Mapping the Distributions of Mosquitoes and Mosquito-Borne Arboviruses in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Spatial Mapping
2.3. Ecological Modeling
2.4. Clustering Mosquitoes with Similar Ecological Niches and Their Spatial Distribution
2.5. Population at Risk for Main MBDs with High Disease Burden
3. Results
3.1. Distribution of Mosquito Species in the mainland of China
3.2. Ecological Modeling and Clustering of Predominant Mosquito Species in China
3.3. Mosquito-Borne Arboviruses Known to Infect Humans
3.3.1. The Locations of Arboviruses from Human Cases and Mosquitoes
3.3.2. The Locations of Arboviruses from Serological Investigation of People
3.3.3. The Locations of Arboviruses from Animals
3.4. Modelling for Geographic Distribution of Human Cases with DENV and JEV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Turtle, L.; Solomon, T. Japanese encephalitis—The prospects for new treatments. Nat. Rev. Neurol. 2018, 14, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Reno, E.; Quan, N.G.; Franco-Paredes, C.; Chastain, D.B.; Chauhan, L.; Rodriguez-Morales, A.J.; Henao-Martínez, A.F. Prevention of yellow fever in travellers: An update. Lancet Infect. Dis. 2020, 20, e129–e137. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Li, L.F.; Zhang, K.; Wang, B.; Tang, L.; Li, M.; Wang, T.; Sun, Y.; Li, S.; Qiu, H.J. Deletion of the H240R Gene of African Swine Fever Virus decreases infectious progeny virus production due to aberrant virion morphogenesis and enhances inflammatory cytokine expression in porcine macrophages. J. Virol. 2022, 96, e0166721. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elena, S.F.; Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: Separating causes from consequences. J. Virol. 2005, 79, 11555–11558. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Gao, X.; Gould, E.A. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg. Microbes Infect. 2015, 4, e18. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-J.; Deng, X.-L.; Duan, J.-H. The history of the elimination of lymphatic filariasis in China. Infect. Dis. Poverty 2013, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Newby, G.; Cotter, C.; Hsiang, M.S.; Larson, E.; Tatarsky, A.; Gosling, R.D.; Xia, Z.; Gao, Q. Achieving malaria elimination in China. Lancet Public Health 2021, 6, e871–e872. [Google Scholar] [CrossRef]
- Geng, M.J.; Zhang, H.Y.; Yu, L.J.; Lv, C.L.; Wang, T.; Che, T.L.; Xu, Q.; Jiang, B.G.; Chen, J.J.; Hay, S.I.; et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic. Nat. Commun. 2021, 12, 6923. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, N.; Lourenço, J.; Wang, L.; Cazelles, B.; Dong, L.; Li, B.; Liu, Y.; Jit, M.; Bosse, N.I.; et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: A statistical modelling study. Lancet Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Bettis, A.A.; L’Azou Jackson, M.; Yoon, I.K.; Breugelmans, J.G.; Goios, A.; Gubler, D.J.; Powers, A.M. The global epidemiology of chikungunya from 1999 to 2020: A systematic literature review to inform the development and introduction of vaccines. PLoS Negl. Trop. Dis. 2022, 16, e0010069. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M. The current burden of Japanese encephalitis and the estimated impacts of vaccination: Combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen. PLoS Negl. Trop. Dis. 2021, 15, e0009385. [Google Scholar] [CrossRef]
- Lu, B.L.; Li, B.S.; Ji, S.H.; Chen, H.B.; Meng, Q.H.; Su, L.; Zhai, F.Y.; Gong, Z.D.; Zhang, Z.K. Fauna Sinica, Insecta Vol. 8, Diptera: Culicidae I; Science Press: Beijing, China, 1997. [Google Scholar]
- Lu, B.L.; Xu, J.J.; Yu, Y.; Zhang, B.H.; Dong, X.S. Fauna Sinica, Insecta Vol. 9, Diptera: Culicidae II; Science Press: Beijing, China, 1997. [Google Scholar]
- Science Press. China Species Library. Available online: https://species.sciencereading.cn/biology/v/biologicalIndex/122.html (accessed on 11 March 2022).
- Bai, L.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yim, S.; Yang, Y.; Morin, C. The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. Int. J. Biometeorol. 2020, 64, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Uchida, L.; Shibuya, M.; Morales-Vargas, R.E.; Hagiwara, K.; Muramatsu, Y. Zika virus potential vectors among Aedes mosquitoes from Hokkaido, Northern Japan: Implications for potential emergence of Zika disease. Pathogens 2021, 10, 938. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.; Boussès, P.; Julienne, S.; Brengues, C.; Rahola, N.; Rocamora, G.; Robert, V. The mosquitoes (Diptera: Culidae) of Seychelles: Taxonomy, ecology, vectorial importance, and identification keys. Parasit. Vectors 2012, 5, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandina, F.; Doumbo, O.; Yaro, A.S.; Traoré, S.F.; Parola, P.; Robert, V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit. Vectors 2018, 11, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Gao, X.; Zheng, K.; Ma, J.; Jiao, Z.; Xiao, J.; Wang, H. The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: An ecological niche modelling approach. Pest Manag. Sci. 2020, 76, 3096–3107. [Google Scholar] [CrossRef] [PubMed]
- Atoni, E.; Zhao, L.; Hu, C.; Ren, N.; Wang, X.; Liang, M.; Mwaliko, C.; Yuan, Z.; Xia, H. A dataset of distribution and diversity of mosquito-associated viruses and their mosquito vectors in China. Sci. Data 2020, 7, 342. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gao, X.; Liang, G. Newly recognized mosquito-associated viruses in mainland China, in the last two decades. Virol. J. 2011, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Guo, S.; Feng, X.; Afelt, A.; Frutos, R.; Zhou, S.; Manguin, S. Anopheles Vectors in Mainland China While Approaching Malaria Elimination. Trends Parasitol. 2017, 33, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Hayat, M.A.; Wang, H. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci. Total Environ. 2019, 664, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.H.; Masuoka, P.; Klein, T.A.; Kim, H.-C.; Somer, T.; Grieco, J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl. Trop. Dis. 2012, 6, e1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geol. Surv. Data Ser. 2012, 691, 4–9. [Google Scholar] [CrossRef]
- Miao, D.; Liu, M.-J.; Wang, Y.-X.; Ren, X.; Lu, Q.-B.; Zhao, G.-P.; Dai, K.; Li, X.-L.; Li, H.; Zhang, X.-A.; et al. Epidemiology and ecology of Severe Fever with Thrombocytopenia Syndrome in China, 2010–2018. Clin. Infect. Dis. 2020, 73, e3851–e3858. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.Q.; de Vlas, S.J.; Liang, S.; Looman, C.W.N.; Gong, P.; Xu, B.; Yan, L.; Yang, H.; Richardus, J.H.; Cao, W.-C. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China. PLoS ONE 2008, 3, e2268. [Google Scholar] [CrossRef] [Green Version]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; pp. 1–758. [Google Scholar]
- Fang, L.-Q.; Li, X.-L.; Liu, K.; Li, Y.-J.; Yao, H.-W.; Liang, S.; Yang, Y.; Feng, Z.-J.; Gray, G.C.; Cao, W.-C. Mapping spread and risk of avian influenza A (H7N9) in China. Sci. Rep. 2013, 3, 2722. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.; Pfeiffer, D.U.; Zhou, X.; Xiao, X.; Prosser, D.J.; Guo, F.; Gilbert, M. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China. PLoS Pathog. 2011, 7, e1001308. [Google Scholar] [CrossRef] [PubMed]
- Tarantola, A.; Blanchi, S.; Cappelle, J.; Ly, S.; Chan, M.; In, S.; Peng, Y.; Hing, C.; Taing, C.N.; Ly, S.; et al. Rabies Postexposure Prophylaxis Noncompletion After Dog Bites: Estimating the Unseen to Meet the Needs of the Underserved. Am. J. Epidemiol. 2018, 187, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Dallas, T.; Park, A.W.; Drake, J.M. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure. Parasitology 2017, 144, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Kraemer, M.U.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchai, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for Zika virus. eLife 2016, 5, e15272. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2002. [Google Scholar]
- Albery, G.F.; Eskew, E.A.; Ross, N.; Olival, K.J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. 2020, 11, 2260. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.S.; Doyle, M.M.; Smart, K.M.; Young, C.; Drape, G.W.; Johnson, C.K. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat. Commun. 2018, 9, 5425. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-J.; Lai, S.-J.; Yang, Y.; Liu, K.; Li, X.-L.; Yao, H.-W.; Li, Y.; Zhou, H.; Wang, L.-P.; Mu, D.; et al. Mapping the Distribution of Anthrax in Mainland China, 2005–2013. PLoS Negl. Trop. Dis. 2016, 10, e0004637. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Wang, Y.; Mi, X.; Sun, Y.; Liu, K.; Li, X.; Ren, X.; Geng, M.; Yang, Y.; Wang, L.; et al. The scrub typhus in mainland China: Spatiotemporal expansion and risk prediction underpinned by complex factors. Emerg. Microbes Infect. 2019, 8, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.P.; Wang, Y.X.; Fan, Z.W.; Ji, Y.; Liu, M.-J.; Zhang, W.-H.; Li, X.-L.; Zhou, S.-X.; Li, H.; Liang, S.; et al. Mapping ticks and tick-borne pathogens in China. Nat. Commun. 2021, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 2005, 16, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, L.C. Statistics with Stata; Cengage Learning: Boston, MA, USA, 2009. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Cao, L.; Fu, S.; Lu, Z.; Tang, C.; Gao, X.; Li, X.; Lei, W.; He, Y.; Li, M.; Cao, Y.; et al. Detection of West Nile Virus Infection in Viral Encephalitis Cases, China. Vector-Borne Zoonotic Dis. 2019, 19, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Fu, S.-H.; Cao, L.; Tang, C.-J.; Zhang, S.; Li, Z.-X.; Tusong, M.; Yao, X.-H.; Zhang, H.-L.; Wang, P.-Y.; et al. Human infection with West Nile Virus, Xinjiang, China, 2011. Emerg. Infect. Dis. 2014, 20, 1421–1423. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, J.; Zhang, Q.; Zhong, H.; Ke, C.; Deng, X.; Guan, D.; Li, H.; Zhang, Y.; Zhou, H.; et al. Chikungunya outbreak in Guangdong Province, China, 2010. Emerg. Infect. Dis. 2012, 18, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, Y.; Zhou, H.; Kou, J.; Liang, W.; Zhang, H.; Monagin, C.; Zhang, Q.; Li, W.; Zhong, H.; et al. Chikungunya virus with E1-A226V mutation causing two outbreaks in 2010, Guangdong, China. Virol. J. 2013, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Fang, C.; Yan, J.; Yan, H.; Zhan, B.; Sun, Y.; Liu, Y.; Mao, H.; Cao, G.; Lv, L.; et al. Chikungunya fever outbreak, Zhejiang Province, China, 2017. Emerg. Infect. Dis. 2019, 25, 1589. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.B.; Li, M.; Gao, N.; Shen, J.Y.; Sheng, Z.Y.; Fan, D.Y.; Zhou, H.N.; Yin, X.X.; Mao, J.R.; Jiang, J.Y.; et al. Epidemiological and clinical characteristics of the chikungunya outbreak in Ruili City, Yunnan Province, China. J. Med. Virol. 2022, 94, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Liu, R.; Zhao, L.; Sun, X.; Zheng, Z.; Atoni, E.; Hu, X.; Zhang, B.; Zhang, G.; Yuan, Z. Characterization of Ebinur Lake Virus and Its Human Seroprevalence at the China-Kazakhstan Border. Front. Microbiol. 2019, 10, 3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nga, P.T.; Parquet, M.D.C.; Lauber, C.; Parida, M.; Nabeshima, T.; Yu, F.; Thuy, N.T.; Inoue, S.; Ito, T.; Okamoto, K.; et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 2011, 7, e1002215. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, H.Y.; Li, X.L.; Gao, X.Y.; Li, M.H.; Fu, S.H.; He, Y.; Li, F.; Yin, Q.K.; Xu, S.T.; et al. Japanese Encephalitis in China in the Period of 1950–2018: From Discovery to Control. Biomed. Environ. Sci. 2021, 34, 175–183. [Google Scholar] [CrossRef]
- Sanisuriwong, J.; Yurayart, N.; Thontiravong, A.; Tiawsirisup, S. Vector competence of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae) for duck Tembusu virus transmission. Acta Trop. 2021, 214, 105785. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.F.; Zhang, Y.M.; Guo, X.X.; Dong, Y.D.; Xing, D.; Xue, R.D.; Zhao, T.Y. Experimental studies on comparison of the potential vector competence of four species of Culex mosquitoes in China to transmit West Nile virus. J. Med. Entomol. 2010, 47, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Faizah, A.N.; Kobayashi, D.; Amoa-Bosompem, M.; Higa, Y.; Tsuda, Y.; Itokawa, K.; Miura, K.; Hirayama, K.; Sawabe, K.; Isawa, H. Evaluating the competence of the primary vector, Culex tritaeniorhynchus, and the invasive mosquito species, Aedes japonicus japonicus, in transmitting three Japanese encephalitis virus genotypes. PLoS Negl. Trop. Dis. 2020, 14, e0008986. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Rasgon, J.L.; Hughes, G.L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 2015, 15, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takken, W.; Verhulst, N.O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 2013, 58, 433–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, A.W.E.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Patsoula, E.; Beleri, S.; Vakali, A.; Pervanidou, D.; Tegos, N.; Nearchou, A.; Daskalakis, D.; Mourelatos, S.; Hadjichristodoulou, C. Records of Aedes albopictus (Skuse, 1894) (Diptera; Culicidae) and Culex tritaeniorhynchus (Diptera; Culicidae) expansion in areas in mainland Greece and islands. Vector-Borne Zoonotic Dis. 2017, 17, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef] [PubMed]
- McMillan, J.R.; Armstrong, P.M.; Andreadis, T.G. Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the northeast United States. PLoS Negl. Trop. Dis. 2020, 14, e0008066. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.-Y.; Bi, P.; Cazelles, B.; Zhou, S.; Huang, S.-Q.; Yang, J.; Pei, Y.; Wu, X.-X.; Fu, S.-H.; Tong, S.-L.; et al. How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach. Environ. Int. 2015, 79, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Gu, S.; Bi, P.; Yang, W.; Yang, Z.; Xu, L.; Yang, J.; Liu, X.; Jiang, T.; Wu, H.; et al. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS Negl. Trop. Dis. 2015, 9, e0003808. [Google Scholar] [CrossRef] [Green Version]
- Ransom, K.M.; Nolan, B.T.; Traum, J.A.; Faunt, C.C.; Bell, A.M.; Gronberg, J.A.M.; Wheeler, D.C.; Rosecrans, C.Z.; Jurgens, B.; Schwarz, G.E.; et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 2017, 601–602, 1160–1172. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
Mosquito Species | Average AUC (2.5–97.5% Percentiles) | Predicted/Observed (Relative Difference %) | ||
---|---|---|---|---|
Number of Counties | Coverage Area (10 000 km 2) | Population Size (million) | ||
Armigeres subalbatus c | 0.84 (0.79, 0.88) | 1324/373 (255.0) | 226.2/80.7 (180.3) | 739.8/216.3 (242.0) |
Anopheles sinensisa,b,c | 0.87 (0.81, 0.92) | 1930/751 (157.0) | 361.5/182.5 (98.1) | 978.1/430.1 (127.4) |
An. anthropophagus | 0.90 (0.87, 0.94) | 469/248 (89.1) | 81.8/51.2 (59.8) | 256.2/150.8 (69.9) |
An. minimus | 0.86 (0.82, 0.89) | 631/236 (167.4) | 137.1/55.7 (146.1) | 290.1/131.7 (120.3) |
An. maculatus | 0.88 (0.82, 0.93) | 282/124 (127.4) | 82.0/36.7 (123.4) | 108.2/51.5 (110.1) |
An. pattoni | 0.87 (0.82, 0.93) | 411/117 (251.3) | 83.1/30.7 (170.7) | 181.3/63.7 (184.6) |
An. lindesayi | 0.79 (0.72, 0.86) | 280/105 (166.7) | 75.2/31.7 (137.2) | 104.5/45.6 (129.2) |
An. jeyporiensis | 0.91 (0.85, 0.95) | 242/104 (132.7) | 54.2/24.2 (124.0) | 120.1/57.6 (108.5) |
An. tessellatus | 0.91 (0.87, 0.95) | 236/97 (143.3) | 52.4/22.3 (135.0) | 115.4/39.2 (194.4) |
Culex tritaeniorhynchus a,c | 0.83 (0.77, 0.87) | 1924/587 (227.8) | 305.1/131.3 (132.4) | 1042.8/330.6 (215.4) |
Cx. pipiens quinquefasciatus | 0.90 (0.85, 0.93) | 930/384 (142.2) | 193.5/87.0 (122.4) | 465.5/206.2 (125.8) |
Cx. pipiens pallensa,c | 0.94 (0.91, 0.97) | 1695/381 (344.9) | 332.7/111.8 (197.6) | 856.9/234.0 (266.2) |
Cx. bitaeniorhynchus | 0.68 (0.63, 0.73) | 560/250 (124.0) | 114.8/57.3 (100.3) | 275.2/136.2 (102.1) |
Cx. vagansa,b | 0.77 (0.69, 0.84) | 1397/186 (651.1) | 582.6/78.0 (646.9) | 546.9/92.9 (488.7) |
Cx. halifaxia | 0.76 (0.70, 0.82) | 590/161 (266.5) | 123.8/40.1 (208.7) | 285.1/78.1 (265.0) |
Cx. modestusb | 0.93 (0.88, 0.96) | 561/133 (321.8) | 336.2/118.5 (183.7) | 184.8/57.1 (223.6) |
Cx. fuscanus | 0.80 (0.74, 0.86) | 429/129 (232.6) | 85.0/29.0 (193.1) | 233.7/67.5 (246.2) |
Cx. mimeticus | 0.75 (0.65, 0.84) | 402/123 (226.8) | 113.0/35.4 (219.2) | 151.4/54.4 (178.3) |
Cx. pseudovishnui | 0.82 (0.75, 0.88) | 240/108 (122.2) | 65.8/31.1 (111.6) | 77.9/40.4 (92.8) |
Cx. fuscocephala | 0.85 (0.75, 0.92) | 293/99 (196.0) | 72.8/33.2 (119.3) | 133.5/38.5 (246.8) |
Cx. whitmorei | 0.77 (0.70, 0.84) | 261/95 (174.7) | 59.5/24.8 (139.9) | 106.5/42.0 (153.6) |
Cx. mimulus | 0.76 (0.68, 0.82) | 459/82 (459.8) | 158.1/20.7 (663.8) | 200.0/37.3 (436.2) |
Aedes albopictus a,c | 0.87 (0.83, 0.90) | 1374/555 (147.6) | 197.0/102.7 (91.8) | 796.9/343.5 (132.0) |
Ae. vexansb | 0.82 (0.76, 0.87) | 953/247 (285.8) | 436.5/140.8 (210.0) | 329.7/107.9 (205.6) |
Ae. dorsalisb | 0.93 (0.89, 0.96) | 624/111 (462.2) | 390.7/120.7 (223.7) | 211.4/47.3 (346.9) |
Ae. aegypti | 0.95 (0.84, 1.00) | 103/30 (243.3) | 23.1/7.8 (196.2) | 62.3/15.1 (312.6) |
Category | Variable | Dengue (Relative Contributions %) # | Japanese Encephalitis (Relative Contributions %) # | ||
---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 1 | Stage 2 | ||
Environmental | Basin (binary variable) | 3.27 (2.20) | 3.65 (1.55) | ||
Paddy field (%) | 2.27 (0.48) | ||||
Rainfed cropland (%) | 3.05 (0.59) | 3.20 (0.84) | |||
Forest (%) | 1.82 (0.58) | 3.20 (0.62) | |||
Grasslands (%) | 23.99 (8.87) | ||||
River (%) | 2.52 (0.51) | ||||
Rural residential land (%) | 3.69 (0.96) | ||||
Other construction land (%) | 2.29 (0.46) | ||||
Ecoclimatic | Annual mean temperature | 16.25 (4.88) | 14.92 (6.65) | 17.17 (6.52) | 2.68 (0.54) |
Isothermality | 3.43 (0.68) | 3.82 (1.33) | 2.54 (0.44) | ||
Temperature seasonality | 3.00 (2.23) | 8.78 (2.17) | |||
Mean temperature of wettest quarter | 11.29 (2.62) | 2.05 (0.51) | |||
Mean temperature of warmest quarter | 34.14 (7.35) | 6.34 (4.46) | |||
Annual cumulative precipitation | 7.00 (5.60) | 27.30 (8.36) | |||
Precipitation seasonality | 2.71 (0.62) | 2.77 (1.41) | 4.00 (0.65) | 4.03 (1.33) | |
Precipitation of driest quarter | 4.62 (1.26) | 9.84 (2.77) | 5.16 (1.07) | ||
Social | Index of case importation | - | 5.85 (3.93) | - | - |
Proportion of women | 2.18 (0.43) | 2.75 (0.46) | |||
Proportion of ≥60 years old | 3.01 (0.62) | 2.68 (0.62) | |||
Number of general hospitals | 5.35 (1.30) | 3.75 (0.64) | |||
Number of clinics | 3.18 (0.70) | ||||
Biological | Density of population | 5.01 (1.06) | 4.03 (0.84) | 2.67 (0.62) | 2.33 (0.55) |
Mammalian richness | 2.93 (0.76) | 6.86 (1.19) | 4.46 (0.81) | ||
Density of pig | 3.79 (0.79) | 5.92 (2.29) | |||
Density of cattle | 2.66 (1.02) | 3.04 (0.50) | |||
Density of duck | 3.40 (0.72) | 5.09 (1.57) | |||
Density of goat | 2.69 (1.73) | 3.10 (0.63) | |||
Density of sheep | 2.60 (1.77) | 2.37 (0.52) | |||
Density of chicken | 16.29 (8.28) | ||||
Presence of Cx. tritaeniorhynchus & | - | - | 16.11 (7.08) | ||
Presence of An. sinensis & | - | - | 2.61 (0.53) | ||
Presence of Cx. pipiens quinquefasciatus & | - | - | 2.08 (0.61) | ||
Presence of Ae. albopictus & | 7.13 (1.15) | 17.27 (7.56) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Fan, Z.-W.; Ji, Y.; Chen, J.-J.; Zhao, G.-P.; Zhang, W.-H.; Zhang, H.-Y.; Jiang, B.-G.; Xu, Q.; Lv, C.-L.; et al. Mapping the Distributions of Mosquitoes and Mosquito-Borne Arboviruses in China. Viruses 2022, 14, 691. https://doi.org/10.3390/v14040691
Wang T, Fan Z-W, Ji Y, Chen J-J, Zhao G-P, Zhang W-H, Zhang H-Y, Jiang B-G, Xu Q, Lv C-L, et al. Mapping the Distributions of Mosquitoes and Mosquito-Borne Arboviruses in China. Viruses. 2022; 14(4):691. https://doi.org/10.3390/v14040691
Chicago/Turabian StyleWang, Tao, Zheng-Wei Fan, Yang Ji, Jin-Jin Chen, Guo-Ping Zhao, Wen-Hui Zhang, Hai-Yang Zhang, Bao-Gui Jiang, Qiang Xu, Chen-Long Lv, and et al. 2022. "Mapping the Distributions of Mosquitoes and Mosquito-Borne Arboviruses in China" Viruses 14, no. 4: 691. https://doi.org/10.3390/v14040691
APA StyleWang, T., Fan, Z. -W., Ji, Y., Chen, J. -J., Zhao, G. -P., Zhang, W. -H., Zhang, H. -Y., Jiang, B. -G., Xu, Q., Lv, C. -L., Zhang, X. -A., Li, H., Yang, Y., Fang, L. -Q., & Liu, W. (2022). Mapping the Distributions of Mosquitoes and Mosquito-Borne Arboviruses in China. Viruses, 14(4), 691. https://doi.org/10.3390/v14040691