The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Analysis
2.2. Cells and Cultures
2.3. Plasmid Constructions and Purification
2.4. Protein Expression and Purification
2.5. Eukaryotic Cell Transient Transfection
2.6. Histag-LC Oligomer Immunodetection by Western Blotting
2.7. E. coli Assays
2.8. Transmission Electron Microscopy and Immunogold Labeling
3. Results
3.1. LC from FCV Does Not Have Common Biochemical Viroporin Characteristics but Contains the γ-Core Signature of Defensins
3.2. LC from FCV Has the Molecular Signature of Defensins Similar to the Delta Peptide from EBOV
3.3. WT-LC and the Mutant LC-C40A from FCV Oligomerizes Differentially through Disulfide Bonds
3.4. LC from FCV Is Intrinsically Toxic, Inducing a Phenotype That Resembles Osmotic Stress in Bacteria and Mitochondria
3.5. Mitochondria of LC-Expressing CrFK Cells Undergo Apparent Mitochondrial Permeation Transition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desselberger, U. Caliciviridae Other Than Noroviruses. Viruses 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Escolano, A.L. Host-Cell Factors Involved in the Calicivirus Replicative Cycle. Future Virol. 2014, 9, 147–160. [Google Scholar] [CrossRef]
- Peñaflor-Téllez, Y.; Trujillo-Uscanga, A.; Escobar-Almazán, J.A.; Gutiérrez-Escolano, A.L. Immune Response Modulation by Caliciviruses. Front. Immunol. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Emmott, E.; Sorgeloos, F.; Caddy, S.L.; Vashist, S.; Sosnovtsev, S.; Lloyd, R.; Heesom, K.; Locker, N.; Goodfellow, I. Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors. Mol. Cell. Proteomics 2017, 16, S215–S229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnovtsev, S.V.; Prikhod’ko, E.A.; Belliot, G.; Cohen, J.I.; Green, K.Y. Feline Calicivirus Replication Induces Apoptosis in Cultured Cells. Virus Res. 2003, 94, 1–10. [Google Scholar] [CrossRef]
- Kennedy, S.; Leroux, M.M.; Simons, A.; Malve, B.; Devocelle, M.; Varbanov, M. Apoptosis and Autophagy as a Turning Point in Viral-Host Interactions: The Case of Human Norovirus and Its Surrogates. Future Virol. 2020, 15, 165–182. [Google Scholar] [CrossRef]
- Sosnovtsev, S.V.; Green, K.Y. Feline Calicivirus as a Model for the Study of Calicivirus Replication. Perspect. Med. Virol. 2003, 9, 467–488. [Google Scholar] [CrossRef]
- Oka, T.; Takagi, H.; Tohya, Y. Development of a Novel Single Step Reverse Genetics System for Feline Calicivirus. J. Virol. Methods 2014, 207, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Jaime, C.; Green, K.Y.; Sosnovtsev, S.V. Recovery of Murine Norovirus and Feline Calicivirus from Plasmids Encoding EMCV IRES in Stable Cell Lines Expressing T7 Polymerase. J. Virol. Methods 2015, 217, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abente, E.J.; Sosnovtsev, S.V.; Bok, K.; Green, K.Y. Visualization of Feline Calicivirus Replication in Real-Time with Recombinant Viruses Engineered to Express Fluorescent Reporter Proteins. Virology 2010, 400, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Sosnovtsev, S.V.; Green, K.Y. RNA Transcripts Derived from a Cloned Full-Length Copy of the Feline Calicivirus Genome Do Not Require VpG for Infectivity. Virology 1995, 210, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Natoni, A.; Kass, G.E.N.; Carter, M.J.; Roberts, L.O. The Mitochondrial Pathway of Apoptosis Is Triggered during Feline Calicivirus Infection. J. Gen. Virol. 2006, 87, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Smertina, E.; Hall, R.N.; Urakova, N.; Strive, T.; Frese, M. Calicivirus Non-Structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front. Microbiol. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.J. Feline Calicivirus Protein Synthesis Investigated by Western Blotting. Arch. Virol. 1989, 108, 69–79. [Google Scholar] [CrossRef]
- Sosnovtsev, S.V.; Sosnovtseva, S.A.; Green, K.Y. Cleavage of the Feline Calicivirus Capsid Precursor Is Mediated by a Virus-Encoded Proteinase. J. Virol. 1998, 72, 3051–3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abente, E.J.; Sosnovtsev, S.V.; Sandoval-Jaime, C.; Parra, G.I.; Bok, K.; Green, K.Y. The Feline Calicivirus Leader of the Capsid Protein Is Associated with Cytopathic Effect. J. Virol. 2013, 87, 3003–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera-Vázquez, O.S.; Cancio-Lonches, C.; Hernández-González, O.; Chávez-Munguia, B.; Villegas-Sepúlveda, N.; Gutiérrez-Escolano, A.L. The Feline Calicivirus Leader of the Capsid Protein Causes Survivin and XIAP Downregulation and Apoptosis. Virology 2019, 527, 146–158. [Google Scholar] [CrossRef]
- He, J.; Melnik, L.I.; Komin, A.; Wiedman, G.; Fuselier, T.; Morris, C.F.; Starr, C.G.; Searson, P.C.; Gallaher, W.R.; Hristova, K.; et al. Ebola Virus Delta Peptide Is a Viroporin. J. Virol. 2017, 91, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Q.; Heller, B.; Capuccino, J.M.V.; Song, B.; Nimgaonkar, I.; Hrebikova, G.; Contreras, J.E.; Ploss, A. Hepatitis e Virus ORF3 Is a Functional Ion Channel Required for Release of Infectious Particles. Proc. Natl. Acad. Sci. USA 2017, 114, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, A.L.; Griffin, S.; Rowlands, D.; Harris, M.; Yi, M.K.; Lemon, S.M.; Weinman, S.A. Intracellular Proton Conductance of the Hepatitis C Virus P7 Protein and Its Contribution to Infectious Virus Production. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Hogue, B.G. Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly. J. Virol. 2007, 81, 3597–3607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, C.; Griffin, S. Viroporins: Structure, Function and Potential as Antiviral Targets. J. Gen. Virol. 2015, 96, 2000–2027. [Google Scholar] [CrossRef]
- Shrivastava, G.; García-Cordero, J.; León-Juárez, M.; Oza, G.; Tapia-Ramírez, J.; Villegas-Sepulveda, N.; Cedillo-Barrón, L. NS2A Comprises a Putative Viroporin of Dengue Virus 2. Virulence 2017, 8, 1450–1456. [Google Scholar] [CrossRef]
- Ceroni, A.; Passerini, A.; Vullo, A.; Frasconi, P. Disulfind: A Disulfide Bonding State and Cysteine Connectivity Prediction Server. Nucleic Acids Res. 2006, 34, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Kumar, T.A. CFSSP: Chou and Fasman Secondary Structure Prediction Server. Wide Spectr. 2013, 1, 15–19. [Google Scholar]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de Novo Structure Prediction for Linear Peptides in Solution and in Complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feliciello, I.; Chinali, G. A Modified Alkaline Lysis Method for the Preparation of Highly Purified Plasmid DNA from Escherichia Coli. Anal. Biochem. 1993, 212, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Hyser, J.M.; Collinson-Pautz, M.R.; Utama, B.; Estes, M.K. Rotavirus Disrupts Calcium Homeostasis by NSP4 Viroporin Activity. MBio 2010, 1, e00265-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, H.; Kocht, A.L. Phase and Electron Microscopic Observations of Osmotically Induced Wrinkling and the Role of Endocytotic Vesicles in the Plasmolysis of The. Microbiology 1995, 141, 3161–3170. [Google Scholar] [CrossRef] [Green Version]
- Mille, Y.; Beney, L.; Gervais, P. Viability of Escherichia Coli after Combined Osmotic and Thermal Treatment: A Plasma Membrane Implication. Biochim. Biophys. Acta-Biomembr. 2002, 1567, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Sesso, A.; Belizário, J.E.; Marques, M.M.; Higuchi, M.L.; Schumacher, R.I.; Colquhoun, A.; Ito, E.; Kawakami, J. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells. Anat. Rec. 2012, 295, 1647–1659. [Google Scholar] [CrossRef] [Green Version]
- Strtak, A.C.; Perry, J.L.; Sharp, M.N.; Chang-Graham, A.L.; Farkas, T.; Hyser, J.M. Recovirus NS1-2 Has Viroporin Activity That Induces Aberrant Cellular Calcium Signaling to Facilitate Virus Replication. mSphere 2019, 4, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madan, V.; Castelló, A.; Carrasco, L. Viroporins from RNA Viruses Induce Caspase-Dependent Apoptosis. Cell. Microbiol. 2008, 10, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Luganini, A.; Di Nardo, G.; Munaron, L.; Gilardi, G.; Fiorio Pla, A.; Gribaudo, G. Human Cytomegalovirus US21 Protein Is a Viroporin That Modulates Calcium Homeostasis and Protects Cells against Apoptosis. Proc. Natl. Acad. Sci. USA 2018, 115, E12370–E12377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, M.; De Jong, A.S.; Lanke, K.W.H.; Melchers, W.J.G.; Willems, P.H.G.M.; Pinton, P.; Rizzuto, R.; Van Kuppeveld, F.J.M. The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis. J. Biol. Chem. 2004, 279, 18440–18450. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gil, L.; Mingarro, I. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses 2015, 7, 3462–3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yount, N.Y.; Yeaman, M.R. Structural Congruence among Membrane-Active Host Defense Polypeptides of Diverse Phylogeny. Biochim. Biophys. Acta-Biomembr. 2006, 1758, 1373–1386. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, R.I.; Lu, W. α-Defensins in Human Innate Immunity. Immunol. Rev. 2012, 245, 84–112. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.S.; Bye, J.M.; Sambrook, J.F.; Gething, M.J.H. Disulfide Bond Formation during the Folding of Influenza Virus Hemagglutinin. J. Cell Biol. 1992, 118, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Volchkova, V.A.; Klenk, H.D.; Volchkov, V.E. Delta-Peptide Is the Carboxy-Terminal Cleavage Fragment of the Nonstructural Small Glycoprotein SGP of Ebola Virus. Virology 1999, 265, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, M.; Ezerina, D.; Alon, A.; Vonshak, O.; Fass, D. Exploring ORFan Domains in Giant Viruses: Structure of Mimivirus Sulfhydryl Oxidase R596. PLoS ONE 2012, 7, e50649. [Google Scholar] [CrossRef]
- Hakim, M.; Mandelbaum, A.; Fass, D. Structure of a Baculovirus Sulfhydryl Oxidase, a Highly Divergent Member of the Erv Flavoenzyme Family. J. Virol. 2011, 85, 9406–9413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkevich, T.G.; White, C.L.; Koonin, E.V.; Moss, B. Complete Pathway for Protein Disulfide Bond Formation Encoded by Poxviruses. Proc. Natl. Acad. Sci. USA 2002, 99, 6667–6672. [Google Scholar] [CrossRef] [Green Version]
- Odegard, A.L.; Chandran, K.; Liemann, S.; Harrison, S.C.; Nibert, M.L. Disulfide Bonding among Μ1 Trimers in Mammalian Reovirus Outer Capsid: A Late and Reversible Step in Virion Morphogenesis. J. Virol. 2003, 77, 5389–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumming, R.C.; Andon, N.L.; Haynes, P.A.; Park, M.; Fischer, W.H.; Schubert, D. Protein Disulfide Bond Formation in the Cytoplasm during Oxidative Stress. J. Biol. Chem. 2004, 279, 21749–21758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimley, W.C.; Selsted, M.E.; White, S.H. Interactions between Human Defensins and Lipid Bilayers: Evidence for Formation of Multimeric Pores. Protein Sci. 1994, 3, 1362–1373. [Google Scholar] [CrossRef] [Green Version]
- Gallaher, W.R.; Garry, R.F. Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif. Viruses 2015, 7, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Delamarche, C.; Thomas, D.; Rolland, J.P.; Froger, A.; Gouranton, J.; Svelto, M.; Agre, P.; Calamita, G. Visualization of AqpZ-Mediated Water Permeability in Escherichia Coli by Cryoelectron Microscopy. J. Bacteriol. 1999, 181, 4193–4197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, W.R.; MacAlister, T.J.; Rothfield, L.I. Compartmentalization of the Periplasmic Space at Division Sites in Gram-Negative Bacteria. J. Bacteriol. 1986, 168, 1430–1438. [Google Scholar] [CrossRef] [Green Version]
- Moyer, C.L.; Nemerow, G.R. Disulfide-Bond Formation by a Single Cysteine Mutation in Adenovirus Protein VI Impairs Capsid Release and Membrane Lysis. Virology 2012, 428, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasola, A.; Sciacovelli, M.; Pantic, B.; Bernardi, P. Signal Transduction to the Permeability Transition Pore. FEBS Lett. 2010, 584, 1989–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, K.; Whitehead, L.W.; Heddleston, J.M.; Li, L.; Padman, B.S.; Oorschot, V.; Geoghegan, N.D.; Chappaz, S.; Davidson, S.; San Chin, H.; et al. BAK/BAX Macropores Facilitate Mitochondrial Herniation and MtDNA Efflux during Apoptosis. Science 2018, 359. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñaflor-Téllez, Y.; Chávez-Munguía, B.; Lagunes-Guillén, A.; Salazar-Villatoro, L.; Gutiérrez-Escolano, A.L. The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin. Viruses 2022, 14, 635. https://doi.org/10.3390/v14030635
Peñaflor-Téllez Y, Chávez-Munguía B, Lagunes-Guillén A, Salazar-Villatoro L, Gutiérrez-Escolano AL. The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin. Viruses. 2022; 14(3):635. https://doi.org/10.3390/v14030635
Chicago/Turabian StylePeñaflor-Téllez, Yoatzin, Bibiana Chávez-Munguía, Anel Lagunes-Guillén, Lizbeth Salazar-Villatoro, and Ana Lorena Gutiérrez-Escolano. 2022. "The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin" Viruses 14, no. 3: 635. https://doi.org/10.3390/v14030635
APA StylePeñaflor-Téllez, Y., Chávez-Munguía, B., Lagunes-Guillén, A., Salazar-Villatoro, L., & Gutiérrez-Escolano, A. L. (2022). The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin. Viruses, 14(3), 635. https://doi.org/10.3390/v14030635