu, M.; Shinn, P.; Fisher, E.G.; Long, Y.; Motabar, O. Synergistic drug combination effectively blocks Ebola virus infection. Antivir. Res. 2017, 137, 165–172. [Google Scholar] [CrossRef]
- Dyall, J.; Nelson, E.A.; DeWald, L.E.; Guha, R.; Zhou, H.; Postnikova, E.; Logue, J.; Vargas, W.M.; Gross, R.; Michelotti, J. Identification of combinations of approved drugs with synergistic activity against Ebola virus in cell cultures. J. Infect. Dis. 2018, 218, S672–S678. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Zuo, X.; Meng, F.; Wu, F.; Zhao, X.; Li, C.; Cheng, G.; Qin, F.X.-F. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem. Biophys. Res. Commun. 2020, 522, 862–868. [Google Scholar] [CrossRef]
- Anantpadma, M.; Kouznetsova, J.; Wang, H.; Huang, R.; Kolokoltsov, A.; Guha, R.; Lindstrom, A.R.; Shtanko, O.; Simeonov, A.; Maloney, D.J.; et al. Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors. Antimicrob. Agents Chemother. 2016, 60, 4471–4481. [Google Scholar] [CrossRef] [Green Version]
- Yermolina, M.V.; Wang, J.; Caffrey, M.; Rong, L.L.; Wardrop, D.J. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J. Med. Chem. 2011, 54, 765–781. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antivir. Res. 2016, 125, 1–7. [Google Scholar] [CrossRef]
- Long, J.; Wright, E.; Molesti, E.; Temperton, N.; Barclay, W. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research 2015, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Kouznetsova, J.; Sun, W.; Martinez-Romero, C.; Tawa, G.; Shinn, P.; Chen, C.Z.; Schimmer, A.; Sanderson, P.; McKew, J.C.; Zheng, W.; et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg. Microbes Infect. 2014, 3, e84. [Google Scholar] [CrossRef] [PubMed]
- Falzarano, D.; Safronetz, D.; Prescott, J.; Marzi, A.; Feldmann, F.; Feldmann, H. Lack of protection against ebola virus from chloroquine in mice and hamsters. Emerg. Infect. Dis 2015, 21, 1065–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Kroeker, A.; He, S.; Kozak, R.; Audet, J.; Mbikay, M.; Chrétien, M. Prophylactic efficacy of quercetin 3-β-Od-glucoside against Ebola virus infection. Antimicrob. Agents Chemother. 2016, 60, 5182–5188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzi, A.; Yoshida, R.; Miyamoto, H.; Ishijima, M.; Suzuki, Y.; Higuchi, M.; Matsuyama, Y.; Igarashi, M.; Nakayama, E.; Kuroda, M.; et al. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS ONE 2012, 7, e36192. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Audet, J.; Wong, G.; Pillet, S.; Bello, A.; Cabral, T.; Strong, J.E.; Plummer, F.; Corbett, C.R.; Alimonti, J.B.; et al. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 2012, 4, 138ra181. [Google Scholar] [CrossRef] [Green Version]
- Limberis, M.P.; Tretiakova, A.; Nambiar, K.; Wong, G.; Racine, T.; Crosariol, M.; Xiangguo, Q.; Kobinger, G.; Wilson, J.M. Adeno-Associated Virus Serotype 9-Expressed ZMapp in Mice Confers Protection Against Systemic and Airway-Acquired Ebola Virus Infection. J. Infect. Dis. 2016, 214, 1975–1979. [Google Scholar] [CrossRef]
- Robert, M.A.; Nassoury, N.; Chahal, P.S.; Venne, M.H.; Racine, T.; Qiu, X.; Kobinger, G.; Kamen, A.; Gilbert, R.; Gaillet, B. Gene Transfer of ZMapp Antibodies Mediated by Recombinant Adeno-Associated Virus Protects Against Ebola Infections. Hum. Gene 2018, 29, 452–466. [Google Scholar] [CrossRef]
- van Lieshout, L.P.; Soule, G.; Sorensen, D.; Frost, K.L.; He, S.; Tierney, K.; Safronetz, D.; Booth, S.A.; Kobinger, G.P.; Qiu, X.; et al. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J. Infect. Dis. 2018, 217, 916–925. [Google Scholar] [CrossRef]
- Oswald, W.B.; Geisbert, T.W.; Davis, K.J.; Geisbert, J.B.; Sullivan, N.J.; Jahrling, P.B.; Parren, P.W.; Burton, D.R. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 2007, 3, e9. [Google Scholar] [CrossRef] [Green Version]
- Brannan, J.M.; He, S.; Howell, K.A.; Prugar, L.I.; Zhu, W.; Vu, H.; Shulenin, S.; Kailasan, S.; Raina, H.; Wong, G.; et al. Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat. Commun. 2019, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Wec, A.Z.; Bornholdt, Z.A.; He, S.; Herbert, A.S.; Goodwin, E.; Wirchnianski, A.S.; Gunn, B.M.; Zhang, Z.; Zhu, W.; Liu, G.; et al. Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host Microbe 2019, 25, 39–48.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornholdt, Z.A.; Herbert, A.S.; Mire, C.E.; He, S.; Cross, R.W.; Wec, A.Z.; Abelson, D.M.; Geisbert, J.B.; James, R.M.; Rahim, M.N.; et al. A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host Microbe 2019, 25, 49–58.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smither, S.J.; Eastaugh, L.S.; Steward, J.A.; Nelson, M.; Lenk, R.P.; Lever, M.S. Post-exposure efficacy of Oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antivir. Res. 2014, 104, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Guedj, J.; Piorkowski, G.; Jacquot, F.; Madelain, V.; Nguyen, T.H.T.; Rodallec, A.; Gunther, S.; Carbonnelle, C.; Mentré, F.; Raoul, H. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018, 15, e1002535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bixler, S.L.; Bocan, T.M.; Wells, J.; Wetzel, K.S.; Van Tongeren, S.A.; Dong, L.; Garza, N.L.; Donnelly, G.; Cazares, L.H.; Nuss, J.; et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antivir. Res. 2018, 151, 97–104. [Google Scholar] [CrossRef]
- Warren, T.; MacLennan, S.; Mathis, A.; Giuliano, E.; Taylor, R.; Sheridan, W. Efficacy of Galidesivir against Ebola Virus Disease in Rhesus Monkeys. Open Forum Infect. Dis. 2017, 4, S302. [Google Scholar] [CrossRef] [Green Version]
- Bray, M.; Driscoll, J.; Huggins, J.W. Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-l-homocysteine hydrolase inhibitor. Antivir. Res. 2000, 45, 135–147. [Google Scholar] [CrossRef]
- Bray, M.; Raymond, J.L.; Geisbert, T.; Baker, R.O. 3-Deazaneplanocin A induces massively increased interferon-α production in Ebola virus-infected mice. Antivir. Res. 2002, 55, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Rhein, B.A.; Powers, L.S.; Rogers, K.; Anantpadma, M.; Singh, B.K.; Sakurai, Y.; Bair, T.; Miller-Hunt, C.; Sinn, P.; Davey, R.A.; et al. Interferon-gamma Inhibits Ebola Virus Infection. PLoS Pathog. 2015, 11, e1005263. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Geisbert, T.W.; Geisbert, J.B.; Swearengen, J.R.; Bray, M.; Jaax, N.K.; Huggins, J.W.; LeDuc, J.W.; Peters, C.J. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola virus infections. J. Infect. Dis. 1999, 1791, S224–S234. [Google Scholar] [CrossRef]
- Smith, L.M.; Hensley, L.E.; Geisbert, T.W.; Johnson, J.; Stossel, A.; Honko, A.; Yen, J.Y.; Geisbert, J.; Paragas, J.; Fritz, E.; et al. Interferon-beta therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever. J. Infect. Dis. 2013, 208, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisbert, T.W.; Lee, A.C.; Robbins, M.; Geisbert, J.B.; Honko, A.N.; Sood, V.; Johnson, J.C.; de Jong, S.; Tavakoli, I.; Judge, A. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. Lancet 2010, 375, 1896–1905. [Google Scholar] [CrossRef]
- Dowall, S.D.; Bosworth, A.; Watson, R.; Bewley, K.; Taylor, I.; Rayner, E.; Hunter, L.; Pearson, G.; Easterbrook, L.; Pitman, J.; et al. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J. Gen. Virol. 2015, 96, 3484–3492. [Google Scholar] [CrossRef] [PubMed]
- Prins, K.C.; Binning, J.M.; Shabman, R.S.; Leung, D.W.; Amarasinghe, G.K.; Basler, C.F. Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function. J. Virol. 2010, 84, 10581–10591. [Google Scholar] [CrossRef] [Green Version]
- Basler, C.F.; Wang, X.; Mühlberger, E.; Volchkov, V.; Paragas, J.; Klenk, H.-D.; García-Sastre, A.; Palese, P. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. USA 2000, 97, 12289–12294. [Google Scholar] [CrossRef] [Green Version]
- Jasenosky, L.D.; Neumann, G.; Lukashevich, I.; Kawaoka, Y. Ebola Virus VP40-Induced Particle Formation and Association with the Lipid Bilayer. J. Virol. 2001, 75, 5205–5214. [Google Scholar] [CrossRef] [Green Version]
- Hoenen, T.; Jung, S.; Herwig, A.; Groseth, A.; Becker, S. Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 2010, 403, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bornholdt, Z.A.; Noda, T.; Abelson, D.M.; Halfmann, P.; Wood, M.R.; Kawaoka, Y.; Saphire, E.O. Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. Cell 2013, 154, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Hoenen, T.; Volchkov, V.; Kolesnikova, L.; Mittler, E.; Timmins, J.; Ottmann, M.; Reynard, O.; Becker, S.; Weissenhorn, W. VP40 Octamers Are Essential for Ebola Virus Replication. J. Virol. 2005, 79, 1898–1905. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Rodriguez, L.L.; Jahrling, P.B.; Sanchez, A.; Khan, A.S.; Nichol, S.T.; Peters, C.J.; Parren, P.W.; Burton, D.R. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol. 1999, 73, 6024–6030. [Google Scholar] [CrossRef] [Green Version]
- Bornholdt, Z.A.; Turner, H.L.; Murin, C.D.; Li, W.; Sok, D.; Souders, C.A.; Piper, A.E.; Goff, A.; Shamblin, J.D.; Wollen, S.E.; et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 2016, 351, 1078–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldmann, H.; Jones, S.M.; Daddario-DiCaprio, K.M.; Geisbert, J.B.; Stroher, U.; Grolla, A.; Bray, M.; Fritz, E.A.; Fernando, L.; Feldmann, F.; et al. Effective post-exposure treatment of Ebola infection. PLoS Pathog. 2007, 3, e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henao-Restrepo, A.M.; Longini, I.M.; Egger, M.; Dean, N.E.; Edmunds, W.J.; Camacho, A.; Carroll, M.W.; Doumbia, M.; Draguez, B.; Duraffour, S.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 2015, 386, 857–866. [Google Scholar] [CrossRef]
- Qiu, X.; Audet, J.; Wong, G.; Fernando, L.; Bello, A.; Pillet, S.; Alimonti, J.B.; Kobinger, G.P. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci. Rep. 2013, 3, 3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, G.M.; Mehta, A.K.; Varkey, J.B.; Brantly, K.; Plyler, L.; McElroy, A.K.; Kraft, C.S.; Towner, J.S.; Spiropoulou, C.; Ströher, U. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 2014, 371, 2402–2409. [Google Scholar] [CrossRef] [Green Version]
- The PREVAIL II Writing Group. A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N. Engl. J. Med. 2016, 375, 1448–1456. [Google Scholar] [CrossRef]
- Mulangu, S.; Dodd, L.E.; Davey Jr, R.T.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef]
- Ji, X.; Olinger, G.G.; Aris, S.; Chen, Y.; Gewurz, H.; Spear, G.T. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J. Gen. Virol. 2005, 86, 2535–2542. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, J.; Harlos, K.; Jones, D.M.; Zeltina, A.; Bowden, T.A.; Padilla-Parra, S.; Fry, E.E.; Stuart, D.I. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 2016, 535, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ren, J.; Fry, E.E.; Xiao, J.; Townsend, A.R.; Stuart, D.I. Structures of Ebola Virus Glycoprotein Complexes with Tricyclic Antidepressant and Antipsychotic Drugs. J. Med. Chem. 2018, 61, 4938–4945. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y.; Fry, E.E.; Stuart, D.I. Target Identification and Mode of Action of Four Chemically Divergent Drugs against Ebolavirus Infection. J. Med. Chem. 2018, 61, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Biedenkopf, N.; Lier, C.; Becker, S.; Lyles, D.S. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. J. Virol. 2016, 90, 4914–4925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilinykh, P.A.; Tigabu, B.; Ivanov, A.; Ammosova, T.; Obukhov, Y.; Garron, T.; Kumari, N.; Kovalskyy, D.; Platonov, M.O.; Naumchik, V.S. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription. J. Biol. Chem. 2014, 289, 22723–22738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunning, J.; Kennedy, S.B.; Antierens, A.; Whitehead, J.; Ciglenecki, I.; Carson, G.; Kanapathipillai, R.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R. Experimental treatment of Ebola virus disease with brincidofovir. PLoS ONE 2016, 11, e0162199. [Google Scholar] [CrossRef]
- Kerber, R.; Lorenz, E.; Duraffour, S.; Sissoko, D.; Rudolf, M.; Jaeger, A.; Cisse, S.D.; Camara, A.-M.; Miranda, O.; Castro, C.M.; et al. Laboratory Findings, Compassionate Use of Favipiravir, and Outcome in Patients With Ebola Virus Disease, Guinea, 2015—A Retrospective Observational Study. J. Infect. Dis. 2019, 220, 195–202. [Google Scholar] [CrossRef] [Green Version]
- BioCryst. BioCryst Completes Phase 1 Clinical Trial of Galidesivir. Available online: https://ir.biocryst.com/news-releases/news-release-details/biocryst-completes-phase-1-clinical-trial-galidesivir (accessed on 15 November 2020).
- Turone, F. Doctors trial amiodarone for Ebola in Sierra Leone. BMJ 2014, 349, g7198. [Google Scholar] [CrossRef] [Green Version]
- Decroly, E.; Ferron, F.; Lescar, J.; Canard, B. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 2011, 10, 51–65. [Google Scholar] [CrossRef]
- Konde, M.K.; Baker, D.P.; Traore, F.A.; Sow, M.S.; Camara, A.; Barry, A.A.; Mara, D.; Barry, A.; Cone, M.; Kaba, I.; et al. Interferon beta-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS ONE 2017, 12, e0169255. [Google Scholar] [CrossRef] [Green Version]
- Hoenen, T.; Safronetz, D.; Groseth, A.; Wollenberg, K.; Koita, O.; Diarra, B.; Fall, I.; Haidara, F.; Diallo, F.; Sanogo, M. Mutation rate and genotype variation of Ebola virus from Mali case sequences. Science 2015, 348, 117–119. [Google Scholar] [CrossRef]
- Kugelman, J.R.; Kugelman-Tonos, J.; Ladner, J.T.; Pettit, J.; Keeton, C.M.; Nagle, E.R.; Garcia, K.Y.; Froude, J.W.; Kuehne, A.I.; Kuhn, J.H. Emergence of Ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail. Cell Rep. 2015, 12, 2111–2120. [Google Scholar] [CrossRef] [Green Version]
- PubChem. Digitoxin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Digitoxin (accessed on 16 February 2022).
- PubChem. Sertraline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/68617 (accessed on 16 February 2022).
Category | Drug(s) | Stage | IC50 (In Vitro) | Ref. |
---|---|---|---|---|
VP35 inhibitors | VP35 PMO and P-PMO | In vivo | 0.9–1.25 μM (P-PMO; wtEBOV) | [22] |
Myricetin | In vitro | 2.7 μg/mL (enzymatic) | [23] | |
MCCB4 | In vitro | 4.8 μM (EBOV minigenome) | [24] | |
Anti-VP35 scFvs | In vitro | N.D. | [25] | |
VP40 inhibitors | Anti-VP40 scFv | In vitro | N.D. | [26] |
Quinoxaline-based inhibitors | In vitro | N.D. | [27] | |
Sorbitol, mannitol, galactitol | In silico | N.D. | [28] | |
Pyrimidinediones class molecules | In silico | N.D. | [29] | |
GP inhibitors | mAb114 | Licensed (Ebanga™) | 0.09 μg/mL (wtEBOV) | [30] |
REGN-EB3 (REGN3470, REGN3471, REGN3479) | Licensed (Inmazeb™) | 0.39 nM (EBOVpp) | [31] | |
ZMappTM (c13C6, c2G4, c4G7) | Clinical trial | N.D. | [32] | |
MIL77E (MIL77-1, MIL77-3) | In vivo | 1–10, 10–100 μg/mL (EBOV-GFP) | [33] | |
ZMAb (m1H3, m2G4, m4G7) | In vivo | 18.75, 4.325, 0.678125 μg/mL (EBOVpp) | [34] | |
MB-003 (c13C6, h13F6, c6D8) | In vivo | N.D. | [35,36,37,38] | |
KZ52 | In vivo | 0.3–0.9 μg/mL (wtEBOV) | [39] | |
Q206, Q314, Q411 | In vivo | 0.36, 0.78, 0.43 μg/mL (EBOVpp); 7.08, 42.96, 15.24 μg/mL (EBOV-GFP) | [40] | |
2G1, 5E1, 5E9 | In vivo | 2.80, 11.13, 4.19 μg/mL (EBOV-GFP) | [41] | |
6D6 | In vivo | 0.05–0.12 μg/mL (EBOVpp) | [42] | |
m8C4 | In vivo | 1.5 μg/mL (EBOVpp) | [43] | |
Bis-mAbs | In vivo | 1.5–6.4 nM (EBOVpp); 0.5–1.1 nM (wtEBOV) | [44] | |
CA45 | In vivo | 3.0–4.63 nM (EBOVpp); 28.3 nM (live virus) | [45] | |
FVM04 | In vivo | 0.8–3.4 μg/mL (EBOVpp) | [46] | |
040, 66-3-9C, 6662, 6541 | In vivo | 0.1–10 μg/mL (EBOVpp) | [47] | |
MBP134AF | In vivo | 0.1–1 nM (EBOVpp) | [48] | |
rEBOV-520, rEBOV-548 | In vivo | 0.1–1, 1–10 μg/mL (EBOV-GFP) | [49] | |
EBOV/SUDV pAb | In vivo | N.D. | [50] | |
F(ab’)2 | In vivo | 1.4–1.7 μg/mL (EBOV-GFP) | [51] | |
rhMBL | In vivo | N.D. | [52] | |
Clomiphene | In vivo | 0.755–2.42 μM (EBOV-GFP); 3.83–11.1 μM (wtEBOV) | [53] | |
Toremifene | In vivo | 0.0255–0.162 μM (EBOV-GFP); 0.973–1.73 μM (wtEBOV) | [53] | |
Bepridil | In vivo | 3.21–5.08 μM (EBOV-GFP); 4.54 μM (wt EBOV) | [54] | |
Sertraline | In vivo | 1.44–3.13 μM (EBOV-GFP); 3.73–8.62 μM (wtEBOV) | [54] | |
HP-HSA | In vitro | 0.068 μM (EBOVpp) | [55] | |
PPCM | In vitro | N.D. | [56] | |
Sclareol, sclareolide | In vitro | 2.4, 8.0 μM (EBOVpp) | [57] | |
Compound 7 | In vitro | 10 μM (EBOV-GFP) | [58] | |
Compound 118, compound 118a | In vitro | 3.1, 0.05 μM (EBOVpp) | [59] | |
11 compounds from ZINC database | In vitro | 1.79–36.66 μM (EBOVpp) | [60] | |
VP30 inhibitors | SRPK1/SRPK2 inhibitor (SRPIN340) | In vitro | N.D. | [61] |
PP2A-B56 inhibitor | In vitro | N.D. | [62] | |
PP1α inhibitor (C31) | In vitro | N.D. | [63] | |
VP24 inhibitors | VP24 PMOs | In vivo | 8–11 nM (enzymatic) | [64] |
Gossypetin, taxifolin, tricetin | In vitro | N.D. | [65,66] | |
Quercetin | In vitro | 7.4 μM (enzymatic) | [66] | |
Cycloartocarpin | In silico | N.D. | [67] | |
ZINC000095486070, ZINC000003594643, ZINC000095486008, Sarcophine | In silico | N.D. | [68] | |
Polymerase inhibitors | Brincidofovir | Clinical trial | 120 nM–1.3 µM | [69] |
Favipiravir | Clinical trial | 67 μM (wtEBOV) | [70] | |
Galidesivir | Clinical trial | 11.8 μM (wtEBOV) | [71] | |
Remdesivir | Clinical trial | 0.06–0.14 μM (EBOV-GFP or wtEBOV) | [72] | |
SNALPs (L) | In vivo | N.D. | [73] | |
Lamivudine, zidovudine | In vitro | >320 µM (wtEBOV) | [74] | |
Pairs of approved nucleotide analogues | In silico | N.D. | [75] | |
Host-targeting inhibitors—Viral entry | Amiodarone | Clinical trial | 2.02 μM (EBOVpp); 0.25 μg/mL (wtEBOV) | [76] |
Amiodarone | Clinical trial | 5.6 μM (EBOVpp) | [77] | |
Amiodarone | Clinical trial | 0.81 μM (EBOVpp); 7.6 μM (EBOV-GFP) | [78] | |
Amiodarone | Clinical trial | 5.5–15.9 μM (wtEBOV) | [79] | |
AMPK inhibitor (Compound C) | In vitro | ∼6 μM (EBOVpp) | [80] | |
MAPK inhibitors | In vitro | 2.67–8.26 μM (EBOV-GFP) | [81] | |
GlcNAc-1-phosphotransferase inhibitor (PF-429242) | In vitro | 0.80 μM (EBOVpp); 0.95 μM (EBOV-ZsG) | [82] | |
Emetine | In vitro | 10.2 μM (EBOV VLP); 16.9 nM (EBOV-GFP) | [83] | |
Dronedarone, verapamil | In vitro | N.D. | [76] | |
GPCR antagonists | In vitro | 3.7–19.4 μM (EBOV-GFP) | [84] | |
SERMs | In vitro | N.D. | [85] | |
ErbB kinase inhibitor (BIBX 1382) | In vitro | 1.1 μM (EBOV-GFP) | [86] | |
Host-targeting inhibitors—Viral replication | HspA5 inhibitors | In vivo | 50–60 μM (EGCG; live virus) | [87] |
Hsp90 inhibitors | In vitro | 43.8–394.5 nM (EBOV-GFP) | [88] | |
eIF4A inhibitor (silvestrol) | In vitro | ∼0.8 nM (live virus) | [89] | |
Emetine, cycloheximide, mycophenolic acid | In vitro | 1.474, 0.608, 0.316 μM (EBOV-GFP) | [90] | |
Host-targeting inhibitors—Antiviral immunity | SAH inhibitor (Ca-c3 Ado) | In vivo | 30 μM (wtEBOV) | [91] |
SAH inhibitor (c3-Npc A) | In vivo | 2 μM (wtEBOV) | [91] | |
IFNs | In vivo | <10–5102 U/mL (wtEBOV) | [92] | |
Nitazoxanide | In vitro | N.D. | [93] | |
Host-targeting inhibitors—Viral egress | TSG101 inhibitor (FGI-104) | In vivo | 10 μM (EBOV-GFP) | [94] |
Host-targeting inhibitors—Anticoagulant | rNAPc2 | In vivo | N.D. | [95] |
rhAPC | In vivo | N.D. | [96] | |
Combination Treatments | PMOs (VP24, VP35, L) | In vivo | N.D. | [97] |
PMOplus AVI-6002 (VP24, VP35, L) | In vivo | N.D. | [98] | |
Ad-IFN-α + Ad-CAGoptZGP | In vivo | N.D. | [99] | |
Ad-IFN-α + ZMAb | In vivo | N.D. | [100] | |
anti-GP + anti-VP40 | In vitro | N.D. | [101] | |
Combinations of IFNs and nucleoside analogs | In vitro | N.D. | [102] | |
Toremifene + mefloquine + posaconazole, toremifene + clarithromycin + posaconazole | In vitro | 1.08, 0.97 μM (Ebola VLP) | [103] | |
Aripiprazole + piperacetazine, sertraline + toremifene, sertraline + bepridil, amodiaquine + clomiphene | In vitro | N.D. | [104] | |
Digitoxin + tetrandrine, digitoxin + tamoxifen, digitoxin + fluvastatin, tamoxifen + fluvastatin | In vitro | N.D. | [105] | |
Inhibitors with unknown target(s) | 17 compounds from MLSMR library | In vitro | 1.6–25.6 μM (EBOV-GFP) | [106] |
Compound 8a and derivatives | In vitro | 2.5–30 μM (EBOVpp) | [107] | |
Azithromycin | In vivo | 1.3 μM (EBOVpp); 5.1 μM (EBOV-GFP) | [78] | |
Teicoplanin | In vivo | 2.38 μM (EBOVpp) | [108] | |
Teicoplanin | In vivo | 7.28 μM (EBOV-GFP) | [54] | |
Chloroquine | In vivo | 4.7 μM (EBOVpp); 16 μM (EBOV-GFP) | [78] | |
Chloroquine | In vivo | 3.319 μM (EBOVpp) | [109] | |
Chloroquine | In vivo | 15.3 μM (EBOV VLP) | [110] | |
Chloroquine | In vivo | 4.7 μM (EBOVpp); 16 μM (EBOV-GFP) | [78] | |
Chloroquine | In vivo | 1.77 μg/mL (EBOV-GFP) | [111] | |
Quercetin 3-β-O-D-glucoside | In vivo | 5.3 μM (EBOV-GFP) | [112] | |
FDA-approved compounds | In vitro | <25 μM (EBOV VLP) | [110] |
Category | Drug(s) | Animal Model | Treatment Time Post-Infection; Dose | Best Survival | Ref. |
---|---|---|---|---|---|
VP35 inhibitor | VP35 PMO | Mouse | −24 h, −4 h; 500 μg | 85% | [22] |
VP35 P-PMO | Mouse | −24 h, −4 h; 500 μg | 100% | [22] | |
VP35 P-PMO | Mouse | D1; 500 μg | 100% | [22] | |
GP inhibitors | mAb114 | Rhesus macaque | D5-7; 50 mg/kg | 100% | [30] |
MIL77E | Rhesus macaque | D3, 6, 9; 50 mg/kg | 100% | [33] | |
ch133 + ch226 | Rhesus macaque | D(−1), 1, 3; 25 mg/kg/mAb | 33% | [113] | |
ZMAb | Guinea pig | D2; 2 mg 4G7 + 1.5 mg 1H3 + 1.5 mg 2G4 | 100% | [34] | |
ZMAb | Cynomolgus macaque | D1, 4, 7; 25 mg/kg | 100% | [114] | |
ZMAb | Cynomolgus macaque | D2, 5, 8; 25 mg/kg | 50% | [114] | |
MB-003 | Rhesus macaque | D2, 6, 8, 10; 16.7 mg/kg/mAb | 67% | [37] | |
MB-003 | Rhesus macaque | Three doses initiated after symptom onset (by 120 h.p.i.); 16.7 mg/kg/mAb | 43% | [38] | |
ZMappTM | Rhesus macaque | D5, 8, 11; 50 mg/kg | 100% | [32] | |
AAV9-ZMapp | Mouse | D(−14); 3 × 1011 genome copies | >80% | [115] | |
AAV9-ZMapp | Mouse | D(−21); 3 × 1011 genome copies | 60–90% | [116] | |
AAV9-c2G4 | Mouse | D(−21); 3 × 1011 genome copies | 90–100% | [116] | |
AAV6.2FF-2G4 + AAV6.2FF-5D2 | Mouse | D(−7) or (−14) or (−140); 4 × 1011 genome copies | 100% | [117] | |
REGN-EB3 | Rhesus macaque | D5; 150 mg/kg | 89% | [31] | |
REGN-EB3 | Rhesus macaque | D5, 8, 11; 50 mg/kg | 100% | [31] | |
KZ52 | Guinea pig | −1 h or +1 h; 25 mg/kg | 80–100% | [39] | |
KZ52 | Rhesus macaque | D1, 4; 50 mg/kg | 0% | [118] | |
Q206 | Mouse | D2; 100 μg | 66.6% | [40] | |
Q314 | Mouse | D1 or 2; 100 μg | 33.3 | [40] | |
Q411 | Mouse | D1; 100 μg | 50.0 | [40] | |
2G1 | Mouse | D1; 100 μg | 100% | [41] | |
5E1 | Mouse | D1; 100 μg | 100% | [41] | |
5E9 | Mouse | D1; 100 μg | 100% | [41] | |
6D6 | Mouse | D1; 100 μg | 100% | [42] | |
m8C4 | Mouse | +2 h, D3; 25 mg/kg | 47% | [43] | |
Bis-mAbs | Mouse | D1; 200 μg | 70–100% | [44] | |
040 + 66-3-9C + 6662 + 6541 | Guinea pig | D3; 10 mg/kg/mAb | 100% | [47] | |
FVM04 + CA45 | Guinea pig | D3; 2.5 mg/mAb | 100% | [45] | |
FVM04 + CA45 | Guinea pig | D3; 1.25 mg/mAb | 100% | [119] | |
FVM04 + CA45 | Rhesus macaque | D4; 20 mg/kg/mAb | 100% | [119] | |
ADI-15742 | Mouse | D2; 300 μg | 100% | [48] | |
ADI-15878 | Mouse | D2; 300 μg | 80% | [48] | |
MBP134AF | Guinea pig | D3; 3.3 mg | 100% | [120] | |
MBP134AF | Ferret | D2, 5 or D3, 6; 15 mg | 100% | [121] | |
MBP134AF | Rhesus macaque | D4; 25 mg/kg | 100% | [121] | |
rEBOV-520 + rEBOV-548 | Rhesus macaque | D3, 6; 30 mg/kg | 100% | [49] | |
EBOV/SUDV pAb | Mouse | D1; 100 mg/kg | 80% | [50] | |
F(ab’)2 | Rhesus macaque | D3-7, 9, 11; 100 mg/kg | 100% | [51] | |
F(ab’)2 | Rhesus macaque | D5-9, 11, 13; 100 mg/kg | 100% | [51] | |
Clomiphene | Mouse | +1 h, D1, 3, 5, 7, 9; 60 mg/kg | 90% | [53] | |
Toremifene | Mouse | +1 h, D1, 3, 5, 7, 9; 60 mg/kg | 50% | [53] | |
Bepridil | Mouse | BID since +1 h for 10 days; 12 mg/kg | 100% | [54] | |
Sertraline | Mouse | BID since +1 h for 10 days; 10 mg/kg | 70% | [54] | |
rhMBL | Mouse | D0-10 (Q12H since 12 h.p.i.); 20 mg/kg | >40% | [52] | |
VP24 inhibitor | PMOs | Mouse | −24 h, −4 h; 1–50 μg | 30–100% | [64] |
RdRp inhibitors | SNALPs (L) | Guinea pig | +1 h, D1-6; 0.75 mg/kg | 100% | [73] |
Favipiravir | Mouse | D6-13; 300 mg/(kg × d) | 100% | [70] | |
Favipiravir | Mouse | BID since +1 h for 14 days; 150 mg/kg | 100% | [122] | |
Favipiravir | Cynomolgus macaque | BID since D(−2) for 14 days; 180 mg/kg (LD: 250 mg/kg) | 60% | [123] | |
Favipiravir | Cynomolgus macaque | D(−3)-10; 200 mg/kg (LD: 400 mg/kg) | 17% | [124] | |
Favipiravir | Cynomolgus macaque | BID since +0.5–2 h for 14 days; 150 mg/kg (LD: 250 mg/kg) | 0% | [124] | |
Galidesivir | Mouse | BID; 150 mg/kg | >80% | [71] | |
Galidesivir | Rhesus macaque | BID since D2 for 11 days; 25 mg/kg (LD: 100 mg/kg) | 100% | [125] | |
Galidesivir | Rhesus macaque | BID since D3 for 11 days; 25 mg/kg (LD: 100 mg/kg) | 67% | [125] | |
Remdesivir | Rhesus macaque | D3-14; 3 or 10 mg/kg (LD: 10 mg/kg) | 100% | [72] | |
Host-targeting inhibitors | Amiodarone | Mouse | D0-7 BID; 90 mg/kg | 10–40% | [78] |
Amiodarone | Guinea pig | Starting from D(−3); 160 mg/kg | 0% | [79] | |
HspA5 PMO | Mouse | D(−4), (−1), +1, +3; 7.5 mg/kg | 100% | [87] | |
SAH inhibitor (Ca-c3 Ado) | Mouse | Q8H since −24 h for 9 days; 0.7 mg/kg | 100% | [91] | |
SAH inhibitor (Ca-c3 Ado) | Mouse | D2; 80 mg/kg | 100% | [126] | |
SAH inhibitor (c3-Npc A) | Mouse | D4; 1 mg/kg | 100% | [126,127] | |
IFN-γ | Mouse | +6 h; 3.3μg | 100% | [128] | |
IFN-α | Cynomolgus macaque | Daily since +18 h; 2 × 107 IU/kg | 0% | [129] | |
IFN-β | Rhesus Macaque | +18 h, D1, 3, 5, 7, 9; 10.5 µg/kg | 0% | [130] | |
TSG101 inhibitor (FGI-104) | Mouse | −2 h; D1-10; 10 mg/kg | 100% | [94] | |
rNAPc2 | Rhesus macaque | D1-14; 30 μg/kg | 33% | [95] | |
rhAPC | Rhesus macaque | Continuous infusion since 1 h.p.i.; 2 mg/m2/h | 18% | [96] | |
Combination Treatments | PMOs (VP24, VP35, L) | Mouse | D1; 500 μg | 100% | [97] |
PMOs (VP24, VP35, L) | Guinea pig | D4; 30 mg | 67% | [97] | |
PMOs (VP24, VP35, L) | Rhesus macaque | D(−2), 0–9; 12.5–100 mg | 50% | [97] | |
PMOplus AVI-6002 (VP24, VP35, L) | Rhesus macaque | +0.5–1 h, D1-14; 28 or 40 mg/kg | 60% | [98] | |
SNALPs (L, VP35, and VP24) | Rhesus macaque | +0.5 h, D1-6; 2 mg/kg | 100% | [131] | |
Ad-IFN-α + Ad-CAGoptZGP | Guinea pig | +0.5 h; Ad-IFN-α 2 × 108 infectious particles + Ad-CAGoptZGP 1010 infectious particles | 100% | [99] | |
Ad-IFN-α + ZMAb | Cynomolgus macaque | D3; Ad-IFN 109 PFU/kg + ZMAb 50 mg/kgD6, 9; ZMAb 50 mg/kg | 100% | [100] | |
Inhibitors with unknown target(s) | Azithromycin | Mouse | D0-7 BID; 100 mg/kg | 10–60% | [78] |
Azithromycin | Guinea pig | D0-7; 6 mg/kg | 10% | [78] | |
Teicoplanin | Mouse | +1 h, D1-9; 14 mg/kg | 0% | [54] | |
Chloroquine | Mouse | D0-7 BID; 90 mg/kg | 70–80% | [78] | |
Chloroquine | Guinea pig | D0-7; 25 mg/kg | 0% | [78] | |
Chloroquine | Guinea pig | BID since +6 h; 33.75 mg/kg | 0% | [132] | |
Chloroquine | Hamster | 50 mg/kg | 0% | [111] | |
Quercetin 3-β-O-D-glucoside | Mouse | −0.5 h, D2, 4, 6, 8, 10; 50 mg/kg | 100% | [112] | |
Quercetin 3-β-O-D-glucoside | Mouse | D1, 3, 5, 7, 9, 11; 50 mg/kg | 30% | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Hu, Y.-T.; Wong, S.H.; Lin, L.-T. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022, 14, 579. https://doi.org/10.3390/v14030579
Liu C-H, Hu Y-T, Wong SH, Lin L-T. Therapeutic Strategies against Ebola Virus Infection. Viruses. 2022; 14(3):579. https://doi.org/10.3390/v14030579
Chicago/Turabian StyleLiu, Ching-Hsuan, Yee-Tung Hu, Shu Hui Wong, and Liang-Tzung Lin. 2022. "Therapeutic Strategies against Ebola Virus Infection" Viruses 14, no. 3: 579. https://doi.org/10.3390/v14030579
APA StyleLiu, C. -H., Hu, Y. -T., Wong, S. H., & Lin, L. -T. (2022). Therapeutic Strategies against Ebola Virus Infection. Viruses, 14(3), 579. https://doi.org/10.3390/v14030579